1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
|
// This file is part of the AspectC++ compiler 'ac++'.
// Copyright (C) 1999-2003 The 'ac++' developers (see aspectc.org)
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free
// Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
// MA 02111-1307 USA
#ifndef __ClangTransformInfo_h__
#define __ClangTransformInfo_h__
#include "ACModel/Elements.h"
#include "ACToken.h"
#include "ACFileID.h"
#include "ThisJoinPoint.h"
#include "PointCutExpr.h"
#include "SyntacticContext.h"
#include "CFlow.h"
#include "WeaverBase.h"
#include "ClangAdjustedTypePrinter.h"
#include "clang/Basic/Version.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Type.h"
#if !(CLANG_VERSION_MAJOR == 3 && CLANG_VERSION_MINOR == 4 && !defined(CLANG_VERSION_PATCHLEVEL)) && \
!(CLANG_VERSION_MAJOR == 3 && CLANG_VERSION_MINOR == 4 && CLANG_VERSION_PATCHLEVEL == 2)
#include "clang/AST/ExprCXX.h"
#endif
#include "llvm/Support/raw_ostream.h"
#include "clang/AST/CXXInheritance.h"
class TI_CodeAdvice : public ModelTransformInfo {
// Condition is located here instead of in the AdviceInfo object because
// there are cases where the conditions differ but the advice info
// is the same.
const Condition *_condition;
AdviceInfo *_advice_info;
public:
void set_condition (const Condition *c) { _condition = c; }
const Condition *get_condition () const { return _condition; }
void set_advice_info (AdviceInfo *ai) { _advice_info = ai; }
AdviceInfo *get_advice_info () const { return _advice_info; }
static TI_CodeAdvice *of (const ACM_CodeAdvice &loc) {
return static_cast<TI_CodeAdvice*>(loc.transform_info ());
}
};
class TransformInfo : public ModelTransformInfo {
public:
virtual ModelNode &jpl () = 0;
virtual clang::Decl *decl () const = 0;
static inline const TransformInfo *of (const ModelNode &loc);
static inline clang::Decl *decl (const ModelNode &loc);
static inline Puma::Location location (const ModelNode &loc);
static const WeavePos &get_pos_after_token (clang::SourceLocation loc,
WeaverBase &wb, WeavePos::Pos pos = WeavePos::WP_AFTER) {
return wb.get_pos_after_loc(loc, pos);
}
// parameter 'is_id': if true, the searched string is only replaced if the
// character before and after the matching substring is
// not in an identifier.
// (example: don't replace 'shortcut' by 'short intcut')
static void replace_in_string(std::string& subject, const std::string& search,
const std::string& replace, bool is_id = false) {
size_t pos = 0;
while ((pos = subject.find(search, pos)) != std::string::npos) {
bool id_before = (pos > 0 && (subject[pos - 1] == '_' || std::isalpha(subject[pos - 1])));
bool id_after = ((pos + search.length () < subject.length()) &&
(subject[pos + search.length()] == '_' || std::isalnum(subject[pos + search.length()])));
if (!is_id || (!id_before && !id_after)) {
subject.replace(pos, search.length(), replace);
pos += replace.length();
}
else
pos += search.length();
}
}
static bool needs_this (clang::FunctionDecl *func) {
if (clang::CXXMethodDecl *m = llvm::dyn_cast<clang::CXXMethodDecl>(func))
if (!m->isStatic())
return true;
return false;
}
// TODO: duplicate of function in ClangModelBuilder.cc
template <typename T>
static bool isTemplateInstantiation(T node) {
return (node->getTemplateSpecializationKind() ==
clang::TSK_ImplicitInstantiation ||
node->getTemplateSpecializationKind() ==
clang::TSK_ExplicitInstantiationDefinition);
}
// TODO: duplicate of function in ClangModelBuilder.cc
static bool inside_template_instance (clang::DeclContext *scope) {
if (llvm::isa<clang::TranslationUnitDecl>(scope))
return false;
if (clang::FunctionDecl *FD = llvm::dyn_cast<clang::FunctionDecl>(scope))
if (isTemplateInstantiation(FD))
return true;
if (clang::VarDecl *VD = llvm::dyn_cast<clang::VarDecl>(scope))
if (isTemplateInstantiation(VD))
return true;
if (clang::CXXRecordDecl *RD = llvm::dyn_cast<clang::CXXRecordDecl>(scope))
if (isTemplateInstantiation(RD))
return true;
return inside_template_instance(scope->getParent());
}
};
inline const TransformInfo *TransformInfo::of (const ModelNode &loc) {
return loc.transform_info () ? (TransformInfo*)loc.transform_info () : 0;
}
//inline CTree *TransformInfo::tree (const ModelNode &loc) {
// return loc.transform_info () ?
// ((TransformInfo*)loc.transform_info ())->tree () : 0;
//}
//inline Unit *TransformInfo::unit (const ModelNode &loc) {
// return loc.transform_info () ?
// ((TransformInfo*)loc.transform_info ())->unit () : 0;
//}
inline clang::Decl *TransformInfo::decl (const ModelNode &loc) {
return loc.transform_info () ?
((TransformInfo*)loc.transform_info ())->decl () : 0;
}
inline Puma::Location TransformInfo::location (const ModelNode &loc) {
return Puma::Location (); // FIXME: implement for Clang
}
class TI_Type : public TransformInfo {
clang::QualType _type;
public:
void type (clang::QualType ti) { _type = ti; }
clang::QualType type () const { return _type; }
virtual clang::Decl *decl () const { return 0; }
bool is_const () const { return _type.isConstQualified (); }
bool is_reference () const { return _type.getTypePtr ()->isReferenceType (); }
// Called from ClangModelBuilder::register_type(...) and ClangModelBuilder::register_arg(...)
// and used for signature.
static string name (clang::ASTContext &ctx, clang::QualType type_info) {
// Get the type as a string, looking through template parameters
// and typedefs and printing anonymous as unnamed:
string type_str = TI_Type::get_type_text(type_info, &ctx, "?", TSEF_DONOTCHANGE, false, TSEF_DISABLE, true, true, false);
int last = type_str.length() - 1;
if (type_str[last] == '?') last--;
while(type_str[last] == ' ') last--;
return type_str.substr (0, last + 1);
}
private:
// Returns a printing policy setup according to given flags for adjusted type printing
static inline clang::PrintingPolicy get_preset_printing_policy(const clang::ASTContext* ctx,
bool unnamed) {
// TODO: always create, setup and use own printing policy?
clang::PrintingPolicy policy = ctx
? ctx->getPrintingPolicy()
: clang::PrintingPolicy(clang::LangOptions());
// Ensure some policy properties:
policy.SuppressSpecifiers = false;
policy.SuppressTag = false;
// Suppress <anonymous> only if we do not want to replace it with
// <unnamed> later
policy.SuppressUnwrittenScope = !unnamed;
policy.AnonymousTagLocations = unnamed;
return policy;
}
// Unifies the types in the given string according to the given flags.
static inline string& get_with_unified_types(string& input, bool unnamed) {
if(unnamed) {
// If requested, replace occurences of anonymous-variants with "<unnamed>":
const char* unnamed_namespace_str =
#if (CLANG_VERSION_MAJOR == 3 && CLANG_VERSION_MINOR == 4 && !defined(CLANG_VERSION_PATCHLEVEL)) || \
(CLANG_VERSION_MAJOR == 3 && CLANG_VERSION_MINOR == 4 && CLANG_VERSION_PATCHLEVEL == 2)
"<anonymous>"
#else // C++ 11 interface
"(anonymous namespace)"
#endif
;
replace_in_string(input, unnamed_namespace_str, "<unnamed>");
}
// Unify some types: (taken from fix_type_in_signature(...)
// and fixed "long int" -> "long int int" bug)
replace_in_string(input, "long", "long int", true);
replace_in_string(input, "long int long int", "long long int", true);
replace_in_string(input, "long int int", "long int", true);
replace_in_string(input, "long int double", "long double", true);
replace_in_string(input, "short", "short int", true);
replace_in_string(input, "short int int", "short int", true);
// TODO: Is the following line necessary?
replace_in_string(input, "<anonymous namespace>::", unnamed ? "<unnamed>::" : "");
replace_in_string(input, "*restrict", "*");
replace_in_string(input, " restrict", " ");
return input;
}
public:
/** Returns the textual representation of a declaration name.
* \param decl The declaration
* \param ctx The ASTContext
* \param absolute_qualified Add all nested name specifiers as well as the
* root qualifier (ENABLE), do not change nested name specifiers (DONOTCHANGE)
* or remove all nested name specifiers (DISABLE).
* \param keep_typedef If the type is typedef'd, keep the typedef and return
* the typedef'd type (and not the underlying type)
* \param elaborated_type_spec Add elaborated type specifier before
* class, union, and enumeration types.
* \param unnamed Do not suppress printing of unwritten scope and convert printed
* namespaces to '<unnamed>'
* \param remove_attributes Removes occurrences of attributes
* */
static string get_decl_name_text(const clang::NamedDecl* decl,
TriStateEnableFeature absolute_qualified = TSEF_DONOTCHANGE,
bool keep_typedef = true,
TriStateEnableFeature elaborated_type_spec = TSEF_DONOTCHANGE,
bool unnamed = false,
bool remove_attributes = false
) {
clang::PrintingPolicy policy = get_preset_printing_policy(&decl->getASTContext(), unnamed);
string string_buffer;
llvm::raw_string_ostream stream(string_buffer);
AdjustedTypePrinter(policy, absolute_qualified, keep_typedef, elaborated_type_spec,
remove_attributes, false, 0)
.adjusted_NamedDecl_printQualifiedName(decl, stream);
return get_with_unified_types(stream.str(), unnamed);
}
/** Returns the textual representation of a list of template arguments.
* \param template_args The list of template arguments
* \param ctx The ASTContext
* \param absolute_qualified Add all nested name specifiers as well as the
* root qualifier (ENABLE), do not change nested name specifiers (DONOTCHANGE)
* or remove all nested name specifiers (DISABLE).
* \param keep_typedef If the type is typedef'd, keep the typedef and return
* the typedef'd type (and not the underlying type)
* \param elaborated_type_spec Add elaborated type specifier before
* class, union, and enumeration types.
* \param unnamed Do not suppress printing of unwritten scope and convert printed
* namespaces to '<unnamed>'
* \param remove_attributes Removes occurrences of attributes
* */
static string get_templ_arg_list_text(const clang::TemplateArgumentList& template_args,
const clang::ASTContext* ctx,
TriStateEnableFeature absolute_qualified = TSEF_ENABLE,
bool keep_typedef = true,
TriStateEnableFeature elaborated_type_spec = TSEF_DONOTCHANGE,
bool unnamed = false,
bool remove_attributes = false
) {
clang::PrintingPolicy policy = get_preset_printing_policy(ctx, unnamed);
string string_buffer;
llvm::raw_string_ostream stream(string_buffer);
AdjustedTypePrinter(policy, absolute_qualified, keep_typedef, elaborated_type_spec,
remove_attributes, false, ctx)
.adjusted_PrintTemplateArgumentList(stream,
template_args.data(),
template_args.size());
return get_with_unified_types(stream.str(), unnamed);
}
/** Returns the textual representation of template argument.
