1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
// Copyright 2006 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview Additional mathematical functions.
*/
goog.provide('goog.math');
goog.require('goog.array');
goog.require('goog.asserts');
/**
* Returns a random integer greater than or equal to 0 and less than {@code a}.
* @param {number} a The upper bound for the random integer (exclusive).
* @return {number} A random integer N such that 0 <= N < a.
*/
goog.math.randomInt = function(a) {
return Math.floor(Math.random() * a);
};
/**
* Returns a random number greater than or equal to {@code a} and less than
* {@code b}.
* @param {number} a The lower bound for the random number (inclusive).
* @param {number} b The upper bound for the random number (exclusive).
* @return {number} A random number N such that a <= N < b.
*/
goog.math.uniformRandom = function(a, b) {
return a + Math.random() * (b - a);
};
/**
* Takes a number and clamps it to within the provided bounds.
* @param {number} value The input number.
* @param {number} min The minimum value to return.
* @param {number} max The maximum value to return.
* @return {number} The input number if it is within bounds, or the nearest
* number within the bounds.
*/
goog.math.clamp = function(value, min, max) {
return Math.min(Math.max(value, min), max);
};
/**
* The % operator in JavaScript returns the remainder of a / b, but differs from
* some other languages in that the result will have the same sign as the
* dividend. For example, -1 % 8 == -1, whereas in some other languages
* (such as Python) the result would be 7. This function emulates the more
* correct modulo behavior, which is useful for certain applications such as
* calculating an offset index in a circular list.
*
* @param {number} a The dividend.
* @param {number} b The divisor.
* @return {number} a % b where the result is between 0 and b (either 0 <= x < b
* or b < x <= 0, depending on the sign of b).
*/
goog.math.modulo = function(a, b) {
var r = a % b;
// If r and b differ in sign, add b to wrap the result to the correct sign.
return (r * b < 0) ? r + b : r;
};
/**
* Performs linear interpolation between values a and b. Returns the value
* between a and b proportional to x (when x is between 0 and 1. When x is
* outside this range, the return value is a linear extrapolation).
* @param {number} a A number.
* @param {number} b A number.
* @param {number} x The proportion between a and b.
* @return {number} The interpolated value between a and b.
*/
goog.math.lerp = function(a, b, x) {
return a + x * (b - a);
};
/**
* Tests whether the two values are equal to each other, within a certain
* tolerance to adjust for floating point errors.
* @param {number} a A number.
* @param {number} b A number.
* @param {number=} opt_tolerance Optional tolerance range. Defaults
* to 0.000001. If specified, should be greater than 0.
* @return {boolean} Whether {@code a} and {@code b} are nearly equal.
*/
goog.math.nearlyEquals = function(a, b, opt_tolerance) {
return Math.abs(a - b) <= (opt_tolerance || 0.000001);
};
// TODO(user): Rename to normalizeAngle, retaining old name as deprecated
// alias.
/**
* Normalizes an angle to be in range [0-360). Angles outside this range will
* be normalized to be the equivalent angle with that range.
* @param {number} angle Angle in degrees.
* @return {number} Standardized angle.
*/
goog.math.standardAngle = function(angle) {
return goog.math.modulo(angle, 360);
};
/**
* Normalizes an angle to be in range [0-2*PI). Angles outside this range will
* be normalized to be the equivalent angle with that range.
* @param {number} angle Angle in radians.
* @return {number} Standardized angle.
*/
goog.math.standardAngleInRadians = function(angle) {
return goog.math.modulo(angle, 2 * Math.PI);
};
/**
* Converts degrees to radians.
* @param {number} angleDegrees Angle in degrees.
* @return {number} Angle in radians.
*/
goog.math.toRadians = function(angleDegrees) {
return angleDegrees * Math.PI / 180;
};
/**
* Converts radians to degrees.
* @param {number} angleRadians Angle in radians.
* @return {number} Angle in degrees.
*/
goog.math.toDegrees = function(angleRadians) {
return angleRadians * 180 / Math.PI;
};
/**
* For a given angle and radius, finds the X portion of the offset.
* @param {number} degrees Angle in degrees (zero points in +X direction).
* @param {number} radius Radius.
* @return {number} The x-distance for the angle and radius.
*/
goog.math.angleDx = function(degrees, radius) {
return radius * Math.cos(goog.math.toRadians(degrees));
};
/**
* For a given angle and radius, finds the Y portion of the offset.
* @param {number} degrees Angle in degrees (zero points in +X direction).
* @param {number} radius Radius.
* @return {number} The y-distance for the angle and radius.
