1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
// Copyright 2012 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview A one dimensional cubic spline interpolator with not-a-knot
* boundary conditions.
*
* See http://en.wikipedia.org/wiki/Spline_interpolation.
*
*/
goog.provide('goog.math.interpolator.Spline1');
goog.require('goog.array');
goog.require('goog.asserts');
goog.require('goog.math');
goog.require('goog.math.interpolator.Interpolator1');
goog.require('goog.math.tdma');
/**
* A one dimensional cubic spline interpolator with natural boundary conditions.
* @implements {goog.math.interpolator.Interpolator1}
* @constructor
*/
goog.math.interpolator.Spline1 = function() {
/**
* The abscissa of the data points.
* @type {!Array<number>}
* @private
*/
this.x_ = [];
/**
* The spline interval coefficients.
* Note that, in general, the length of coeffs and x is not the same.
* @type {!Array<!Array<number>>}
* @private
*/
this.coeffs_ = [[0, 0, 0, Number.NaN]];
};
/** @override */
goog.math.interpolator.Spline1.prototype.setData = function(x, y) {
goog.asserts.assert(
x.length == y.length,
'input arrays to setData should have the same length');
if (x.length > 0) {
this.coeffs_ = this.computeSplineCoeffs_(x, y);
this.x_ = x.slice();
} else {
this.coeffs_ = [[0, 0, 0, Number.NaN]];
this.x_ = [];
}
};
/** @override */
goog.math.interpolator.Spline1.prototype.interpolate = function(x) {
var pos = goog.array.binarySearch(this.x_, x);
if (pos < 0) {
pos = -pos - 2;
}
pos = goog.math.clamp(pos, 0, this.coeffs_.length - 1);
var d = x - this.x_[pos];
var d2 = d * d;
var d3 = d2 * d;
var coeffs = this.coeffs_[pos];
return coeffs[0] * d3 + coeffs[1] * d2 + coeffs[2] * d + coeffs[3];
};
/**
* Solve for the spline coefficients such that the spline precisely interpolates
* the data points.
* @param {Array<number>} x The abscissa of the spline data points.
* @param {Array<number>} y The ordinate of the spline data points.
* @return {!Array<!Array<number>>} The spline interval coefficients.
* @private
*/
goog.math.interpolator.Spline1.prototype.computeSplineCoeffs_ = function(x, y) {
var nIntervals = x.length - 1;
var dx = new Array(nIntervals);
var delta = new Array(nIntervals);
for (var i = 0; i < nIntervals; ++i) {
dx[i] = x[i + 1] - x[i];
delta[i] = (y[i + 1] - y[i]) / dx[i];
}
// Compute the spline coefficients from the 1st order derivatives.
var coeffs = [];
if (nIntervals == 0) {
// Nearest neighbor interpolation.
coeffs[0] = [0, 0, 0, y[0]];
} else if (nIntervals == 1) {
// Straight line interpolation.
coeffs[0] = [0, 0, delta[0], y[0]];
} else if (nIntervals == 2) {
// Parabola interpolation.
var c3 = 0;
var c2 = (delta[1] - delta[0]) / (dx[0] + dx[1]);
var c1 = delta[0] - c2 * dx[0];
var c0 = y[0];
coeffs[0] = [c3, c2, c1, c0];
} else {
// General Spline interpolation. Compute the 1st order derivatives from
// the Spline equations.
var deriv = this.computeDerivatives(dx, delta);
for (var i = 0; i < nIntervals; ++i) {
var c3 = (deriv[i] - 2 * delta[i] + deriv[i + 1]) / (dx[i] * dx[i]);
var c2 = (3 * delta[i] - 2 * deriv[i] - deriv[i + 1]) / dx[i];
var c1 = deriv[i];
var c0 = y[i];
coeffs[i] = [c3, c2, c1, c0];
}
}
return coeffs;
};
/**
* Computes the derivative at each point of the spline such that
* the curve is C2. It uses not-a-knot boundary conditions.
* @param {Array<number>} dx The spacing between consecutive data points.
* @param {Array<number>} slope The slopes between consecutive data points.
* @return {!Array<number>} The Spline derivative at each data point.
* @protected
*/
goog.math.interpolator.Spline1.prototype.computeDerivatives = function(
dx, slope) {
var nIntervals = dx.length;
// Compute the main diagonal of the system of equations.
var mainDiag = new Array(nIntervals + 1);
mainDiag[0] = dx[1];
for (var i = 1; i < nIntervals; ++i) {
mainDiag[i] = 2 * (dx[i] + dx[i - 1]);
}
mainDiag[nIntervals] = dx[nIntervals - 2];
// Compute the sub diagonal of the system of equations.
var subDiag = new Array(nIntervals);
for (var i = 0; i < nIntervals; ++i) {
subDiag[i] = dx[i + 1];
}
subDiag[nIntervals - 1] = dx[nIntervals - 2] + dx[nIntervals - 1];
// Compute the super diagonal of the system of equations.
var supDiag = new Array(nIntervals);
supDiag[0] = dx[0] + dx[1];
for (var i = 1; i < nIntervals; ++i) {
supDiag[i] = dx[i - 1];
}
// Compute the right vector of the system of equations.
var vecRight = new Array(nIntervals + 1);
vecRight[0] =
((dx[0] + 2 * supDiag[0]) * dx[1] * slope[0] + dx[0] * dx[0] * slope[1]) /
supDiag[0];
for (var i = 1; i < nIntervals; ++i) {
vecRight[i] = 3 * (dx[i] * slope[i - 1] + dx[i - 1] * slope[i]);
}
vecRight[nIntervals] =
(dx[nIntervals - 1] * dx[nIntervals - 1] * slope[nIntervals - 2] +
(2 * subDiag[nIntervals - 1] + dx[nIntervals - 1]) * dx[nIntervals - 2] *
slope[nIntervals - 1]) /
subDiag[nIntervals - 1];
// Solve the system of equations.
var deriv = goog.math.tdma.solve(subDiag, mainDiag, supDiag, vecRight);
return deriv;
};
/**
* Note that the inverse of a cubic spline is not a cubic spline in general.
* As a result the inverse implementation is only approximate. In
* particular, it only guarantees the exact inverse at the original input data
* points passed to setData.
* @override
*/
goog.math.interpolator.Spline1.prototype.getInverse = function() {
var interpolator = new goog.math.interpolator.Spline1();
var y = [];
for (var i = 0; i < this.x_.length; i++) {
y[i] = this.interpolate(this.x_[i]);
}
interpolator.setData(y, this.x_);
return interpolator;
};
|