* \param temp_arg The template argument
* \param ctx The ASTContext
* \param absolute_qualified Add all nested name specifiers as well as the
* root qualifier (ENABLE), do not change nested name specifiers (DONOTCHANGE)
* or remove all nested name specifiers (DISABLE).
* \param keep_typedef If the type is typedef'd, keep the typedef and return
* the typedef'd type (and not the underlying type)
* \param elaborated_type_spec Add elaborated type specifier before
* class, union, and enumeration types.
* \param unnamed Do not suppress printing of unwritten scope and convert printed
* namespaces to '<unnamed>'
* \param remove_attributes Remove occurrences of attributes
* */
static string get_templ_arg_text(const clang::TemplateArgument& temp_arg,
const clang::ASTContext* ctx,
TriStateEnableFeature absolute_qualified = TSEF_ENABLE,
bool keep_typedef = true,
TriStateEnableFeature elaborated_type_spec = TSEF_DONOTCHANGE,
bool unnamed = false,
bool remove_attributes = false
) {
clang::PrintingPolicy policy = get_preset_printing_policy(ctx, unnamed);
string temp_arg_string_buffer;
llvm::raw_string_ostream temp_arg_stream(temp_arg_string_buffer);
AdjustedTypePrinter(policy, absolute_qualified, keep_typedef, elaborated_type_spec,
remove_attributes, false, ctx)
.adjusted_TemplateArgument_print(temp_arg, temp_arg_stream);
return get_with_unified_types(temp_arg_stream.str(), unnamed);
}
/** Returns the textual representation of a type for the use in woven code.
* \param type The type
* \param ctx The ASTContext
* \param var_name If this is unequal zero, the type is returned
* together with the given variable name
* (e.g. void(*)(int) is returned as void(*example)(int) if "example" is
* provided as variable name.)
* */
static string get_type_code_text(clang::QualType type, const clang::ASTContext* ctx,
const char *var_name = (const char*)0
) {
return get_type_text(type,
ctx,
var_name,
TSEF_ENABLE, // make type absolute
true, // keep typedef if possible (to keep woven code portable)
TSEF_DONOTCHANGE,
false, // No unwritten scopes
true, // Remove __attribute__s (TODO: There are cases where we can keep them?)
false); // Do not make signature parameter type adjustments (because the result is not used for signatures)
}
/** Returns the textual representation of a type for the use in AspectC++ signatures.
* \param type The type
* \param ctx The ASTContext
* \param var_name If this is unequal zero, the type is returned
* together with the given variable name
* (e.g. void(*)(int) is returned as void(*example)(int) if "example" is
* provided as variable name.)
* \param as_parameter_signature_type Return the type as adjusted for use in the
* signature of a function, decaying array and function types and removing top-level
* cv-qualifiers. This should be true if the type is associated to a parameter of a function.
* */
static string get_type_sig_text(clang::QualType type, const clang::ASTContext* ctx,
const char *var_name = (const char*)0,
bool as_parameter_signature_type = false
) {
// TODO: Common question: Always remove elaborated in signature?
return get_type_text(type,
ctx,
var_name,
TSEF_DONOTCHANGE, // Do not change nested name specifiers
false, // Remove typedefs to make matching independent of typedefs
TSEF_DISABLE, // AspectC++ signatures do not contain elaborated specifiers. TODO: Is this always true?
false, // Do not add unwritten scopes
true, // remove __attribute__s
as_parameter_signature_type);
}
/** Returns the textual representation of a type.
* \param type The type
* \param ctx The ASTContext
* \param var_name If this is unequal zero, the type is returned
* together with the given variable name
* (e.g. void(*)(int) is returned as void(*example)(int) if "example" is
* provided as variable name.)
* \param absolute_qualified Add all nested name specifiers as well as the
* root qualifier (ENABLE), do not change nested name specifiers (DONOTCHANGE)
* or remove all nested name specifiers (DISABLE).
* \param keep_typedef If the type is typedef'd, keep the typedef and return
* the typedef'd type (and not the underlying type)
* \param elaborated_type_spec Add elaborated type specifier before
* class, union, and enumeration types.
* \param unnamed Do not suppress printing of unwritten scope and convert printed
* namespaces to '<unnamed>'
* \param remove_attributes Remove occurrences of attributes
* \param as_parameter_signature_type Return the type as adjusted for use in the
* signature of a function, decaying array and function types and removing top-level
* cv-qualifiers.
* */
static string get_type_text(clang::QualType type, const clang::ASTContext* ctx,
const char *var_name = (const char*)0,
TriStateEnableFeature absolute_qualified = TSEF_ENABLE,
bool keep_typedef = true,
TriStateEnableFeature elaborated_type_spec = TSEF_DONOTCHANGE,
bool unnamed = false,
bool remove_attributes = false,
bool as_parameter_signature_type = false
) {
// Check invalid combinations:
assert(!(keep_typedef && elaborated_type_spec == TSEF_ENABLE) && "A typedef type can not be "
"printed together with an elaborated type specifier.");
assert(!(as_parameter_signature_type && !ctx) && "as_parameter_signature_type flag needs an ASTContext");
// TODO: more!?
clang::PrintingPolicy policy = get_preset_printing_policy(ctx, unnamed);
// Start printing:
string resulting_type_text = var_name ? var_name : "";
string type_string_buffer;
llvm::raw_string_ostream type_stream(type_string_buffer);
AdjustedTypePrinter(policy, absolute_qualified, keep_typedef, elaborated_type_spec,
remove_attributes, as_parameter_signature_type, ctx)
.print(type, type_stream, resulting_type_text);
resulting_type_text = type_stream.str();
return get_with_unified_types(resulting_type_text, unnamed);
}
// This static member-function checks whether the expression is a lvalue or
// xvalue and if yes returns a appropriate reference-QualType while using
// the given QualType as guideline. If not it returns a copy of the given type.
static inline clang::QualType get_reference_type_if_necessary(const clang::QualType& type,
const clang::Expr* const expression, const clang::ASTContext& context) {
if(expression->isLValue() == true) {
return context.getLValueReferenceType(type);
}
else if(expression->isXValue() == true) {
return context.getRValueReferenceType(type);
}
else {
return type;
}
}
static const TI_Type *of (const ACM_Type &loc) {
return static_cast<TI_Type*>(loc.transform_info ());
}
};
class TI_Namespace : public TransformInfo {
// pointer to the Clang namespace object (for transformation)
clang::NamespaceDecl *_decl;
public:
void decl (clang::NamespaceDecl *n) { _decl = n; }
virtual clang::NamespaceDecl *decl () const { return _decl; }
};
class TI_Class : public TransformInfo {
clang::RecordDecl *_decl;
clang::SourceLocation _lbrace_loc;
bool _has_replaced_arrays;
static void get_member_contexts (const clang::RecordDecl *decl,
list<ClangSyntacticContext> &member_contexts) {
for (clang::RecordDecl::field_iterator i = decl->field_begin ();
i != decl->field_end (); ++i) {
// Only certain members are delivered.
// If this is not the right choice for all use case, add filter flags to
// the argument list of this function
clang::FieldDecl *attr = *i;
if (attr->getNameAsString ().empty ()) {
const clang::RecordType *UT = attr->getType ()->getAsUnionType ();
if (UT) { // members of anonymous unions in a record are also record members
get_member_contexts (UT->getDecl (), member_contexts);
}
continue;
}
// if (attr->isStatic () || attr->isAnonymous () || attr->EnumeratorInfo ())
// continue;
member_contexts.push_back (ClangSyntacticContext (attr));
}
}
public:
TI_Class () : _decl (0), _has_replaced_arrays( false ) {}
bool valid () const { return _decl != 0; }
void decl (clang::RecordDecl *c) { _decl = c; }
virtual clang::RecordDecl *decl () const { return _decl; }
void set_lbrace_loc(clang::SourceLocation loc) { _lbrace_loc = loc; }
SyntacticContext get_def_context () const { return SyntacticContext (_decl); }
void get_member_contexts (list<ClangSyntacticContext> &member_contexts) const {
get_member_contexts (_decl, member_contexts);
}
enum SMKind { CONSTRUCTOR, COPY_CONSTRUCTOR, DESTRUCTOR };
bool may_have_implicit (SMKind kind) {
return may_have_implicit (kind, _decl);
}
bool may_have_implicit (SMKind kind, const clang::RecordDecl *decl) {
const clang::CXXRecordDecl *d = llvm::cast<clang::CXXRecordDecl>(decl);
if (!d)
return false;
if (kind == CONSTRUCTOR || kind == COPY_CONSTRUCTOR) {
for (clang::CXXRecordDecl::ctor_iterator i = d->ctor_begin ();
i != d->ctor_end (); ++i) {
clang::CXXConstructorDecl *cd = *i;
if (kind == CONSTRUCTOR && cd->isDefaultConstructor () &&
cd->getAccess () == clang::AS_private)
return false;
if (kind == COPY_CONSTRUCTOR && cd->isCopyConstructor () &&
cd->getAccess () == clang::AS_private)
return false;
}
}
else { // destructor
const clang::CXXDestructorDecl *dd = d->getDestructor ();
if (dd && kind == DESTRUCTOR && dd->getAccess () == clang::AS_private)
return false;
}
for (clang::CXXRecordDecl::base_class_const_iterator i = d->bases_begin ();
i != d->bases_end (); ++i) {
const clang::CXXRecordDecl *bd = (*i).getType ()->getAsCXXRecordDecl ();
if (bd && !may_have_implicit (kind, bd))
return false;
}
for (clang::CXXRecordDecl::field_iterator i = d->field_begin ();
i != d->field_end (); ++i) {
const clang::FieldDecl *attr = *i;
const clang::CXXRecordDecl *rd = attr->getType ()->getAsCXXRecordDecl ();
if (rd && !may_have_implicit (kind, rd))
return false;
}
return true;
}
// remember if planing found advice for the builtin_copy constructor
void remember_builtin_copyconstructor_advice() {
// if the constructor advice can be woven (parallel check to begining of CodeWeaver::gen_special_member_function)
if( may_have_implicit( TI_Class::COPY_CONSTRUCTOR ) )
_has_replaced_arrays = true; // remember that replacement will be done, to assure it is considerd when weaving on other joinpoints (array access)
}
bool has_replaced_arrays() const { return _has_replaced_arrays; }
// return the position behind the opening bracket of the class body
const WeavePos &body_start_pos (WeaverBase &wb) const {
// TODO: iterating over all decls and finding the one with the smallest
// location is a terribly comlicated solution. However, I haven't found
// a way to get the location of the opening bracket.