*/
goog.math.angleDy = function(degrees, radius) {
return radius * Math.sin(goog.math.toRadians(degrees));
};
/**
* Computes the angle between two points (x1,y1) and (x2,y2).
* Angle zero points in the +X direction, 90 degrees points in the +Y
* direction (down) and from there we grow clockwise towards 360 degrees.
* @param {number} x1 x of first point.
* @param {number} y1 y of first point.
* @param {number} x2 x of second point.
* @param {number} y2 y of second point.
* @return {number} Standardized angle in degrees of the vector from
* x1,y1 to x2,y2.
*/
goog.math.angle = function(x1, y1, x2, y2) {
return goog.math.standardAngle(
goog.math.toDegrees(Math.atan2(y2 - y1, x2 - x1)));
};
/**
* Computes the difference between startAngle and endAngle (angles in degrees).
* @param {number} startAngle Start angle in degrees.
* @param {number} endAngle End angle in degrees.
* @return {number} The number of degrees that when added to
* startAngle will result in endAngle. Positive numbers mean that the
* direction is clockwise. Negative numbers indicate a counter-clockwise
* direction.
* The shortest route (clockwise vs counter-clockwise) between the angles
* is used.
* When the difference is 180 degrees, the function returns 180 (not -180)
* angleDifference(30, 40) is 10, and angleDifference(40, 30) is -10.
* angleDifference(350, 10) is 20, and angleDifference(10, 350) is -20.
*/
goog.math.angleDifference = function(startAngle, endAngle) {
var d =
goog.math.standardAngle(endAngle) - goog.math.standardAngle(startAngle);
if (d > 180) {
d = d - 360;
} else if (d <= -180) {
d = 360 + d;
}
return d;
};
/**
* Returns the sign of a number as per the "sign" or "signum" function.
* @param {number} x The number to take the sign of.
* @return {number} -1 when negative, 1 when positive, 0 when 0. Preserves
* signed zeros and NaN.
*/
goog.math.sign = function(x) {
if (x > 0) {
return 1;
}
if (x < 0) {
return -1;
}
return x; // Preserves signed zeros and NaN.
};
/**
* JavaScript implementation of Longest Common Subsequence problem.
* http://en.wikipedia.org/wiki/Longest_common_subsequence
*
* Returns the longest possible array that is subarray of both of given arrays.
*
* @param {IArrayLike<S>} array1 First array of objects.
* @param {IArrayLike<T>} array2 Second array of objects.
* @param {Function=} opt_compareFn Function that acts as a custom comparator
* for the array ojects. Function should return true if objects are equal,
* otherwise false.
* @param {Function=} opt_collectorFn Function used to decide what to return
* as a result subsequence. It accepts 2 arguments: index of common element
* in the first array and index in the second. The default function returns
* element from the first array.
* @return {!Array<S|T>} A list of objects that are common to both arrays
* such that there is no common subsequence with size greater than the
* length of the list.
* @template S,T
*/
goog.math.longestCommonSubsequence = function(
array1, array2, opt_compareFn, opt_collectorFn) {
var compare = opt_compareFn || function(a, b) { return a == b; };
var collect = opt_collectorFn || function(i1, i2) { return array1[i1]; };
var length1 = array1.length;
var length2 = array2.length;
var arr = [];
for (var i = 0; i < length1 + 1; i++) {
arr[i] = [];
arr[i][0] = 0;
}
for (var j = 0; j < length2 + 1; j++) {
arr[0][j] = 0;
}
for (i = 1; i <= length1; i++) {
for (j = 1; j <= length2; j++) {
if (compare(array1[i - 1], array2[j - 1])) {
arr[i][j] = arr[i - 1][j - 1] + 1;
} else {
arr[i][j] = Math.max(arr[i - 1][j], arr[i][j - 1]);
}
}
}
// Backtracking
var result = [];
var i = length1, j = length2;
while (i > 0 && j > 0) {
if (compare(array1[i - 1], array2[j - 1])) {
result.unshift(collect(i - 1, j - 1));
i--;
j--;
} else {
if (arr[i - 1][j] > arr[i][j - 1]) {
i--;
} else {
j--;
}
}
}
return result;
};
/**
* Returns the sum of the arguments.
* @param {...number} var_args Numbers to add.
* @return {number} The sum of the arguments (0 if no arguments were provided,
* {@code NaN} if any of the arguments is not a valid number).
*/
goog.math.sum = function(var_args) {
return /** @type {number} */ (
goog.array.reduce(
arguments, function(sum, value) { return sum + value; }, 0));
};
/**
* Returns the arithmetic mean of the arguments.
