1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
/*
* Advanced Simulation Library <http://asl.org.il>
*
* Copyright 2015 Avtech Scientific <http://avtechscientific.com>
*
*
* This file is part of Advanced Simulation Library (ASL).
*
* ASL is free software: you can redistribute it and/or modify it
* under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, version 3 of the License.
*
* ASL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with ASL. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
\example testDistanceFunction.cc
*/
#include "math/aslVectors.h"
#include "aslGenerators.h"
#include "writers/aslVTKFormatWriters.h"
#include "aslGeomInc.h"
#include <stdlib.h> /* srand, rand */
#include <time.h>
#include "data/aslDataWithGhostNodes.h"
#include "num/aslDFOptimizer.h"
#include "math/aslTemplates.h"
//typedef float FlT;
typedef double FlT;
using asl::AVec;
using asl::makeAVec;
bool testDistFOperations2D()
{
// Geometry description
// Radius
FlT r(10.);
// Generates a sphere with radius r and center at (50., 50.)
auto df1(generateDFSphere(r, asl::makeAVec(50., 50.)));
auto df2(generateDFSphere(r, asl::makeAVec(40., 40.)));
auto df3(generateDFSphere(2. * r, asl::makeAVec(50., 50.)));
// Resulting geometry: union of the spheres df1 and df2 intersected by df3
auto resultGeometry((df1 | df2) & df3);
// Geometry to Data conversion
// Grid size (= discrete size of the simulated domain)
asl::AVec<int> size(asl::makeAVec(100., 100.));
// Grid resolution (= space step)
FlT dx(1.);
// Creates a Block which describes the grid
asl::Block block(size, dx);
// Allocates memory for the data that corresponds to
// the nodes of the grid desribed by the \p block.
auto data(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
// Initializes the \p data with the values of the distance function
// extracted from all points of the \p resultGeometry.
asl::initData(data, resultGeometry);
// Writes the \p data into the file.
asl::writeVTKXML("distFOperation2D.vti", *data, "data");
return true;
}
bool testDistFOperations3D()
{
FlT r(10.);
FlT dx(1.);
asl::AVec<int> size(asl::makeAVec(50.,50.,50.));
asl::Block block(size, dx);
auto data(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
auto df1(generateDFSphere(r, asl::AVec<FlT>(size)*.5));
auto df2(generateDFSphere(r, asl::AVec<FlT>(size)*.4));
auto df3(generateDFSphere(1.5*r, asl::AVec<FlT>(size)*.5));
asl::initData(data, ((df1 | df2) & df3));
asl::writeVTKXML("distFOperation3D.vti", *data, "data");
return true;
}
bool testDistFOrderedCylinders()
{
FlT r(3.);
FlT spacing(4.);
FlT dx(1.);
asl::AVec<int> size(asl::makeAVec(50., 50., 50.));
asl::Block block(size, dx);
auto data(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
vector<asl::SPDistanceFunction> cylinders;
asl::SPDistanceFunction resultGeometry;
asl::AVec<FlT> orientation(asl::makeAVec(0., 0., 1.));
for (int i = 0; i < size[0] / (2 * r + spacing); ++i)
{
for (int j = 0; j < size[1] / (2 * r + spacing); ++j)
{
cylinders.push_back(generateDFCylinderInf(r, orientation, asl::makeAVec(i * (2. * r + spacing) + r + spacing / 2., j * (2. * r + spacing) + r + spacing / 2., 0.)));
resultGeometry = resultGeometry | cylinders.back();
}
}
asl::initData(data, resultGeometry);
asl::writeVTKXML("distFOrderedCylinders.vti", *data, "data");
return true;
}
bool testDistFUnorderedCylinders()
{
FlT r(3.);
FlT spacing(4.);
FlT dx(1.);
asl::AVec<int> size(asl::makeAVec(100., 100., 100.));
asl::Block block(size, dx);