#if 0
clang::SourceLocation min_loc;
for (clang::DeclContext::decl_iterator i = _decl->decls_begin ();
i != _decl->decls_end (); ++i) {
clang::SourceLocation cur_loc = (*i)->getLocStart();
if ((*i)->isImplicit () || !cur_loc.isValid ())
continue;
if (!min_loc.isValid () || (cur_loc < min_loc))
min_loc = (*i)->getLocStart();
}
if (min_loc.isValid ())
return wb.weave_pos(min_loc, WeavePos::WP_BEFORE);
else
return wb.weave_pos(_decl->getRBraceLoc(), WeavePos::WP_BEFORE);
#endif
assert (_lbrace_loc.isValid());
return wb.weave_pos(_lbrace_loc.getLocWithOffset(1), WeavePos::WP_AFTER);
}
// return the position in front of the closing bracket of the class body
const WeavePos &body_end_pos (WeaverBase &wb) const {
return wb.weave_pos(_decl->getRBraceLoc(), WeavePos::WP_BEFORE);
}
// return the position of the first token of the class definition
const WeavePos &objdecl_start_pos (WeaverBase &wb) const {
return wb.weave_pos (_decl->getLocStart(), WeavePos::WP_BEFORE);
}
// return the position after the ";" of the class definition
const WeavePos &objdecl_end_pos (WeaverBase &wb) const {
// FIXME: This relies on the lack of spaces between the closing '}' and ';'.
return wb.weave_pos (_decl->getLocEnd().getLocWithOffset(1), WeavePos::WP_AFTER);
}
// check whether this is a class and not a struct
bool is_class () const { return _decl->isClass(); }
// check whether this is a struct (more restrictive than 'is_class')
bool is_struct () const { return _decl->isStruct(); }
// check whether the class is defined (=has a body) and not only declared
bool is_defined () const { return _decl->isCompleteDefinition (); }
// checks whether this class is a template *instance*
bool is_template_instance () const {
const clang::CXXRecordDecl *d = llvm::cast<clang::CXXRecordDecl>(_decl);
return d && isTemplateInstantiation (d);
}
// check whether the class is defined in a extern "C" block
bool is_extern_c () const {
return is_extern_c (_decl);
}
static bool is_extern_c (clang::RecordDecl *d) {
clang::DeclContext *dc = d;
while (dc->getDeclKind() != clang::Decl::TranslationUnit) {
if (dc->getDeclKind() == clang::Decl::LinkageSpec)
return clang::cast<clang::LinkageSpecDecl>(dc)->getLanguage() ==
clang::LinkageSpecDecl::lang_c;
dc = dc->getParent();
}
return false;
// Future clang versions will support this: return _decl->isExternCContext ();
// TODO: current version support now: return d->isExternCContext();
}
// checks whther the class is defined within a template instance
bool is_in_template_instance () const { return inside_template_instance(_decl); }
static string name(clang::RecordDecl *ci) {
return TI_Type::get_decl_name_text(ci, TSEF_DISABLE, false, TSEF_DISABLE, false, true);
}
static TI_Class *of (const ACM_Class &loc) {
return static_cast<TI_Class*>(loc.transform_info ());
}
};
class TI_Aspect : public TI_Class {
public:
clang::FunctionDecl *aspectof () const {
clang::CXXRecordDecl *d = llvm::cast<clang::CXXRecordDecl>(decl());
for (clang::CXXRecordDecl::decl_iterator di = d->decls_begin(),
de = d->decls_end();
di != de; ++di) {
clang::NamedDecl *nd = llvm::dyn_cast<clang::NamedDecl> (*di);
if (!nd)
continue;
std::string name = nd->getNameAsString();
if (name != "aspectof" && name != "aspectOf")
continue;
if (nd->getKind () == clang::Decl::FunctionTemplate)
return llvm::dyn_cast<clang::FunctionTemplateDecl>(nd)->getTemplatedDecl ();
else if (nd->getKind () == clang::Decl::CXXMethod)
return llvm::dyn_cast<clang::CXXMethodDecl>(nd);
}
return 0;
}
static const TI_Aspect *of (const ACM_Aspect &loc) {
return static_cast<TI_Aspect*>(loc.transform_info ());
}
};
class TI_Function : public TransformInfo {
mutable vector<ClangSyntacticContext> _contexts;
clang::FunctionDecl *_decl;
public:
const vector<ClangSyntacticContext> &syntactic_contexts () const {
if (_contexts.size() == 0) {
// Store a pointer to each declaration and the definition (if one exists)
for (clang::FunctionDecl::redecl_iterator ri = _decl->redecls_begin(),
re = _decl->redecls_end();
ri != re; ++ri)
_contexts.push_back(ClangSyntacticContext(*ri));
}
return _contexts;
}
void decl (clang::FunctionDecl *c) { _decl = c; }
virtual clang::FunctionDecl *decl () const { return _decl; }
void add_decl (clang::FunctionDecl *c) {
_contexts.push_back(ClangSyntacticContext(c));
}
static string name(clang::FunctionDecl *func_info) {
string out;
clang::CXXConversionDecl *conv =
llvm::dyn_cast_or_null<clang::CXXConversionDecl>(func_info);
if (conv) {
clang::ASTContext &ctx = func_info->getASTContext();
clang::QualType t = conv->getConversionType ();
out = "operator ";
out += TI_Type::get_type_sig_text(t, &ctx, 0, true);
return out;
}
out = func_info->getNameAsString();
// Add a space after "operator" for Puma compatibility.
if (out.size() > 8 && llvm::StringRef(out).startswith("operator") &&
out[8] != ' ' && out[8] != '_' && !isalnum(out[8]))
out.insert(out.begin() + 8, ' ');
clang::FunctionTemplateSpecializationInfo *ftsi =
func_info->getTemplateSpecializationInfo ();
if (ftsi) {
if (out[out.length() - 1] == '<') // e.g. operator <<
out += " ";
out += TI_Type::get_templ_arg_list_text(*ftsi->TemplateArguments,
&func_info->getASTContext(),
TSEF_DONOTCHANGE,
false,
TSEF_DISABLE,
false,
true);
}
return out;
}
static string signature(clang::FunctionDecl *func_info) {
std::string str;
llvm::raw_string_ostream out(str);
clang::ASTContext &ctx = func_info->getASTContext();
out << '(';
for (clang::FunctionDecl::param_iterator i = func_info->param_begin(),
e = func_info->param_end();
i != e; ++i) {
if (i != func_info->param_begin())
out << ',';
out << TI_Type::get_type_sig_text((*i)->getType(), &ctx, 0, true);
}
out << ')';
// add CV qualifiers
if (clang::CXXMethodDecl *m =
llvm::dyn_cast<clang::CXXMethodDecl>(func_info)) {
if (m->isConst())
out << " const";
if (m->isVolatile())
out << " volatile";
}
return name(func_info) + out.str ();
}
bool is_const () const {
clang::CXXMethodDecl *m = llvm::dyn_cast<clang::CXXMethodDecl>(_decl);
return m && m->isConst ();
}
bool is_conversion_operator () const {
return (llvm::dyn_cast_or_null<clang::CXXConversionDecl>(_decl) != 0);
}
static const TI_Function *of (const ACM_Function &loc) {
return static_cast<TI_Function*>(loc.transform_info ());
}
};
class TI_Variable : public TransformInfo {
clang::DeclaratorDecl *_decl;
public:
TI_Variable () : _decl (0) {}
void decl (clang::DeclaratorDecl *oi) { _decl = oi; }
virtual clang::DeclaratorDecl *decl () const { return _decl; }
public:
static const TI_Variable *of (const ACM_Variable &loc) {
return static_cast<TI_Variable*>(loc.transform_info ());
}
};
class TI_Arg : public TransformInfo {
clang::QualType _type;
public:
void type (clang::QualType ti) { _type = ti; }
clang::QualType type () const { return _type; }
virtual clang::Decl *decl () const { return 0; }
static const TI_Arg *of (const ACM_Arg &loc) {
return static_cast<TI_Arg*>(loc.transform_info ());
}
};
class TI_Code : public TransformInfo {
bool _is_planned;
bool _has_implicit;
CFlowList _triggers;
public:
TI_Code() : _is_planned( false ), _has_implicit( false ) {};
// remember if this joinpoint is planned for weaving
// ( decisions for other joinpoints depend on this info )
void remember_planned() { _is_planned = true; }
bool is_planned() { return _is_planned; }
// remember implicit joinpoints needing to be considered
void remember_implicit() { _has_implicit = true; }
bool has_implicit_joinpoints() { return _has_implicit; }
// consider a necessary cflow trigger at this join point
bool consider (const CFlow &cflow) {
_triggers.push_back (cflow);
return true;
}
// return the list of cflows that must be entered/left here
const CFlowList &cflows () const { return _triggers; }
// that types (for the JoinPoint-API)
virtual std::string that_type_string () const { return "void"; }
// target type (for the JoinPoint-API)
virtual std::string target_type_string () const { return "void"; }
// argument type (for the JoinPoint-API)
virtual std::string arg_type_string (unsigned no) const { return "void"; }
// entity type (for the JoinPoint-API)
virtual std::string entity_type_string() const {
return format_type( decl() );
}
// helper functions for derived classes
static std::string get_type_string (const clang::NamedDecl *obj, bool normalise = false) {
// if the 'obj' refers to a record or member function, we have to print a record 'r'
const clang::CXXRecordDecl *r = llvm::dyn_cast<const clang::CXXRecordDecl>(obj);
const clang::CXXMethodDecl *m = llvm::dyn_cast<const clang::CXXMethodDecl>(obj);
if (m)
r = m->getParent ();
if (!r)
if (const clang::ParmVarDecl *pd = llvm::dyn_cast<const clang::ParmVarDecl>(obj))
r = pd->getType()->getAsCXXRecordDecl();
if (r) {
string qualifiers;
if (m) {
// preserve const volatile qualifiers of member functions
// we could also print m->getThisType(obj->getASTContext())
if(m->isConst())
qualifiers = "const ";
if (m->isVolatile())
qualifiers = "volatile ";
}
return qualifiers + TI_Type::get_decl_name_text(r, TSEF_ENABLE, true, TSEF_DONOTCHANGE, false, true);
}
else if (const clang::ParmVarDecl *pd = llvm::dyn_cast<const clang::ParmVarDecl>(obj)) {
return TI_Type::get_type_code_text(pd->getType(), &obj->getASTContext(), 0);
}
else
return "void";
}
static std::string format_type( clang::Decl *obj ) {
clang::ValueDecl *typed_obj = llvm::dyn_cast_or_null<clang::ValueDecl>( obj );
if( ! typed_obj )
return "void";
return format_type( typed_obj->getType(), obj->getASTContext() );
}
static std::string format_type( clang::QualType type, clang::ASTContext& ctx ) {
return TI_Type::get_type_code_text(type, &ctx, 0);
}
static TI_Code *of (const ACM_Code &loc) {
return static_cast<TI_Code*>(loc.transform_info ());
}
};
class TI_Method : public TI_Code {
clang::FunctionDecl *_decl;
public:
TI_Method () : _decl (0) {}
void decl (clang::FunctionDecl *f) { _decl = f; }
virtual clang::Decl *decl () const { return _decl; }
// that type (for the JoinPoint-API)
virtual std::string that_type_string() const {
return get_type_string(_decl);
}
// target type (for the JoinPoint-API)
virtual std::string target_type_string() const {
return get_type_string(_decl);
}
virtual std::string arg_type_string (unsigned no) const {
return get_type_string (_decl->getParamDecl (no), true);
}
};
// forward declaring child class, as we need to reference the pointer type already
// class TI_Builtin : public TI_Access
class TI_Builtin;
class TI_Access : public TI_Code {
private:
clang::DeclaratorDecl *_entity;
clang::Expr *_node;
clang::Expr *_ref_node;
clang::Decl *_origin;
clang::Expr *_target_expr;
public:
TI_Access() : _entity(0), _node(0), _ref_node(0), _origin(0), _target_expr(0) {}
protected: // make setter protected as derived class might need one with different signature
void entity( clang::DeclaratorDecl *ent ) { _entity = ent; }
public:
clang::DeclaratorDecl *entity() const { return _entity; }
virtual clang::Decl *decl() const { return _entity; } // defined in TransformInfo
bool entity_is_const() const { return false; }
protected: // make setter protected as derived class might need one with different signature
void tree_node( clang::Expr *n ) { _node = n; };
public:
clang::Expr *tree_node() const { return _node; };
void ref_node( clang::Expr *ref ) {
_ref_node = ref;
_target_expr = find_target_expr(); // init caching var
};
clang::Expr *ref_node() const { return _ref_node; };
// checks if the original access uses a qualified target entity name
bool is_qualified () const {
clang::MemberExpr *me = clang::dyn_cast_or_null<clang::MemberExpr>( _ref_node );
if (me && me->hasQualifier())
return true;
clang::DeclRefExpr *dre = clang::dyn_cast_or_null<clang::DeclRefExpr>( _ref_node );
if (dre && dre->hasQualifier())
return true;
return false;
}
void origin( clang::Decl *o ) { _origin = o; }
clang::Decl *origin() const { return _origin; }
bool target_is_ptr() const { return _target_expr && _target_expr->getType().getTypePtr()->isPointerType(); }
bool target_is_implicit() const { return _target_expr && _target_expr->isImplicitCXXThis(); }
bool target_is_const() const {
if (!_target_expr)
return false;
// in case of calls to const member functions Clang adds an implicit cast that turn the object
// into a const object even if it was non-const. So we have to ignore implicit casts here.