* @param {...number} var_args Numbers to average.
* @return {number} The average of the arguments ({@code NaN} if no arguments
* were provided or any of the arguments is not a valid number).
*/
goog.math.average = function(var_args) {
return goog.math.sum.apply(null, arguments) / arguments.length;
};
/**
* Returns the unbiased sample variance of the arguments. For a definition,
* see e.g. http://en.wikipedia.org/wiki/Variance
* @param {...number} var_args Number samples to analyze.
* @return {number} The unbiased sample variance of the arguments (0 if fewer
* than two samples were provided, or {@code NaN} if any of the samples is
* not a valid number).
*/
goog.math.sampleVariance = function(var_args) {
var sampleSize = arguments.length;
if (sampleSize < 2) {
return 0;
}
var mean = goog.math.average.apply(null, arguments);
var variance =
goog.math.sum.apply(null, goog.array.map(arguments, function(val) {
return Math.pow(val - mean, 2);
})) / (sampleSize - 1);
return variance;
};
/**
* Returns the sample standard deviation of the arguments. For a definition of
* sample standard deviation, see e.g.
* http://en.wikipedia.org/wiki/Standard_deviation
* @param {...number} var_args Number samples to analyze.
* @return {number} The sample standard deviation of the arguments (0 if fewer
* than two samples were provided, or {@code NaN} if any of the samples is
* not a valid number).
*/
goog.math.standardDeviation = function(var_args) {
return Math.sqrt(goog.math.sampleVariance.apply(null, arguments));
};
/**
* Returns whether the supplied number represents an integer, i.e. that is has
* no fractional component. No range-checking is performed on the number.
* @param {number} num The number to test.
* @return {boolean} Whether {@code num} is an integer.
*/
goog.math.isInt = function(num) {
return isFinite(num) && num % 1 == 0;
};
/**
* Returns whether the supplied number is finite and not NaN.
* @param {number} num The number to test.
* @return {boolean} Whether {@code num} is a finite number.
* @deprecated Use {@link isFinite} instead.
*/
goog.math.isFiniteNumber = function(num) {
return isFinite(num);
};
/**
* @param {number} num The number to test.
* @return {boolean} Whether it is negative zero.
*/
goog.math.isNegativeZero = function(num) {
return num == 0 && 1 / num < 0;
};
/**
* Returns the precise value of floor(log10(num)).
* Simpler implementations didn't work because of floating point rounding
* errors. For example
* <ul>
* <li>Math.floor(Math.log(num) / Math.LN10) is off by one for num == 1e+3.
* <li>Math.floor(Math.log(num) * Math.LOG10E) is off by one for num == 1e+15.
* <li>Math.floor(Math.log10(num)) is off by one for num == 1e+15 - 1.
* </ul>
* @param {number} num A floating point number.
* @return {number} Its logarithm to base 10 rounded down to the nearest
* integer if num > 0. -Infinity if num == 0. NaN if num < 0.
*/
goog.math.log10Floor = function(num) {
if (num > 0) {
var x = Math.round(Math.log(num) * Math.LOG10E);
return x - (parseFloat('1e' + x) > num ? 1 : 0);
}
return num == 0 ? -Infinity : NaN;
};
/**
* A tweaked variant of {@code Math.floor} which tolerates if the passed number
* is infinitesimally smaller than the closest integer. It often happens with
* the results of floating point calculations because of the finite precision
* of the intermediate results. For example {@code Math.floor(Math.log(1000) /
* Math.LN10) == 2}, not 3 as one would expect.
* @param {number} num A number.
* @param {number=} opt_epsilon An infinitesimally small positive number, the
* rounding error to tolerate.
* @return {number} The largest integer less than or equal to {@code num}.
*/
goog.math.safeFloor = function(num, opt_epsilon) {
goog.asserts.assert(!goog.isDef(opt_epsilon) || opt_epsilon > 0);
return Math.floor(num + (opt_epsilon || 2e-15));
};
/**
* A tweaked variant of {@code Math.ceil}. See {@code goog.math.safeFloor} for
* details.
* @param {number} num A number.
* @param {number=} opt_epsilon An infinitesimally small positive number, the
* rounding error to tolerate.
* @return {number} The smallest integer greater than or equal to {@code num}.
*/
goog.math.safeCeil = function(num, opt_epsilon) {
goog.asserts.assert(!goog.isDef(opt_epsilon) || opt_epsilon > 0);
return Math.ceil(num - (opt_epsilon || 2e-15));
};
|