1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
|
<chapter id="examples" xreflabel="Examples">
<title>Examples</title>
<sect1 id="examples-intro">
<title>Introduction</title>
<para>
This chapter consists entirely of examples of AspectJ use.
</para>
<para>The examples can be grouped into four categories:</para>
<simplelist columns="2" type="horiz">
<member><emphasis role="bold">technique</emphasis></member>
<member>Examples which illustrate how to use one or more features of the
language. </member>
<member><emphasis role="bold">development</emphasis></member>
<member>Examples of using AspectJ during the development phase of a
project. </member>
<member><emphasis role="bold">production</emphasis></member>
<member>Examples of using AspectJ to provide functionality in an
application. </member>
<member><emphasis role="bold">reusable</emphasis></member>
<member>Examples of reuse of aspects and pointcuts.</member>
</simplelist>
</sect1>
<!-- ============================== -->
<sect1 id="examples-howto">
<title>Obtaining, Compiling and Running the Examples</title>
<para>
The examples source code is part of the AspectJ distribution which may be
downloaded from the AspectJ project page ( <ulink
url="http://eclipse.org/aspectj" /> ).
</para>
<para>
Compiling most examples is straightforward. Go the
<filename><replaceable>InstallDir</replaceable>/examples</filename>
directory, and look for a <filename>.lst</filename> file in one of
the example subdirectories. Use the <literal>-arglist</literal>
option to <literal>ajc</literal> to compile the example. For
instance, to compile the telecom example with billing, type
</para>
<programlisting>
ajc -argfile telecom/billing.lst
</programlisting>
<para>
To run the examples, your classpath must include the AspectJ run-time
Java archive (<literal>aspectjrt.jar</literal>). You may either set the
<literal>CLASSPATH</literal> environment variable or use the
<literal>-classpath</literal> command line option to the Java
interpreter:
</para>
<programlisting>
(In Unix use a : in the CLASSPATH)
java -classpath ".:<replaceable>InstallDir</replaceable>/lib/aspectjrt.jar" telecom.billingSimulation
</programlisting>
<programlisting>
(In Windows use a ; in the CLASSPATH)
java -classpath ".;<replaceable>InstallDir</replaceable>/lib/aspectjrt.jar" telecom.billingSimulation
</programlisting>
</sect1>
<!-- ============================================================ -->
<sect1 id="examples-basic">
<title>Basic Techniques</title>
<para>
This section presents two basic techniques of using AspectJ, one each
from the two fundamental ways of capturing crosscutting concerns:
with dynamic join points and advice, and with static
introduction. Advice changes an application's behavior. Introduction
changes both an application's behavior and its structure.
</para>
<para>
The first example, <xref linkend="examples-joinPoints" />, is about
gathering and using information about the join point that has
triggered some advice. The second example, <xref
linkend="examples-roles" />, concerns a crosscutting view of an
existing class hierarchy. </para>
<!-- ======================================== -->
<sect2 id="examples-joinPoints">
<title>Join Points and <literal>thisJoinPoint</literal></title>
<para>
(The code for this example is in
<filename><replaceable>InstallDir</replaceable>/examples/tjp</filename>.)
</para>
<para>
A join point is some point in the execution of a program together
with a view into the execution context when that point occurs. Join
points are picked out by pointcuts. When a program reaches a join
point, advice on that join point may run in addition to (or instead
of) the join point itself.
</para>
<para>
When using a pointcut that picks out join points of a single kind
by name, typicaly the the advice will know exactly what kind of
join point it is associated with. The pointcut may even publish
context about the join point. Here, for example, since the only
join points picked out by the pointcut are calls of a certain
method, we can get the target value and one of the argument values
of the method calls directly.
</para>
<programlisting><![CDATA[
before(Point p, int x): target(p)
&& args(x)
&& call(void setX(int)) {
if (!p.assertX(x)) {
System.out.println("Illegal value for x"); return;
}
}
]]></programlisting>
<para>
But sometimes the shape of the join point is not so clear. For
instance, suppose a complex application is being debugged, and we
want to trace when any method of some class is executed. The
pointcut
</para>
<programlisting><![CDATA[
pointcut execsInProblemClass(): within(ProblemClass)
&& execution(* *(..));
]]></programlisting>
<para>
will pick out each execution join point of every method defined
within <classname>ProblemClass</classname>. Since advice executes
at each join point picked out by the pointcut, we can reasonably
ask which join point was reached.