clang::Expr *real_target = _target_expr->IgnoreImpCasts ();
// now check whether the object type was const before any implicit casts
clang::QualType t = real_target->getType();
// if the target is a pointer we need check the object's const-ness and ignore the pointer.
if (t.getTypePtr()->isPointerType())
t = t.getTypePtr()->getPointeeType();
return t.isConstQualified ();
}
bool has_target_expr() const { return _target_expr && ! target_is_implicit(); }
clang::Expr *target_expr() const {
if( ! target_is_implicit() ) // by convention only explicit expr are returned
return _target_expr;
else
return 0;
}
// no setter as it is done internally
virtual clang::Expr *find_target_expr() const {
// analog to clang::CXXMemberCallExpr::getImplicitObjectArgument()
if( const clang::MemberExpr *member = llvm::dyn_cast<clang::MemberExpr>( _ref_node ) )
return member->getBase()->IgnoreImpCasts();
else if( const clang::BinaryOperator *op = llvm::dyn_cast<clang::BinaryOperator>( _ref_node ) )
if( op->getOpcode() == clang::BO_PtrMemD || op->getOpcode() == clang::BO_PtrMemI )
return op->getLHS();
return 0;
}
// target type (for the JoinPoint-API)
virtual const clang::RecordDecl *target_class () const = 0;
// type of target expr (for qualifing names, might differ from target_class)
virtual const clang::RecordDecl *targetexpr_class() const = 0;
const clang::RecordDecl *defining_class() const { return clang::dyn_cast<clang::RecordDecl>( _entity->getDeclContext() ); }
const bool entity_from_baseclass() const {
const clang::CXXRecordDecl *defining = llvm::dyn_cast_or_null<clang::CXXRecordDecl>( defining_class() );
const clang::CXXRecordDecl *target = llvm::dyn_cast_or_null<clang::CXXRecordDecl>( target_class() );
return defining && target && target->isDerivedFrom( defining );
}
static TI_Access *of( const ACM_Access &loc ) {
return static_cast<TI_Access *>( loc.transform_info() );
}
const SyntacticContext access_context () const { return SyntacticContext( _origin ); }
const SyntacticContext entity_context () const { return SyntacticContext( _entity ); }
// that type (for the JoinPoint-API)
virtual std::string that_type_string() const {
if( clang::CXXMethodDecl *m = llvm::dyn_cast<clang::CXXMethodDecl>( _origin ) )
return get_type_string( m->getParent() );
else if( clang::VarDecl *vd = llvm::dyn_cast<clang::VarDecl>( _origin ) )
if( clang::CXXRecordDecl *r = llvm::dyn_cast<clang::CXXRecordDecl>( vd->getDeclContext() ) )
return get_type_string( r );
return "void";
}
// target type (for the JoinPoint-API)
virtual std::string target_type_string() const {
const clang::NamedDecl *tc = target_class();
return ( tc ? get_type_string( tc ) : string( "void" ));
}
// type of target expr (for qualifing names, might differ from target_class)
virtual std::string targetexpr_type_string() const {
const clang::NamedDecl *tc = targetexpr_class();
return ( tc ? get_type_string( tc ) : string( "void" ));
}
virtual bool has_result() const = 0;
virtual clang::QualType result_type() const = 0;
virtual std::string result_type_string() const { return format_type( result_type(), _origin->getASTContext() ); }
virtual unsigned int entity_index_count() const { return 0; } // derived override if they have indices
virtual unsigned long int entity_index_dimension( unsigned int i ) const { return 0; } // derived override if they have indices
virtual std::string entity_index_type( unsigned int i ) const { return "void"; } // derived override if they have indices
virtual TI_Builtin *entity_src() const { return 0; }
enum SpliceMode { SpliceMode_None, SpliceMode_Packed, SpliceMode_Pack, SpliceMode_FullSplice };
virtual SpliceMode entity_src_splice_mode() const { return SpliceMode_None; }
static const clang::Expr * skipTransparent( clang::Expr * start ) {
const clang::Expr *oldE = start;
const clang::Expr *newE = start->IgnoreImplicit()->IgnoreParens();
while( oldE != newE ) {
oldE = newE;
if( const clang::BinaryOperator *bo = llvm::dyn_cast<clang::BinaryOperator>( newE ) ) {
if( bo->getOpcode() == clang::BO_Comma ) // jump inside right part as this is the relevant part for the joinpoint in the parent
newE = bo->getRHS();
}
newE = newE->IgnoreImplicit()->IgnoreParens();
}
return newE;
}
const WeavePos &before_pos (WeaverBase &wb) {
// jump into parenthesis and ignore exprs that don't change anything
// cant do this early (or _node in general as ImplicitCast can be skipped here but not for type compuatations)
return wb.weave_pos( skipTransparent( _node )->getLocStart(), WeavePos::WP_BEFORE );
}
const WeavePos &after_pos (WeaverBase &wb) {
// jump into parenthesis and ignore exprs that don't change anything
// cant do this early (or _node in general as ImplicitCast can be skipped here but not for type compuatations)
return get_pos_after_token( skipTransparent( _node )->getLocEnd(), wb );
}
const WeavePos &entity_before_pos( WeaverBase &wb ) {
return wb.weave_pos( ref_node()->getLocStart(), WeavePos::WP_BEFORE );
}
const WeavePos &entity_after_pos( WeaverBase &wb ) {
return get_pos_after_token( ref_node()->getLocEnd(), wb, WeavePos::WP_AFTER );
}
const WeavePos &entity_op_before_pos( WeaverBase &wb ) {
assert( clang::isa<clang::MemberExpr>( ref_node() ) );
clang::MemberExpr *me = clang::dyn_cast<clang::MemberExpr>( ref_node() );
// clang3.4 seems to miss getOperatorLoc()
//return wb.weave_pos( me->getOperatorLoc(), WeavePos::WP_BEFORE );
return get_pos_after_token( me->getBase()->getLocEnd(), wb, WeavePos::WP_BEFORE );
}
const WeavePos &entity_op_after_pos( WeaverBase &wb ) {
assert( clang::isa<clang::MemberExpr>( ref_node() ) );
clang::MemberExpr *me = clang::dyn_cast<clang::MemberExpr>( ref_node() );
if( me->hasQualifier() )
return wb.weave_pos( me->getQualifierLoc().getBeginLoc(), WeavePos::WP_AFTER );
else
return wb.weave_pos( me->getMemberLoc(), WeavePos::WP_AFTER );
}
struct PH : public clang::PrinterHelper {
virtual bool handledStmt (clang::Stmt *node, llvm::raw_ostream &os) {
clang::CXXOperatorCallExpr *ce = clang::dyn_cast<clang::CXXOperatorCallExpr> (node);
clang::FunctionDecl *fd = (ce ? ce->getDirectCallee () : 0);
if (ce && ce->getNumArgs () == 1 &&
fd->getNameAsString () == "operator->") {
clang::ASTContext &ctx = fd->getASTContext();
os << "(";
ce->getArg (0)->printPretty(os, this, ctx.getPrintingPolicy(), 0);
os << ").operator->()";
return true;
}
// WORKAROUND for Clang 3.4 problem:
// Implicit calls to conversion operators are printed explicitly, but
// the object argument is not put into brackets. For example:
// "a & b" might become "a & b.operator int()"
// This fix generates the brackets: "(a & b).operator int()"
clang::CXXMemberCallExpr *mce = clang::dyn_cast<clang::CXXMemberCallExpr> (node);
fd = (mce ? mce->getDirectCallee () : 0);
if (fd && clang::dyn_cast<clang::CXXConversionDecl>(fd)) {
clang::MemberExpr *me = clang::dyn_cast<clang::MemberExpr>(mce->getCallee ());
if (me) {
os << "(";
clang::ASTContext &ctx = fd->getASTContext();
me->getBase ()->printPretty(os, this, ctx.getPrintingPolicy(), 0);
os << ")" << (me->isArrow () ? "->" : ".");
os << TI_Function::name(fd) << "()";
return true;
}
}
return false;
}
};
string code () const {
PH ph;
clang::ASTContext &ctx = _origin->getASTContext();
std::string buf;
llvm::raw_string_ostream out (buf);
_node->printPretty(out, &ph, ctx.getPrintingPolicy(), 0);
return buf;
}
// returns true if the access needs special rights
bool needs_rights () const {
// no member function => no accessibility problem
if( ! target_class() )
return false;
// static member => no problem only if public
clang::CXXMethodDecl *md = clang::dyn_cast<clang::CXXMethodDecl>(_entity);
clang::VarDecl *vd = clang::dyn_cast<clang::VarDecl>(_entity);
if ((md && md->isStatic ()) || (vd && vd->isStaticDataMember ()))
return (_entity->getAccess () != clang::AS_public);
// normal member function => look up the accessibility
const clang::CXXRecordDecl *base = clang::dyn_cast<clang::CXXRecordDecl>( defining_class() );
const clang::CXXRecordDecl *target = clang::dyn_cast<clang::CXXRecordDecl>(target_class ());
clang::CXXBasePaths paths;
if (target->isDerivedFrom (base, paths)) {
for (clang::CXXBasePaths::const_paths_iterator i = paths.begin (); i != paths.end (); ++i)
if (i->Access != clang::AS_public)
return true;
}
if( _entity->getAccess () == clang::AS_public )
return false;
return true;
}
};
// This abstract class represents a call in general and exists just as interface for
// actions that are (mostly) the same between calls of user-defined (member-)functions
// and calls of built-in operators.
