1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
// Copyright 2012 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview Base class for SHA-2 cryptographic hash.
*
* Variable names follow the notation in FIPS PUB 180-3:
* http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf.
*
* Some code similar to SHA1 are borrowed from sha1.js written by mschilder@.
*
*/
goog.provide('goog.crypt.Sha2');
goog.require('goog.array');
goog.require('goog.asserts');
goog.require('goog.crypt.Hash');
/**
* SHA-2 cryptographic hash constructor.
* This constructor should not be used directly to create the object. Rather,
* one should use the constructor of the sub-classes.
* @param {number} numHashBlocks The size of output in 16-byte blocks.
* @param {!Array<number>} initHashBlocks The hash-specific initialization
* @constructor
* @extends {goog.crypt.Hash}
* @struct
*/
goog.crypt.Sha2 = function(numHashBlocks, initHashBlocks) {
goog.crypt.Sha2.base(this, 'constructor');
this.blockSize = goog.crypt.Sha2.BLOCKSIZE_;
/**
* A chunk holding the currently processed message bytes. Once the chunk has
* 64 bytes, we feed it into computeChunk_ function and reset this.chunk_.
* @private {!Array<number>|!Uint8Array}
*/
this.chunk_ = goog.global['Uint8Array'] ? new Uint8Array(this.blockSize) :
new Array(this.blockSize);
/**
* Current number of bytes in this.chunk_.
* @private {number}
*/
this.inChunk_ = 0;
/**
* Total number of bytes in currently processed message.
* @private {number}
*/
this.total_ = 0;
/**
* Holds the previous values of accumulated hash a-h in the computeChunk_
* function.
* @private {!Array<number>|!Int32Array}
*/
this.hash_ = [];
/**
* The number of output hash blocks (each block is 4 bytes long).
* @private {number}
*/
this.numHashBlocks_ = numHashBlocks;
/**
* @private {!Array<number>} initHashBlocks
*/
this.initHashBlocks_ = initHashBlocks;
/**
* Temporary array used in chunk computation. Allocate here as a
* member rather than as a local within computeChunk_() as a
* performance optimization to reduce the number of allocations and
* reduce garbage collection.
* @private {!Int32Array|!Array<number>}
*/
this.w_ = goog.global['Int32Array'] ? new Int32Array(64) : new Array(64);
if (!goog.isDef(goog.crypt.Sha2.Kx_)) {
// This is the first time this constructor has been called.
if (goog.global['Int32Array']) {
// Typed arrays exist
goog.crypt.Sha2.Kx_ = new Int32Array(goog.crypt.Sha2.K_);
} else {
// Typed arrays do not exist
goog.crypt.Sha2.Kx_ = goog.crypt.Sha2.K_;
}
}
this.reset();
};
goog.inherits(goog.crypt.Sha2, goog.crypt.Hash);
/**
* The block size
* @private {number}
*/
goog.crypt.Sha2.BLOCKSIZE_ = 512 / 8;
/**
* Contains data needed to pad messages less than BLOCK_SIZE_ bytes.
* @private {!Array<number>}
*/
goog.crypt.Sha2.PADDING_ = goog.array.concat(
128, goog.array.repeat(0, goog.crypt.Sha2.BLOCKSIZE_ - 1));
/** @override */
goog.crypt.Sha2.prototype.reset = function() {
this.inChunk_ = 0;
this.total_ = 0;
this.hash_ = goog.global['Int32Array'] ?
new Int32Array(this.initHashBlocks_) :
goog.array.clone(this.initHashBlocks_);
};
/**
* Helper function to compute the hashes for a given 512-bit message chunk.
* @private
*/
goog.crypt.Sha2.prototype.computeChunk_ = function() {
var chunk = this.chunk_;
goog.asserts.assert(chunk.length == this.blockSize);
var rounds = 64;
// Divide the chunk into 16 32-bit-words.
var w = this.w_;
var index = 0;
var offset = 0;
while (offset < chunk.length) {
w[index++] = (chunk[offset] << 24) | (chunk[offset + 1] << 16) |
(chunk[offset + 2] << 8) | (chunk[offset + 3]);
offset = index * 4;
}
// Extend the w[] array to be the number of rounds.
for (var i = 16; i < rounds; i++) {
var w_15 = w[i - 15] | 0;
var s0 = ((w_15 >>> 7) | (w_15 << 25)) ^ ((w_15 >>> 18) | (w_15 << 14)) ^
(w_15 >>> 3);
var w_2 = w[i - 2] | 0;
var s1 = ((w_2 >>> 17) | (w_2 << 15)) ^ ((w_2 >>> 19) | (w_2 << 13)) ^
(w_2 >>> 10);
// As a performance optimization, construct the sum a pair at a time
// with casting to integer (bitwise OR) to eliminate unnecessary
// double<->integer conversions.