auto data(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
vector<asl::SPDistanceFunction> cylinders;
asl::SPDistanceFunction resultGeometry;
asl::AVec<FlT> orientation(asl::makeAVec(0., 0., 1.));
srand (time(NULL));
for (unsigned int i = 0; i < size[0] / (2 * r + spacing); ++i)
{
for (unsigned int j = 0; j < size[1] / (2 * r + spacing); ++j)
{
for (unsigned int d = 0; d < orientation.getSize(); ++d)
orientation[d] = rand() % size[d];
cylinders.push_back(generateDFCylinderInf(r, orientation, asl::makeAVec(i * (2. * r + spacing) + r + spacing / 2., j * (2. * r + spacing) + r + spacing / 2., (FlT) (rand() % size[2]))));
resultGeometry = resultGeometry | cylinders.back();
}
}
asl::initData(data, resultGeometry);
asl::writeVTKXML("distFUnorderedCylinders.vti", *data, "data");
return true;
}
bool testDistFNormalization2D()
{
FlT r(10.);
FlT dx(1.);
asl::AVec<int> size(asl::makeAVec(100.,100.));
asl::Block block(size, dx);
auto data(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
auto df1(generateDFSphere(r, asl::AVec<FlT>(size)*.5));
asl::initData(data, normalize(df1, dx));
asl::writeVTKXML("distFNormalization2D.vti", *data, "data");
return true;
}
bool testDistFNormalization3D()
{
FlT r(10.);
FlT dx(1.);
asl::AVec<int> size(asl::makeAVec(50.,50.,50.));
asl::Block block(size, dx);
auto data(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
auto df1(generateDFSphere(r, asl::AVec<FlT>(size)*.5));
asl::initData(data, normalize(df1,dx));
asl::writeVTKXML("distFNormalization3D.vti", *data, "data");
return true;
}
bool testDistFOperations3DPrism()
{
FlT r(10.);
FlT dx(1.);
asl::AVec<int> size(asl::makeAVec(50.,50.,50.));
asl::Block block(size, dx);
auto data(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
auto center(asl::AVec<FlT>(size)*.5);
auto df1(generateDFSphere(r, center));
auto df2(asl::generateDFConvexPolygonPrism({center+asl::makeAVec(4.,0.,0.),
center+asl::makeAVec(4.,4.,0.),
center+asl::makeAVec(-4.,0.,0.),
center+asl::makeAVec(-4.,-4.,0.)}));
asl::initData(data, (df1 & (-df2)));
asl::writeVTKXML("distFOperation3DPrism.vti", *data, "data");
return true;
}
bool testDistFOperations3DBlock()
{
FlT r(10.);
FlT dx(1.);
asl::AVec<int> size(asl::makeAVec(50.,50.,50.));
asl::Block block(size, dx);
auto data(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
auto center(asl::AVec<FlT>(size)*.5);
auto df1(generateDFSphere(r, center));
auto df2(generateDFInBlock(block, 1));
asl::initData(data, (df1 | df2));
asl::writeVTKXML("distFOperation3DBlock.vti", *data, "data");
return true;
}
bool testDistFAdvanced3D()
{
// FlT hBath(2.);
FlT rBath(1.);
FlT rDisk(.9);
FlT hDisk(0.1);
FlT dx(.02);
FlT rAxis(0.05);
FlT hAxis(.5);
FlT wPillar(.2);
FlT dPillar(.1);
FlT aCrystal(.5);
FlT hCrystalBase(.5);
FlT hCrystalPyramid(.5);
asl::AVec<int> size(asl::makeAVec(105.,105.,100.));
asl::AVec<>center(.5*dx*AVec<>(size));
vector<asl::AVec<>> pillar1{asl::makeAVec(wPillar*.5, dPillar*.5,0.),
asl::makeAVec(-wPillar*.5, dPillar*.5,0.),
asl::makeAVec(-wPillar*.5, -dPillar*.5,0.),
asl::makeAVec(wPillar*.5, -dPillar*.5,0.)};
vector<asl::AVec<>> pillar2{asl::makeAVec(dPillar*.5, wPillar*.5,0.),
asl::makeAVec(-dPillar*.5, wPillar*.5,0.),
asl::makeAVec(-dPillar*.5, -wPillar*.5,0.),
asl::makeAVec(dPillar*.5, -wPillar*.5,0.)};
vector<asl::AVec<>> pillarC{asl::makeAVec(center[0]+rDisk-dPillar*.5, center[1], 0.),
asl::makeAVec(center[0]-rDisk+dPillar*.5, center[1], 0.),
asl::makeAVec(center[0], center[1]+rDisk-dPillar*.5,0.),