class TI_CommonCall : public TI_Access {
protected:
TI_CommonCall () {}
public:
virtual string operator_kind_string() const = 0;
virtual const clang::Expr* arg(unsigned int index) const = 0;
virtual unsigned int arg_count() const = 0;
virtual bool is_unary_expr() const = 0;
virtual bool is_binary_expr() const = 0;
virtual bool is_ternary_expr() const = 0;
virtual bool is_postfix_expr() const = 0;
virtual bool is_index_expr() const = 0;
virtual bool is_arrow_class_member_access_expr() const = 0;
virtual bool is_implicit_conversion() const = 0;
virtual clang::SourceLocation get_operator_location() const = 0;
// returns the position directly in front of the operator
virtual const WeavePos &op_before_pos (WeaverBase &wb) {
return wb.weave_pos(get_operator_location(), WeavePos::WP_BEFORE);
}
// returns the position directly behind the operator
virtual const WeavePos &op_after_pos (WeaverBase &wb) {
return get_pos_after_token(get_operator_location(), wb);
}
// The following member-functions may be called if is_index_expr() is true
// returns the position directly in front of the opening bracket [
virtual const WeavePos &index_open_before_pos (WeaverBase &wb) {
assert (is_index_expr ());
return get_pos_after_token(arg(0)->getLocEnd(), wb, WeavePos::WP_BEFORE);
}
// returns the position directly behind the opening bracket [
virtual const WeavePos &index_open_after_pos (WeaverBase &wb) {
assert (is_index_expr ());
return wb.weave_pos(arg(1)->getLocStart (), WeavePos::WP_AFTER);
}
// returns the position directly in front of the closing bracket ]
virtual const WeavePos &index_close_before_pos (WeaverBase &wb) {
assert (is_index_expr ());
return get_pos_after_token(arg(1)->getLocEnd (), wb, WeavePos::WP_BEFORE);
}
// returns the position directly behind the closing bracket ]
virtual const WeavePos &index_close_after_pos (WeaverBase &wb) {
assert (is_index_expr ());
return get_pos_after_token(TI_Access::tree_node()->getLocEnd (), wb, WeavePos::WP_AFTER);
}
// The following member-functions return the corresponding weave-positions of ternary operators
// (first delimiter = "?", second delimiter = ":")
virtual const WeavePos& ternary_op_first_delim_before_pos(WeaverBase &wb) {
assert (is_ternary_expr());
return get_pos_after_token(arg(0)->getLocEnd(), wb, WeavePos::WP_BEFORE);
}
virtual const WeavePos& ternary_op_first_delim_after_pos(WeaverBase &wb) {
assert (is_ternary_expr());
return wb.weave_pos(arg(1)->getLocStart(), WeavePos::WP_AFTER);
}
virtual const WeavePos& ternary_op_second_delim_before_pos(WeaverBase &wb) {
assert (is_ternary_expr());
return get_pos_after_token(arg(1)->getLocEnd(), wb, WeavePos::WP_BEFORE);
}
virtual const WeavePos& ternary_op_second_delim_after_pos(WeaverBase &wb) {
assert (is_ternary_expr());
return wb.weave_pos(arg(2)->getLocStart(), WeavePos::WP_AFTER);
}
};
class TI_MethodCall : public TI_CommonCall {
clang::FunctionDecl *_called_func;
public:
TI_MethodCall() : _called_func( 0 ) {}
void called (clang::FunctionDecl *f) { _called_func = f; entity( f ); }
clang::FunctionDecl *called () const { return _called_func; }
void tree_node( clang::Expr *n ) {
// In this class the node-object always has the type clang::CallExpr*
assert(!n || llvm::isa<clang::CallExpr>(n));
TI_Access::tree_node( n );
if( n ) {
ref_node( static_cast<clang::CallExpr*>(n)->getCallee()->IgnoreParenImpCasts() );
}
}
// In this class the node-object always has the type clang::CallExpr*
const clang::CallExpr* tree_node() const {
assert(llvm::isa<clang::CallExpr>(TI_Access::tree_node()));
return static_cast<clang::CallExpr*>(TI_Access::tree_node());
}
static TI_MethodCall *of (const ACM_Call &loc) {
return static_cast<TI_MethodCall*>(loc.transform_info ());
}
bool uses_ADN_lookup () const {
return (_called_func &&
_called_func->getLexicalDeclContext () != _called_func->getDeclContext () &&
_called_func->getFriendObjectKind () != clang::Decl::FOK_None);
}
virtual string operator_kind_string() const {
if( clang::CXXOperatorCallExpr *oc =llvm::dyn_cast<clang::CXXOperatorCallExpr>( TI_Access::tree_node() ) )
return oc->getDirectCallee ()->getNameAsString ().substr (8);
assert( false && "Unknown expr type" );
return "<?>"; // dummy
}
static unsigned int arg_count( const clang::CallExpr *node ) {
unsigned int args = node->getNumArgs();
// for calls to % T::operator() (...) on an object t of type T,
// e.g t(42), Clang says that the number of args is 2. In AspectC++ we
// regard t is the target pointer and only 42 as an argument.
if (is_call_op(node))
args--;
return args;
}
virtual unsigned int arg_count() const {
return arg_count( tree_node() );
}
// This method takes an argument-index as unsigned int and returns the correspondent argument-clang::Expr-pointer.
static const clang::Expr* arg( const clang::CallExpr *node, unsigned int index ) {
// for calls to % T::operator() (...) on an object t of type T,
// e.g t(42), Clang says that the number of args is 2. In AspectC++ we
// regard t is the target pointer and only 42 as an argument.
if (is_call_op(node))
index++;
return node->getArg(index);
}
// This method takes an argument-index as unsigned int and returns the correspondent argument-clang::Expr-pointer.
virtual const clang::Expr* arg(unsigned int index) const {
return arg( tree_node(), index );
}
static std::string arg_type_string( const clang::CallExpr *node, clang::ASTContext &ctx, unsigned no ) {
return TI_Type::get_type_code_text(arg( node, no )->getType(), &ctx, 0);
}
virtual std::string arg_type_string (unsigned no) const {
// If the requested argument is no variadic argument we take it
// from the function declaration:
if( no < _called_func->getNumParams () )
return get_type_string (_called_func->getParamDecl (no), true);
assert(_called_func->isVariadic());
// Otherwise we take it from the call expression:
clang::ASTContext &ctx = origin()->getASTContext();
return arg_type_string( tree_node(), ctx, no );
}
bool is_operator_call() const {
return llvm::isa<clang::CXXOperatorCallExpr>( TI_Access::tree_node() );
}
virtual bool is_unary_expr () const {
clang::CXXOperatorCallExpr *ce = clang::dyn_cast<clang::CXXOperatorCallExpr> (TI_Access::tree_node());
return (ce && ce->getNumArgs () == 1 && !is_call_op());
}
virtual bool is_binary_expr () const {
clang::CXXOperatorCallExpr *ce = clang::dyn_cast<clang::CXXOperatorCallExpr> (TI_Access::tree_node());
return (ce && ce->getNumArgs () == 2 && !is_index_expr () && !is_postfix_expr () && !is_call_op());
}
virtual bool is_index_expr () const {
clang::CXXOperatorCallExpr *ce = clang::dyn_cast<clang::CXXOperatorCallExpr> (TI_Access::tree_node());
return (ce && ce->getNumArgs () == 2 && _called_func->getNameAsString () == "operator[]");
}
virtual bool is_postfix_expr () const {
clang::CXXOperatorCallExpr *ce = clang::dyn_cast<clang::CXXOperatorCallExpr> (TI_Access::tree_node());
return (ce && ce->getNumArgs () == 2 &&
(_called_func->getNameAsString () == "operator++" ||
_called_func->getNameAsString () == "operator--"));
}
virtual bool is_arrow_class_member_access_expr() const {
return _called_func->getNameAsString () == "operator->";
}
virtual bool is_ternary_expr() const {
return false;
}
virtual bool is_implicit_conversion () const {
if (!llvm::isa<clang::CXXConversionDecl> (_called_func))
return false;
clang::CXXMemberCallExpr *mce = clang::dyn_cast<clang::CXXMemberCallExpr>( TI_Access::tree_node() );
if (!mce)
return false;
// TODO: is there a better way to distinguish 'c' from 'c.operator int*()'?
return (mce->getCallee ()->getLocEnd () == TI_Access::tree_node()->getLocEnd ());
}
static bool is_call_op (const clang::CallExpr *node) {
return (clang::dyn_cast<clang::CXXOperatorCallExpr>(node) &&
node->getDirectCallee ()->getNameAsString () == "operator()");
}
bool is_call_op () const {
return is_call_op (tree_node());
}
// This method returns the clang::SourceLocation of the operator according to the operator-type.