</para>
<para>
Information about the join point that was matched is available to
advice through the special variable
<varname>thisJoinPoint</varname>, of type <ulink
url="../api/org/aspectj/lang/JoinPoint.html"><classname>org.aspectj.lang.JoinPoint</classname></ulink>.
Through this object we can access information such as</para>
<itemizedlist spacing="compact">
<listitem>
the kind of join point that was matched
</listitem>
<listitem>
the source location of the code associated with the join point
</listitem>
<listitem>
normal, short and long string representations of the
current join point
</listitem>
<listitem>
the actual argument values of the join point
</listitem>
<listitem>
the signature of the member associated with the join point
</listitem>
<listitem>the currently executing object</listitem>
<listitem>the target object</listitem>
<listitem>
an object encapsulating the static information about the join
point. This is also available through the special variable
<varname>thisJoinPointStaticPart</varname>.</listitem>
</itemizedlist>
<sect3>
<title>The <classname>Demo</classname> class</title>
<para>The class <classname>tjp.Demo</classname> in
<filename>tjp/Demo.java</filename> defines two methods
<literal>foo</literal> and <literal>bar</literal> with different
parameter lists and return types. Both are called, with suitable
arguments, by <classname>Demo</classname>'s
<function>go</function> method which was invoked from within its
<function>main</function> method.
</para>
<programlisting><![CDATA[
public class Demo {
static Demo d;
public static void main(String[] args){
new Demo().go();
}
void go(){
d = new Demo();
d.foo(1,d);
System.out.println(d.bar(new Integer(3)));
}
void foo(int i, Object o){
System.out.println("Demo.foo(" + i + ", " + o + ")\n");
}
String bar (Integer j){
System.out.println("Demo.bar(" + j + ")\n");
return "Demo.bar(" + j + ")";
}
}
]]></programlisting>
</sect3>
<sect3>
<title>The <literal>GetInfo</literal> aspect</title>
<para>
This aspect uses around advice to intercept the execution of
methods <literal>foo</literal> and <literal>bar</literal> in
<classname>Demo</classname>, and prints out information garnered
from <literal>thisJoinPoint</literal> to the console.
</para>
<programlisting><![CDATA[
aspect GetInfo {
static final void println(String s){ System.out.println(s); }
pointcut goCut(): cflow(this(Demo) && execution(void go()));
pointcut demoExecs(): within(Demo) && execution(* *(..));
Object around(): demoExecs() && !execution(* go()) && goCut() {
println("Intercepted message: " +
thisJoinPointStaticPart.getSignature().getName());
println("in class: " +
thisJoinPointStaticPart.getSignature().getDeclaringType().getName());
printParameters(thisJoinPoint);
println("Running original method: \n" );
Object result = proceed();
println(" result: " + result );
return result;
}
static private void printParameters(JoinPoint jp) {
println("Arguments: " );
Object[] args = jp.getArgs();
String[] names = ((CodeSignature)jp.getSignature()).getParameterNames();
Class[] types = ((CodeSignature)jp.getSignature()).getParameterTypes();
for (int i = 0; i < args.length; i++) {
println(" " + i + ". " + names[i] +
" : " + types[i].getName() +
" = " + args[i]);
}
}
}
]]></programlisting>
<sect4>
<title>Defining the scope of a pointcut</title>
<para>The pointcut <function>goCut</function> is defined as
<programlisting><![CDATA[
cflow(this(Demo)) && execution(void go())
]]></programlisting>
so that only executions made in the control flow of
<literal>Demo.go</literal> are intercepted. The control flow
from the method <literal>go</literal> includes the execution of
<literal>go</literal> itself, so the definition of the around
advice includes <literal>!execution(* go())</literal> to
exclude it from the set of executions advised. </para>
</sect4>
<sect4>
<title>Printing the class and method name</title>
<para>
The name of the method and that method's defining class are
available as parts of the <ulink
url="../api/org/aspectj/lang/Signature.html">org.aspectj.lang.Signature</ulink>
object returned by calling <literal>getSignature()</literal> on
either <literal>thisJoinPoint</literal> or
<literal>thisJoinPointStaticPart</literal>.
</para>
</sect4>
<sect4>
<title>Printing the parameters</title>
<para>
The static portions of the parameter details, the name and
types of the parameters, can be accessed through the <ulink
url="../api/org/aspectj/lang/reflect/CodeSignature.html"><literal>org.aspectj.lang.reflect.CodeSignature</literal></ulink>
associated with the join point. All execution join points have code
signatures, so the cast to <literal>CodeSignature</literal>
cannot fail. </para>
<para>
The dynamic portions of the parameter details, the actual
values of the parameters, are accessed directly from the
execution join point object.