asl::makeAVec(center[0], center[1]-rDisk+dPillar*.5,0.)};
vector<vector<asl::AVec<>>> pillarsPoints(4);
for(unsigned int i(0); i<4; ++i)
pillarsPoints[i].resize(4);
for(unsigned int i(0); i<4; ++i)
{
pillarsPoints[0][i] = pillar2[i] + pillarC[0];
pillarsPoints[1][i] = pillar2[i] + pillarC[1];
pillarsPoints[2][i] = pillar1[i] + pillarC[2];
pillarsPoints[3][i] = pillar1[i] + pillarC[3];
}
asl::Block block(size, dx);
auto mBath(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
auto mPlatform(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
auto mCrystal(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
auto bath(-generateDFCylinderInf(rBath, asl::makeAVec(0.,0.,1.),
dx*asl::AVec<FlT>(size)*.5));
auto diskBottom(generateDFCylinder(rDisk,
asl::makeAVec(0., 0., hDisk),
asl::makeAVec(center[0], center[1], .5*hDisk)));
auto diskTop(generateDFCylinder(rDisk,
asl::makeAVec(0., 0., hDisk),
asl::makeAVec(center[0], center[1], -.5*hDisk - hAxis + dx*size[2])));
auto axis(generateDFCylinder(rAxis,
asl::makeAVec(0., 0., hAxis+hDisk*.5),
asl::makeAVec(center[0], center[1], - .5*hAxis - hDisk*.25 + dx*size[2])));
auto dfPillar1(generateDFConvexPolygonPrism(pillarsPoints[0]));
auto dfPillar2(generateDFConvexPolygonPrism(pillarsPoints[1]));
auto dfPillar3(generateDFConvexPolygonPrism(pillarsPoints[2]));
auto dfPillar4(generateDFConvexPolygonPrism(pillarsPoints[3]));
auto dfPillars((dfPillar1 | dfPillar2 | dfPillar3 | dfPillar4) &
generateDFPlane(makeAVec(0.,0.,-1.), makeAVec(0.,0.,.5*hDisk)) &
generateDFPlane(makeAVec(0.,0.,1.), makeAVec(0.,0.,-.5*hDisk - hAxis + dx*size[2])));
auto crystalB(asl::generateDFConvexPolygonPrism({center+makeAVec( aCrystal, aCrystal,0.),
center+makeAVec(-aCrystal, aCrystal,0.),
center+makeAVec(-aCrystal, -aCrystal,0.),
center+makeAVec( aCrystal, -aCrystal,0.)}) &
generateDFPlane(makeAVec(0.,0.,-1.), makeAVec(0.,0., hDisk)) &
generateDFPlane(makeAVec(0.,0., 1.), makeAVec(0.,0., hDisk + hCrystalBase)));
auto cCrPyrBase(makeAVec(center[0],center[1],hDisk+hCrystalBase-.01));
auto crystalT(asl::generateDFConvexPolygonPyramid({cCrPyrBase+makeAVec( aCrystal, aCrystal,0.),
cCrPyrBase+makeAVec(-aCrystal, aCrystal,0.),
cCrPyrBase+makeAVec(-aCrystal, -aCrystal,0.),
cCrPyrBase+makeAVec( aCrystal, -aCrystal,0.)},
cCrPyrBase+makeAVec(0.,0.,hCrystalPyramid)));
asl::initData(mBath, normalize(bath, dx));
asl::initData(mPlatform, normalize(diskBottom | diskTop | axis | dfPillars, dx));
asl::initData(mCrystal, normalize(crystalB | crystalT, dx));
// asl::writeVTKXML("distFAdvanced3D.vti", *data, "data");
asl::WriterVTKXML writer("distFAdvanced3D");
writer.addScalars("Bath", *mBath);
writer.addScalars("Platform", *mPlatform);
writer.addScalars("Crystal", *mCrystal);
writer.write();
return true;
}
bool testDistFOptimizer()
{
FlT r(10.);
FlT dx(1.);
asl::AVec<int> size(asl::makeAVec(50.,50.,50.));
asl::Block block(size, dx);
auto data(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
auto center(asl::AVec<FlT>(size)*.5);
auto df1(generateDFSphere(r, center));
auto df2(generateDFSphere(r, .6*center));
asl::initData(data, normalize((df1 | df2),dx));
optimizeMap(data, &asl::d3q15());
asl::writeVTKXML("distDistFOptimizer.vti", *data, "data");
return true;
}
int main()
{
testDistFOperations2D();
testDistFOperations3D();
testDistFOrderedCylinders();
testDistFUnorderedCylinders();
testDistFNormalization2D();
testDistFNormalization3D();
testDistFOperations3DPrism();
testDistFOperations3DBlock();
testDistFAdvanced3D();
testDistFOptimizer();
return 0;
}
|