virtual clang::SourceLocation get_operator_location() const {
if( clang::CXXOperatorCallExpr *ce = clang::dyn_cast<clang::CXXOperatorCallExpr> ( TI_Access::tree_node() ) )
return ce->getOperatorLoc ();
assert( false && "This is no operator." );
return TI_Access::tree_node()->getLocStart(); // dummy
}
const WeavePos &args_open_before_pos (WeaverBase &wb) {
if (is_call_op ())
return wb.weave_pos (tree_node()->getCallee ()->getLocStart (), WeavePos::WP_BEFORE);
else
return get_pos_after_token(tree_node()->getCallee ()->getLocEnd (), wb, WeavePos::WP_BEFORE);
}
const WeavePos &args_open_after_pos (WeaverBase &wb) {
if (call_args () > 0)
return wb.weave_pos (arg (0)->getLocStart (), WeavePos::WP_AFTER);
else
return wb.weave_pos (TI_Access::tree_node()->getLocEnd (), WeavePos::WP_AFTER);
}
const WeavePos &args_close_before_pos (WeaverBase &wb) {
return wb.weave_pos(TI_Access::tree_node()->getLocEnd (), WeavePos::WP_BEFORE);
}
const WeavePos &args_close_after_pos (WeaverBase &wb) {
return get_pos_after_token(TI_Access::tree_node()->getLocEnd (), wb, WeavePos::WP_AFTER);
}
const WeavePos &callee_before_pos (WeaverBase &wb) {
if (has_target_expr()) {
const clang::Expr *callee = tree_node()->getCallee ();
while (clang::dyn_cast<clang::ImplicitCastExpr> (callee))
callee = clang::dyn_cast<clang::ImplicitCastExpr> (callee)->getSubExpr ();
while (clang::dyn_cast<clang::ParenExpr> (callee))
callee = clang::dyn_cast<clang::ParenExpr> (callee)->getSubExpr ();
const clang::MemberExpr *me = clang::dyn_cast<clang::MemberExpr> (callee);
assert (me);
return get_pos_after_token(me->getBase ()->getLocEnd (), wb, WeavePos::WP_BEFORE);
}
else {
if (is_call_op ())
return wb.weave_pos (TI_Access::tree_node()->getLocStart (), WeavePos::WP_BEFORE);
else
return wb.weave_pos (tree_node()->getCallee ()->getLocStart (), WeavePos::WP_BEFORE);
}
}
const WeavePos &callee_after_pos (WeaverBase &wb) {
if (is_call_op ())
return wb.weave_pos (tree_node()->getCallee ()->getLocStart (), WeavePos::WP_AFTER);
else {
const clang::Expr *callee = tree_node()->getCallee ();
while (clang::dyn_cast<clang::ParenExpr> (callee))
callee = clang::dyn_cast<clang::ParenExpr> (callee)->getSubExpr ();
return get_pos_after_token(callee->getLocEnd (), wb, WeavePos::WP_AFTER);
}
}
// return the number of arguments, not including the object in case of
// member function calls and not including implicitly passed default arguments
unsigned call_args () const {
unsigned args = 0;
const clang::CallExpr* call_node = tree_node();
while (args < call_node->getNumArgs ()) {
if( clang::dyn_cast<clang::CXXDefaultArgExpr>( call_node->getArg( args ) ) )
break;
args++;
}
// in case of calls to operator() the number has to be decremented once
if (is_call_op())
args--;
return args;
}
virtual bool has_result () const {
#if (CLANG_VERSION_MAJOR == 3 && CLANG_VERSION_MINOR == 4 && !defined(CLANG_VERSION_PATCHLEVEL)) || \
(CLANG_VERSION_MAJOR == 3 && CLANG_VERSION_MINOR == 4 && CLANG_VERSION_PATCHLEVEL == 2)
return !_called_func->getResultType()->isVoidType ();
#else // C++ 11 interface
return !_called_func->getReturnType()->isVoidType ();
#endif
}
virtual clang::QualType result_type() const {
#if (CLANG_VERSION_MAJOR == 3 && CLANG_VERSION_MINOR == 4 && !defined(CLANG_VERSION_PATCHLEVEL)) || \
(CLANG_VERSION_MAJOR == 3 && CLANG_VERSION_MINOR == 4 && CLANG_VERSION_PATCHLEVEL == 2)
return _called_func->getResultType ();
#else // C++ 11 interface
return _called_func->getReturnType ();
#endif
}
// target type (for the JoinPoint-API)
virtual const clang::RecordDecl *target_class () const {
return targetexpr_class();
}
virtual const clang::RecordDecl *targetexpr_class () const {
const clang::RecordDecl *result = 0;
const clang::CXXMethodDecl *md = clang::dyn_cast_or_null<clang::CXXMethodDecl> (_called_func);
if( has_target_expr() ) {
const clang::Type *type = target_expr()->getType ().getTypePtr ();
result = type->getPointeeCXXRecordDecl();
if (!result)
result = type->getAsCXXRecordDecl ();
}
else if (md) {
result = md->getParent();
if (clang::CXXMethodDecl *caller = llvm::dyn_cast<clang::CXXMethodDecl>(origin())) {
if (!md->isStatic())
result = caller->getParent ();
}
}
return result;
}
// the target object of the call or NULL
virtual clang::Expr *find_target_expr() const {
// check if this call has a target object
clang::CXXMethodDecl *md = clang::dyn_cast_or_null<clang::CXXMethodDecl> (_called_func);
if (!md /* || md->isStatic ()*/)
return 0;
clang::Expr *result = 0;
// an ordinary member function call, e.g. foo->bar()
clang::CXXMemberCallExpr *mce =
clang::dyn_cast<clang::CXXMemberCallExpr> (TI_Access::tree_node());
// .. or an operator call, e.g. !foo or foo+bar
clang::CXXOperatorCallExpr *oce =
clang::dyn_cast<clang::CXXOperatorCallExpr> (TI_Access::tree_node());
if (mce)
result = mce->getImplicitObjectArgument ();
else if (oce && md->getParent ())
result = oce->getArg (0);
else {
// it might still be a static member function call with unused target expr,
// e.g. foo->static_bar()
const clang::Expr *callee = tree_node()->getCallee();
if (clang::dyn_cast<clang::ImplicitCastExpr> (callee)) {
callee = clang::dyn_cast<clang::ImplicitCastExpr> (callee)->getSubExpr ();
if (clang::dyn_cast<clang::MemberExpr> (callee)) {
result = clang::dyn_cast<clang::MemberExpr> (callee)->getBase();
}
}
}
// TODO: check if implicit calls are handled correctly here
return result;
}
// checks whether the call uses explicit template parameters
bool has_explicit_template_params () const {
if( clang::DeclRefExpr *dre = llvm::dyn_cast<clang::DeclRefExpr>( ref_node() ) )
return dre->hasExplicitTemplateArgs();
else if( clang::MemberExpr *me = llvm::dyn_cast<clang::MemberExpr>( ref_node() ) )
return me->hasExplicitTemplateArgs();
else
return false;
}
const clang::TemplateArgumentLoc *get_explicit_template_params() const {
if( clang::DeclRefExpr *dre = llvm::dyn_cast<clang::DeclRefExpr>( ref_node() ) )
return dre->getTemplateArgs();
else if( clang::MemberExpr *me = llvm::dyn_cast<clang::MemberExpr>( ref_node() ) )
return me->getTemplateArgs();
else
return 0;
}
unsigned int num_explicit_template_params() const {
if( clang::DeclRefExpr *dre = llvm::dyn_cast<clang::DeclRefExpr>( ref_node() ) )
return dre->getNumTemplateArgs();
else if( clang::MemberExpr *me = llvm::dyn_cast<clang::MemberExpr>( ref_node() ) )
return me->getNumTemplateArgs();
else
return 0;
}
};
// This class represents a call of a built-in operator.
class TI_Builtin : public TI_CommonCall {
TI_Builtin *_forwarded_src;
ACM_Access *_packed_forward_requester;
public:
TI_Builtin() : _forwarded_src( 0 ), _packed_forward_requester( 0 ) {}
void tree_node( clang::Expr *n ) {
assert(is_builtin_operator(n));
TI_Access::tree_node( n );
}
static TI_Builtin *of (const ACM_Builtin &loc) {
return static_cast<TI_Builtin*>(loc.transform_info ());
}
static bool is_builtin_operator(clang::Expr* node) {
return llvm::isa<clang::UnaryOperator>( node )
|| llvm::isa<clang::BinaryOperator>( node )
|| llvm::isa<clang::ArraySubscriptExpr>( node )
|| llvm::isa<clang::ConditionalOperator>( node );
}
static string operator_kind_string( clang::Expr *node ) {
assert( is_builtin_operator( node ) );
if( clang::UnaryOperator *uo = llvm::dyn_cast<clang::UnaryOperator>( node ) )
return clang::UnaryOperator::getOpcodeStr( uo->getOpcode() ).str();
else if( clang::BinaryOperator * bo = llvm::dyn_cast<clang::BinaryOperator>( node ) )
return clang::BinaryOperator::getOpcodeStr( bo->getOpcode() ).str();
else if( llvm::isa<clang::ArraySubscriptExpr>( node ) )
return "[]";
else if( llvm::isa<clang::ConditionalOperator>( node ) )
return "?:";
assert( false && "Unknown expr type" );
return "<?>"; // dummy
}
virtual string operator_kind_string() const {
return( operator_kind_string( TI_Access::tree_node() ) );
}
static unsigned int arg_count( const clang::Expr *node ) {
if( const clang::UnaryOperator *uo = llvm::dyn_cast<clang::UnaryOperator>( node ) ) {
if( uo->isPostfix() )
return 2;
else
return 1;
}
else if( llvm::isa<clang::BinaryOperator>( node ) )
return 2;
else if( llvm::isa<clang::ArraySubscriptExpr>( node ) )
return 2;
else if( llvm::isa<clang::ConditionalOperator>( node ) )
return 3;
assert( false && "Unknown expr type" );
return 0; // dummy
}
virtual unsigned int arg_count() const {
return arg_count( TI_Access::tree_node() );
}
// This method takes an argument-index as unsigned int and returns the correspondent argument-clang::Expr-pointer.
static const clang::Expr* arg( const clang::Expr *node, unsigned int index ) {
// Valid index?
assert( index < arg_count( node ) );
if( const clang::UnaryOperator *uo = llvm::dyn_cast<clang::UnaryOperator>( node ) ) {
if( uo->isPostfix() && index == 1 )
return 0;
else
return uo->getSubExpr();
}
else if( const clang::BinaryOperator * bo = llvm::dyn_cast<clang::BinaryOperator>( node ) )
return index == 0 ? bo->getLHS() : bo->getRHS();
else if( const clang::ArraySubscriptExpr *ase = llvm::dyn_cast<clang::ArraySubscriptExpr>( node ) )
return ( index == 0 ) ? ase->getLHS() : ase->getRHS();
else if( const clang::ConditionalOperator *co = llvm::dyn_cast<clang::ConditionalOperator>( node ) )
return ( index == 0 ) ? co->getCond() : ( ( index == 1 ) ? co->getTrueExpr() : co->getFalseExpr() );
assert( false && "Unknown expr type" );
return 0; // dummy
}
// This method takes an argument-index as unsigned int and returns the correspondent argument-clang::Expr-pointer.