var partialSum1 = ((w[i - 16] | 0) + s0) | 0;
var partialSum2 = ((w[i - 7] | 0) + s1) | 0;
w[i] = (partialSum1 + partialSum2) | 0;
}
var a = this.hash_[0] | 0;
var b = this.hash_[1] | 0;
var c = this.hash_[2] | 0;
var d = this.hash_[3] | 0;
var e = this.hash_[4] | 0;
var f = this.hash_[5] | 0;
var g = this.hash_[6] | 0;
var h = this.hash_[7] | 0;
for (var i = 0; i < rounds; i++) {
var S0 = ((a >>> 2) | (a << 30)) ^ ((a >>> 13) | (a << 19)) ^
((a >>> 22) | (a << 10));
var maj = ((a & b) ^ (a & c) ^ (b & c));
var t2 = (S0 + maj) | 0;
var S1 = ((e >>> 6) | (e << 26)) ^ ((e >>> 11) | (e << 21)) ^
((e >>> 25) | (e << 7));
var ch = ((e & f) ^ ((~e) & g));
// As a performance optimization, construct the sum a pair at a time
// with casting to integer (bitwise OR) to eliminate unnecessary
// double<->integer conversions.
var partialSum1 = (h + S1) | 0;
var partialSum2 = (ch + (goog.crypt.Sha2.Kx_[i] | 0)) | 0;
var partialSum3 = (partialSum2 + (w[i] | 0)) | 0;
var t1 = (partialSum1 + partialSum3) | 0;
h = g;
g = f;
f = e;
e = (d + t1) | 0;
d = c;
c = b;
b = a;
a = (t1 + t2) | 0;
}
this.hash_[0] = (this.hash_[0] + a) | 0;
this.hash_[1] = (this.hash_[1] + b) | 0;
this.hash_[2] = (this.hash_[2] + c) | 0;
this.hash_[3] = (this.hash_[3] + d) | 0;
this.hash_[4] = (this.hash_[4] + e) | 0;
this.hash_[5] = (this.hash_[5] + f) | 0;
this.hash_[6] = (this.hash_[6] + g) | 0;
this.hash_[7] = (this.hash_[7] + h) | 0;
};
/** @override */
goog.crypt.Sha2.prototype.update = function(message, opt_length) {
if (!goog.isDef(opt_length)) {
opt_length = message.length;
}
// Process the message from left to right up to |opt_length| bytes.
// When we get a 512-bit chunk, compute the hash of it and reset
// this.chunk_. The message might not be multiple of 512 bits so we
// might end up with a chunk that is less than 512 bits. We store
// such partial chunk in this.chunk_ and it will be filled up later
// in digest().
var n = 0;
var inChunk = this.inChunk_;
// The input message could be either byte array of string.
if (goog.isString(message)) {
while (n < opt_length) {
this.chunk_[inChunk++] = message.charCodeAt(n++);
if (inChunk == this.blockSize) {
this.computeChunk_();
inChunk = 0;
}
}
} else if (goog.isArrayLike(message)) {
while (n < opt_length) {
var b = message[n++];
if (!('number' == typeof b && 0 <= b && 255 >= b && b == (b | 0))) {
throw new Error('message must be a byte array');
}
this.chunk_[inChunk++] = b;
if (inChunk == this.blockSize) {
this.computeChunk_();
inChunk = 0;
}
}
} else {
throw new Error('message must be string or array');
}
// Record the current bytes in chunk to support partial update.
this.inChunk_ = inChunk;
// Record total message bytes we have processed so far.
this.total_ += opt_length;
};
/** @override */
goog.crypt.Sha2.prototype.digest = function() {
var digest = [];
var totalBits = this.total_ * 8;
// Append pad 0x80 0x00*.
if (this.inChunk_ < 56) {
this.update(goog.crypt.Sha2.PADDING_, 56 - this.inChunk_);
} else {
this.update(
goog.crypt.Sha2.PADDING_, this.blockSize - (this.inChunk_ - 56));
}
// Append # bits in the 64-bit big-endian format.
for (var i = 63; i >= 56; i--) {
this.chunk_[i] = totalBits & 255;
totalBits /= 256; // Don't use bit-shifting here!
}
this.computeChunk_();
// Finally, output the result digest.
var n = 0;
for (var i = 0; i < this.numHashBlocks_; i++) {
for (var j = 24; j >= 0; j -= 8) {
digest[n++] = ((this.hash_[i] >> j) & 255);
}
}
return digest;
};
/**
* Constants used in SHA-2.
* @const
* @private {!Array<number>}
*/
goog.crypt.Sha2.K_ = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
];
/**
* Sha2.K as an Int32Array if this JS supports typed arrays; otherwise,
* the same array as Sha2.K.
*
* The compiler cannot remove an Int32Array, even if it is not needed
* (There are certain cases where creating an Int32Array is not
* side-effect free). Instead, the first time we construct a Sha2
* instance, we convert or assign Sha2.K as appropriate.
* @private {undefined|!Array<number>|!Int32Array}
*/
goog.crypt.Sha2.Kx_;
|