</para>
</sect4>
</sect3>
</sect2>
<!-- ============================== -->
<sect2 id="examples-roles">
<title>Roles and Views</title>
<para>
(The code for this example is in
<filename><replaceable>InstallDir</replaceable>/examples/introduction</filename>.)
</para>
<para>
Like advice, inter-type declarations are members of an aspect. They
declare members that act as if they were defined on another class.
Unlike advice, inter-type declarations affect not only the behavior
of the application, but also the structural relationship between an
application's classes.
</para>
<para>
This is crucial: Publically affecting the class structure of an
application makes these modifications available to other components
of the application.
</para>
<para>
Aspects can declare inter-type
<itemizedlist spacing="compact">
<listitem>fields</listitem>
<listitem>methods</listitem>
<listitem>constructors</listitem>
</itemizedlist>
and can also declare that target types
<itemizedlist spacing="compact">
<listitem>implement new interfaces</listitem>
<listitem>extend new classes</listitem>
</itemizedlist>
</para>
<para>
This example provides three illustrations of the use of inter-type
declarations to encapsulate roles or views of a class. The class
our aspect will be dealing with, <classname>Point</classname>, is a
simple class with rectangular and polar coordinates. Our inter-type
declarations will make the class <classname>Point</classname>, in
turn, cloneable, hashable, and comparable. These facilities are
provided by AspectJ without having to modify the code for the class
<classname>Point</classname>.
</para>
<sect3>
<title>The <classname>Point</classname> class</title>
<para>The <classname>Point</classname> class defines geometric points
whose interface includes polar and rectangular coordinates, plus some
simple operations to relocate points. <classname>Point</classname>'s
implementation has attributes for both its polar and rectangular
coordinates, plus flags to indicate which currently reflect the
position of the point. Some operations cause the polar coordinates to
be updated from the rectangular, and some have the opposite effect.
This implementation, which is in intended to give the minimum number
of conversions between coordinate systems, has the property that not
all the attributes stored in a <classname>Point</classname> object
are necessary to give a canonical representation such as might be
used for storing, comparing, cloning or making hash codes from
points. Thus the aspects, though simple, are not totally trivial.
</para>
<para>
The diagram below gives an overview of the aspects and their
interaction with the class <classname>Point</classname>.</para>
<para>
<inlinemediaobject>
<imageobject>
<imagedata fileref="aspects.gif"/>
</imageobject>
</inlinemediaobject>
</para>
<para></para>
</sect3>
<sect3>
<title>The <classname>CloneablePoint</classname> aspect</title>
<para>
This first aspect is responsible for
<classname>Point</classname>'s implementation of the
<classname>Cloneable</classname> interface. It declares that
<literal>Point implements Cloneable</literal> with a
<literal>declare parents</literal> form, and also publically
declares a specialized <literal>Point</literal>'s
<literal>clone()</literal> method. In Java, all objects inherit
the method <literal>clone</literal> from the class
<classname>Object</classname>, but an object is not cloneable
unless its class also implements the interface
<classname>Cloneable</classname>. In addition, classes
frequently have requirements over and above the simple
bit-for-bit copying that <literal>Object.clone</literal> does. In
our case, we want to update a <classname>Point</classname>'s
coordinate systems before we actually clone the
<classname>Point</classname>. So our aspect makes sure that
<literal>Point</literal> overrides
<literal>Object.clone</literal> with a new method that does what
we want.
</para>
<para>
We also define a test <literal>main</literal> method in the
aspect for convenience.
</para>
<programlisting><![CDATA[
public aspect CloneablePoint {
declare parents: Point implements Cloneable;
public Object Point.clone() throws CloneNotSupportedException {
// we choose to bring all fields up to date before cloning.
makeRectangular();
makePolar();
return super.clone();
}
public static void main(String[] args){
Point p1 = new Point();
Point p2 = null;
p1.setPolar(Math.PI, 1.0);
try {
p2 = (Point)p1.clone();
} catch (CloneNotSupportedException e) {}
System.out.println("p1 =" + p1 );
System.out.println("p2 =" + p2 );
p1.rotate(Math.PI / -2);
System.out.println("p1 =" + p1 );
System.out.println("p2 =" + p2 );
}
}
]]></programlisting>
</sect3>
<sect3>
<title>The <classname>ComparablePoint</classname> aspect</title>
<para>
<classname>ComparablePoint</classname> is responsible for
<literal>Point</literal>'s implementation of the
<literal>Comparable</literal> interface. </para>
<para>
The interface <classname>Comparable</classname> defines the
single method <literal>compareTo</literal> which can be use to define
a natural ordering relation among the objects of a class that
implement it.