virtual const clang::Expr* arg(unsigned int index) const {
return arg( TI_Access::tree_node(), index );
}
static clang::QualType arg_type( const clang::Expr *node, clang::ASTContext &ctx, unsigned no ) {
if( const clang::UnaryOperator * uo = llvm::dyn_cast<clang::UnaryOperator>( node ) ) {
if( uo->isPostfix() && ( no == 1 ) )
return ctx.IntTy; // Dummy argument of postfix ops
}
const clang::Expr *argument = arg( node, no );
return TI_Type::get_reference_type_if_necessary(argument->getType(), argument, ctx);
}
static std::string arg_type_string( const clang::Expr *node, clang::ASTContext &ctx, unsigned no ) {
return TI_Type::get_type_code_text(arg_type( node, ctx, no ), &ctx, 0);
}
virtual std::string arg_type_string (unsigned no) const {
return arg_type_string( TI_Access::tree_node(), origin()->getASTContext(), no );
}
// returns whether the type of the argument with the given number is a reference-type
bool arg_is_ref( unsigned no ) const {
return arg_type( TI_Access::tree_node(), origin()->getASTContext(), no )->isReferenceType();
}
// returns whether the argument with the given number is NOT available in the call-wrapper
// (e.g. due to short-circuit-evaluation)
bool arg_is_unavailable( unsigned no, int wrapper ) {
// First argument is always available
if(no == 0) {
return false;
}
// Second argument of && and ||
if( clang::BinaryOperator *bo = llvm::dyn_cast<clang::BinaryOperator>( TI_Access::tree_node() ) ) {
if( bo->getOpcode() == clang::BO_LAnd )
return wrapper == 1 && no == 1;
else if( bo->getOpcode() == clang::BO_LOr )
return wrapper == 0 && no == 1;
else
return false;
}
// second or third argument of ?:
else if( llvm::isa<clang::ConditionalOperator>( TI_Access::tree_node() ) )
return no == static_cast<unsigned>( 2 - wrapper );
else
return false;
}
// returns whether this is a unary operator
virtual bool is_unary_expr () const {
return llvm::isa<clang::UnaryOperator>( TI_Access::tree_node() ) && ! is_postfix_expr();
}
// returns whether this is a postfix operator (increment oder decrement)
virtual bool is_postfix_expr () const {
if( clang::UnaryOperator *uo = llvm::dyn_cast<clang::UnaryOperator>( TI_Access::tree_node() ) )
return uo->isPostfix();
return false;
}
// returns whether this a binary operator ( but no array subscript operator
virtual bool is_binary_expr () const {
return llvm::isa<clang::BinaryOperator>( TI_Access::tree_node() );
}
// returns whether this is the binary array subscript operator
virtual bool is_index_expr () const {
return llvm::isa<clang::ArraySubscriptExpr>( TI_Access::tree_node() );
}
// returns whether this is a operator that changes and assigns a value
bool is_compound_assignment() const {
if( llvm::isa<clang::CompoundAssignOperator>( TI_Access::tree_node() ) )
return true;
else if( clang::UnaryOperator *uo = llvm::dyn_cast<clang::UnaryOperator>( TI_Access::tree_node() ) )
return uo->isIncrementDecrementOp();
else
return false;
}
// returns whether this is the arrow class member access operator "->"
virtual bool is_arrow_class_member_access_expr() const {
// built-in operator "->" is currently not supported:
return false;
}
// returns whether this a ternary operator (currently only conditional operator)
virtual bool is_ternary_expr() const {
return llvm::isa<clang::ConditionalOperator>( TI_Access::tree_node() );
}
virtual bool is_implicit_conversion () const {
// built-in conversion operators are currently not supported
return false;
}
// This member-function returns whether this call uses the short-circuit evaluation. Currently only
// the built-in operators "&&", "||" and "?:".
bool is_short_circuiting() const {
if( clang::BinaryOperator * bo = llvm::dyn_cast<clang::BinaryOperator>( TI_Access::tree_node() ) ) {
return bo->getOpcode() == clang::BO_LAnd || bo->getOpcode() == clang::BO_LOr;
}
else {
return llvm::isa<clang::ConditionalOperator>( TI_Access::tree_node() );
}
}
// check if operator is normally forwarding the first arg as result (usually references)
bool is_forwarding() const {
if( llvm::isa<clang::CompoundAssignOperator>( TI_Access::tree_node() ) )
return true;
else if( clang::BinaryOperator * bo = llvm::dyn_cast<clang::BinaryOperator>( TI_Access::tree_node() ) )
return bo->getOpcode() == clang::BO_Assign;
else if( clang::UnaryOperator *uo = llvm::dyn_cast<clang::UnaryOperator>( TI_Access::tree_node() ) )
return uo->isIncrementDecrementOp() && uo->isPrefix();
else if( llvm::isa<clang::ArraySubscriptExpr>( TI_Access::tree_node() ) )
return true;
else
return false;
}
// This method returns the clang::SourceLocation of the operator according to the operator-type.
virtual clang::SourceLocation get_operator_location() const {
clang::Expr *node = TI_Access::tree_node();
if( clang::UnaryOperator *uo = clang::dyn_cast<clang::UnaryOperator>( node ) ) {
return uo->getOperatorLoc();
}
else if( clang::BinaryOperator *bo = clang::dyn_cast<clang::BinaryOperator>( node ) ) {
return bo->getOperatorLoc();
}
assert( false && "The expr does not have THE ONE operator-location." );
return node->getLocStart(); // dummy
}
// returns whether the current operator returns something
virtual bool has_result () const {
// All currently supported operators have a return value:
return true;
}
// returns the type of the return value of the operator
virtual clang::QualType result_type() const {
const clang::Expr *node = TI_Access::tree_node();
return TI_Type::get_reference_type_if_necessary(node->getType(), node, origin()->getASTContext());
}
// Built-in operators are global functions and therefore have no object/target on
// which they are called. Hence we have no target expression and thus there
// is no class of the type of this expression.
virtual clang::Expr *find_target_expr() const {
return 0;
}
virtual const clang::RecordDecl *target_class () const {
return 0;
}
virtual const clang::RecordDecl *targetexpr_class () const {
return 0;
}
void forwarded_src( TI_Builtin *src ) {
_forwarded_src = src;
}
TI_Builtin *forwarded_src() {
return _forwarded_src;
}
void request_packed_forward( ACM_Access *requester ) {
if( _packed_forward_requester == 0 ) {
if( _forwarded_src )
_forwarded_src->request_packed_forward( requester );
_packed_forward_requester = requester;
}
}
bool forwarded_is_packed() const {
return _packed_forward_requester != 0;
}
ACM_Access * packed_forward_requester() const {
return _packed_forward_requester;
}
bool forwarded_needs_packing() {
// check src for planned advice, which already packed it
TI_Builtin *check = _forwarded_src;
while( check ) {
if( check->is_planned() )
return false;
check = check->_forwarded_src;
}
return true;
}
unsigned int forwarded_index_count() const {
unsigned int result = 0;
if( _forwarded_src )
result = _forwarded_src->forwarded_index_count();
if( is_index_expr() )
result++;
return result;
}
std::string forwarded_index_type( unsigned int i ) const {
assert( forwarded_index_count() > i );
if( is_index_expr() ) {
if( i == 0 )
return arg_type_string( 1 );
else
i--;
}
assert( _forwarded_src );
return _forwarded_src->forwarded_index_type( i );
}
};
class TI_VariableAccess : public TI_Access {
private:
TI_Builtin *_entity_src;
public:
TI_VariableAccess() : _entity_src( 0 ) {}
// unprotect function by forwarding (we need no special sig)
void entity( clang::DeclaratorDecl *v ) { TI_Access::entity( v ); }
void variable( clang::DeclaratorDecl *v ) { entity( v ); }
clang::DeclaratorDecl *variable() const { return TI_Access::entity(); }
virtual clang::QualType entity_type() const {
clang::QualType type = TI_Access::entity()->getType();
unsigned int unwrap = entity_index_count();
while( unwrap > 0 && type->isArrayType() ) {
type = clang::dyn_cast<clang::ArrayType>( type.getTypePtr() )->getElementType();
unwrap--;
}
assert( unwrap == 0 ); // we should not meet any non array types above
return type;
}
virtual std::string entity_type_string() const {
return format_type( entity_type(), TI_Access::entity()->getASTContext() );
}
void entity_src( TI_Builtin *src ) { _entity_src = src; }
virtual TI_Builtin *entity_src() const { return _entity_src; }
virtual SpliceMode entity_src_splice_mode() const {
TI_Builtin *src = _entity_src;
while( src ) {
if( src->is_planned() )
return SpliceMode_Packed; // already done while weaving of src
if( ( src->is_binary_expr() && ( src->operator_kind_string() == "=" ) ) || src->is_compound_assignment() )
return SpliceMode_Pack; // this forwarding operators have side effects we cant splice, so we need to pack
src = src->forwarded_src();
}
return SpliceMode_FullSplice; // no reasons to not do it, at least none found here
}
bool entity_is_const() const {
clang::DeclaratorDecl *var = variable();
return var && var->getType().isConstQualified();
}
virtual unsigned int entity_index_count() const {
if( _entity_src )
return _entity_src->forwarded_index_count();
else
return 0;
}
virtual unsigned long int entity_index_dimension( unsigned int i ) const {
const clang::ConstantArrayType *type = llvm::dyn_cast<clang::ConstantArrayType>( variable()->getType().getCanonicalType().getTypePtr() );
while( i > 0 )
type = clang::dyn_cast<clang::ConstantArrayType>( type->getElementType().getTypePtr() ), i--;
return type->getSize().getZExtValue();
}
virtual std::string entity_index_type( unsigned int i ) const {
if( _entity_src )
return _entity_src->forwarded_index_type( i );
else
return "void";
}
// unprotect function by forwarding (we need no special sig)
void tree_node( clang::Expr* n ) { TI_Access::tree_node( n ); }
// target type (for the JoinPoint-API)
virtual const clang::RecordDecl *target_class () const {
const clang::RecordDecl *result = targetexpr_class();
// if variable is from a virtual base, we need to "downgrade" the target as member pointers cant represent that
if( llvm::isa<clang::FieldDecl>( variable() ) ) {
const clang::CXXRecordDecl *defining = llvm::dyn_cast_or_null<clang::CXXRecordDecl>( defining_class() );
const clang::CXXRecordDecl *target = llvm::dyn_cast_or_null<clang::CXXRecordDecl>( result );
if( defining && target && target->isVirtuallyDerivedFrom( defining ) )
result = defining_class();
}
return result;
}
virtual const clang::RecordDecl *targetexpr_class() const {
const clang::RecordDecl *result = 0;
if( target_is_implicit() ) {
clang::CXXMethodDecl *origin = llvm::dyn_cast<clang::CXXMethodDecl>( this->origin() );
assert( origin );
result = origin->getParent();
}
else if( has_target_expr() ) {
const clang::Type *type = target_expr()->getType ().getTypePtr();
result = type->getPointeeCXXRecordDecl();
if( !result )
result = type->getAsCXXRecordDecl();
}
else if( const clang::VarDecl *vd = llvm::dyn_cast<clang::VarDecl>( variable() ) ) {
if( vd->isStaticDataMember() ) {
const clang::DeclContext *dc = vd->getDeclContext();
assert( dc->isRecord() );
result = llvm::dyn_cast<clang::RecordDecl>( dc );
}
else
result = 0;
}
return result;
}
};
class TI_Get : public TI_VariableAccess {
public:
TI_Get() {}
static TI_Get *of( const ACM_Get &loc ) {
return static_cast<TI_Get *>(loc.transform_info());
}
virtual bool has_result() const {
return true;
}
virtual clang::QualType result_type() const {
return entity_type();
}
};
class TI_Set : public TI_VariableAccess {
public:
TI_Set() {}
static TI_Set *of( const ACM_Set &loc ) {
return static_cast<TI_Set *>(loc.transform_info());
}
virtual std::string arg_type_string (unsigned no) const {
assert( no == 0 );
return entity_type_string();
}
virtual bool has_result() const {
return false;
}
virtual clang::QualType result_type() const {
clang::ASTContext& ctx = origin()->getASTContext();
return ctx.VoidTy;
}
};
class TI_Ref : public TI_VariableAccess {
public:
TI_Ref() {}
static TI_Ref *of( const ACM_Ref &loc ) {
return static_cast<TI_Ref *>(loc.transform_info());
}
// emulate index on ArrayToPointerDecay
virtual unsigned int entity_index_count() const {
unsigned int result = TI_VariableAccess::entity_index_count();
if( is_implicit_arraydecay() )
result++;
return result;
}
virtual std::string entity_index_type( unsigned int i ) const {
if( is_implicit_arraydecay() && i == ( entity_index_count() - 1 ) )
return "unsigned int";
else
return TI_VariableAccess::entity_index_type( i );
}
virtual bool has_result() const {
return true;
}
virtual clang::QualType result_type() const {
clang::Expr *node = TI_Access::tree_node();
return TI_Type::get_reference_type_if_necessary(node->getType(), node, origin()->getASTContext());
}
bool result_is_ptr() const {
return result_type().getTypePtr()->isPointerType();
}
const bool is_explicit_operator() const {
if( clang::UnaryOperator *uo = clang::dyn_cast<clang::UnaryOperator>( TI_Access::tree_node() ) )
if( uo->getOpcode() == clang::UO_AddrOf )
return true;
return false;
}
bool is_implicit_arraydecay() const {
if( clang::ImplicitCastExpr *ice = clang::dyn_cast<clang::ImplicitCastExpr>( TI_Access::tree_node() ) )
if( ice->getCastKind() == clang::CK_ArrayToPointerDecay )
return true;
return false;
}
const WeavePos &op_before_pos( WeaverBase &wb ) const {
assert( clang::isa<clang::UnaryOperator>( TI_Access::tree_node() ) );
return wb.weave_pos( clang::dyn_cast<clang::UnaryOperator>( TI_Access::tree_node() )->getOperatorLoc(), WeavePos::WP_BEFORE );
}
const WeavePos &op_after_pos( WeaverBase &wb ) const {
assert( clang::isa<clang::UnaryOperator>( TI_Access::tree_node() ) );
return get_pos_after_token( clang::dyn_cast<clang::UnaryOperator>( TI_Access::tree_node() )->getOperatorLoc(), wb );
}
};
class TI_RefAccess : public TI_Access {
public:
TI_RefAccess() {}
bool entity_is_const() const {
return entity_type().isConstQualified();
}
// unprotect function by forwarding (we need no special sig)
void tree_node( clang::Expr* n ) { TI_Access::tree_node( n ); }
// target type (for the JoinPoint-API)
virtual const clang::RecordDecl *target_class () const {
return 0; // refs dont have a target type currently, it has to be recovered from runtime info
}
virtual const clang::RecordDecl *targetexpr_class () const {
return 0; // accesses by reference dont have a target expr
}
// common function to determine entity type
clang::QualType entity_type() const {
return TI_Access::ref_node()->getType().getNonReferenceType();
}
// entity type (for the JoinPoint-API)
virtual std::string entity_type_string() const {
return format_type( entity_type(), TI_Access::origin()->getASTContext() );
}
};
class TI_GetRef : public TI_RefAccess {
public:
TI_GetRef() {}
static const TI_GetRef *of( const ACM_GetRef &loc ) {
return static_cast<TI_GetRef *>(loc.transform_info());
}
virtual bool has_result() const {
return true;
}
virtual clang::QualType result_type() const {
return entity_type();
}
};
class TI_SetRef : public TI_RefAccess {
public:
TI_SetRef() {}
static const TI_SetRef *of( const ACM_SetRef &loc ) {
return static_cast<TI_SetRef *>(loc.transform_info());
}
virtual std::string arg_type_string (unsigned no) const {
assert( no == 0 );
return entity_type_string();
}
virtual bool has_result() const {
return false;
}
virtual clang::QualType result_type() const {
clang::ASTContext& ctx = origin()->getASTContext();
return ctx.VoidTy;
}
};
class TI_Construction : public TI_Code {
clang::FunctionDecl *_decl;
clang::CXXRecordDecl *_that_decl;
public:
TI_Construction () : _decl (0), _that_decl (0) {}
void decl (clang::FunctionDecl *f) { _decl = f; }
virtual clang::Decl *decl () const { return _that_decl; }
void that_decl (clang::CXXRecordDecl *r) { _that_decl = r; }
virtual clang::CXXRecordDecl *that_decl () const { return _that_decl; }
// that type (for the JoinPoint-API)
virtual std::string that_type_string() const {
return get_type_string(_that_decl);
}
// target type (for the JoinPoint-API)
virtual std::string target_type_string() const {
return get_type_string(_that_decl);
}
virtual std::string arg_type_string (unsigned no) const {
if (_decl) { // user-defined constructor
return get_type_string (_decl->getParamDecl (no), true);
}
else { // built-in constructor
assert (no == 0); // may have at most one argument
string result;
if (_that_decl->hasCopyConstructorWithConstParam ())
result += "const ";
result += get_type_string(_that_decl);
result += "&";
return result;
}
}
// entity type (for the JoinPoint-API)
virtual std::string entity_type_string() const {
return format_type( _decl );
}
};
class TI_Destruction : public TI_Code {
clang::FunctionDecl *_decl;
clang::CXXRecordDecl *_that_decl;
public:
TI_Destruction () : _decl (0), _that_decl (0) {}
void decl (clang::FunctionDecl *f) { _decl = f; }
virtual clang::Decl *decl () const { return _that_decl; }
void that_decl (clang::CXXRecordDecl *r) { _that_decl = r; }
virtual clang::CXXRecordDecl *that_decl () const { return _that_decl; }
// that type (for the JoinPoint-API)
virtual std::string that_type_string() const {
return get_type_string(_that_decl);
}
// target type (for the JoinPoint-API)
virtual std::string target_type_string() const {
return get_type_string(_that_decl);
}
// entity type (for the JoinPoint-API)
virtual std::string entity_type_string() const {
return format_type( _decl );
}
};
class TI_AdviceCode : public TransformInfo {
clang::FunctionDecl *_decl;
ThisJoinPoint _this_join_point;
public:
TI_AdviceCode () : _decl (0) {}
void decl(clang::FunctionDecl *f) { _decl = f; }
virtual clang::FunctionDecl *decl () const { return _decl; }
clang::DeclContext *Scope () const {
return _decl ? _decl->getParent() : 0;
}
string name () const {
return _decl ? _decl->getNameAsString() : "";
}
string qual_name () {
return _decl ? _decl->getQualifiedNameAsString() : "";
}
ThisJoinPoint &this_join_point () { return _this_join_point; }
const ThisJoinPoint &this_join_point () const { return _this_join_point; }
static TI_AdviceCode *of (const ACM_AdviceCode &loc) {
return static_cast<TI_AdviceCode*>(loc.transform_info ());
}
};
class TI_Introduction : public TransformInfo {
public:
virtual clang::Decl *decl () const { return 0; }
static TI_Introduction *of (const ACM_Introduction &loc) {
return static_cast<TI_Introduction*>(loc.transform_info ());
}
};
class TI_Order : public TransformInfo {
public:
virtual clang::Decl *decl () const { return 0; }
static TI_Order *of (const ACM_Order &loc) {
return static_cast<TI_Order*>(loc.transform_info ());
}
};
class TI_Pointcut : public TransformInfo {
clang::FunctionDecl *_decl;
int _phase;
PointCutExpr *_pce;
clang::FullSourceLoc _loc;
public:
TI_Pointcut () : _decl(0), _phase (0), _pce (0) {}
~TI_Pointcut () { PointCutExpr::destroy(_pce); }
void decl (clang::FunctionDecl *c) { _decl = c; }
virtual clang::Decl *decl () const { return _decl; }
void phase (int p) { _phase = p; }
int phase () const { return _phase; }
void set_pce (PointCutExpr *pce) { _pce = pce; }
PointCutExpr *get_pce () const { return _pce; }
void set_location (clang::FullSourceLoc loc) { _loc = loc; }
clang::FullSourceLoc get_location () const { return _loc; }
static TI_Pointcut *of (const ACM_Pointcut &loc) {
return static_cast<TI_Pointcut*>(loc.transform_info ());
}
};
class TI_ClassSlice : public TransformInfo {
public:
struct SliceBody {
enum InsertType {
TARGET_NAME,
TARGET_QUAL_NAME,
JP_NAME
};
std::string text;
std::vector<std::pair<size_t, InsertType> > positions;
};
private:
ACFileID _slice_unit;
// new phase 1 implementation:
SliceBody _tokens; // class slice body
std::string _base_intro;
bool _has_base_intro, _has_member_intro;
std::list<SliceBody> _non_inline_members; // members defined outside of body
std::vector<ACFileID> _non_inline_member_units; // corresponding source units
public:
TI_ClassSlice () : _slice_unit (0), _has_base_intro (false),
_has_member_intro (false) {}
// new phase 1 implementation:
void set_tokens (const SliceBody &body, const std::string &base_intro,
bool has_base_intro, bool has_member_intro) {
_tokens = body;
_base_intro = base_intro;
_has_base_intro = has_base_intro;
_has_member_intro = has_member_intro;
}
const SliceBody &get_tokens () const { return _tokens; }
std::list<SliceBody> &non_inline_members () { return _non_inline_members; }
std::vector<ACFileID> &non_inline_member_units () { return _non_inline_member_units; }
void analyze_tokens (bool &has_base_intro, bool &has_member_intro) {
has_base_intro = _has_base_intro;
has_member_intro = _has_member_intro;
}
const std::string &base_intro () const {
return _base_intro;
}
// end - new phase 1 implementation
virtual clang::Decl *decl () const { return 0; }
void slice_unit (ACFileID su) { _slice_unit = su; }
ACFileID slice_unit () const { return _slice_unit; }
static TI_ClassSlice *of (const ACM_ClassSlice &loc) {
return static_cast<TI_ClassSlice*>(loc.transform_info ());
}
};
#endif // __ClangTransformInfo_h__
|