</para>
<para>
<classname>ComparablePoint</classname> uses <literal>declare
parents</literal> to declare that <literal>Point implements
Comparable</literal>, and also publically declares the
appropriate <literal>compareTo(Object)</literal> method: A
<classname>Point</classname> <literal>p1</literal> is said to be
less than another <classname>Point</classname><literal>
p2</literal> if <literal>p1</literal> is closer to the
origin.
</para>
<para>
We also define a test <literal>main</literal> method in the
aspect for convenience.
</para>
<programlisting><![CDATA[
public aspect ComparablePoint {
declare parents: Point implements Comparable;
public int Point.compareTo(Object o) {
return (int) (this.getRho() - ((Point)o).getRho());
}
public static void main(String[] args){
Point p1 = new Point();
Point p2 = new Point();
System.out.println("p1 =?= p2 :" + p1.compareTo(p2));
p1.setRectangular(2,5);
p2.setRectangular(2,5);
System.out.println("p1 =?= p2 :" + p1.compareTo(p2));
p2.setRectangular(3,6);
System.out.println("p1 =?= p2 :" + p1.compareTo(p2));
p1.setPolar(Math.PI, 4);
p2.setPolar(Math.PI, 4);
System.out.println("p1 =?= p2 :" + p1.compareTo(p2));
p1.rotate(Math.PI / 4.0);
System.out.println("p1 =?= p2 :" + p1.compareTo(p2));
p1.offset(1,1);
System.out.println("p1 =?= p2 :" + p1.compareTo(p2));
}
}
]]></programlisting>
</sect3>
<sect3>
<title>The <classname>HashablePoint</classname> aspect</title>
<para>
Our third aspect is responsible for <literal>Point</literal>'s
overriding of <literal>Object</literal>'s
<literal>equals</literal> and <literal>hashCode</literal> methods
in order to make <literal>Point</literal>s hashable.
</para>
<para>
The method <literal>Object.hashCode</literal> returns an
integer, suitable for use as a hash table key. It is not required
that two objects which are not equal (according to the
<literal>equals</literal> method) return different integer
results from <literal>hashCode</literal> but it can
improve performance when the integer is used as a key into a
data structure. However, any two objects which are equal
must return the same integer value from a call to
<literal>hashCode</literal>. Since the default implementation
of <literal>Object.equals</literal> returns <literal>true</literal>
only when two objects are identical, we need to redefine both
<function>equals</function> and <function>hashCode</function> to work
correctly with objects of type <classname>Point</classname>. For
example, we want two <classname>Point</classname> objects to test
equal when they have the same <literal>x</literal> and
<literal>y</literal> values, or the same <literal>rho</literal> and
<literal>theta</literal> values, not just when they refer to the same
object. We do this by overriding the methods
<literal>equals</literal> and <literal>hashCode</literal> in the
class <classname>Point</classname>.
</para>
<para>
So <classname>HashablePoint</classname> declares
<literal>Point</literal>'s <literal>hashCode</literal> and
<literal>equals</literal> methods, using
<classname>Point</classname>'s rectangular coordinates to
generate a hash code and to test for equality. The
<literal>x</literal> and <literal>y</literal> coordinates are
obtained using the appropriate get methods, which ensure the
rectangular coordinates are up-to-date before returning their
values.
</para>
<para>
And again, we supply a <literal>main</literal> method in the
aspect for testing.
</para>
<programlisting><![CDATA[
public aspect HashablePoint {
public int Point.hashCode() {
return (int) (getX() + getY() % Integer.MAX_VALUE);
}
public boolean Point.equals(Object o) {
if (o == this) { return true; }
if (!(o instanceof Point)) { return false; }
Point other = (Point)o;
return (getX() == other.getX()) && (getY() == other.getY());
}
public static void main(String[] args) {
Hashtable h = new Hashtable();
Point p1 = new Point();
p1.setRectangular(10, 10);
Point p2 = new Point();
p2.setRectangular(10, 10);
System.out.println("p1 = " + p1);
System.out.println("p2 = " + p2);
System.out.println("p1.hashCode() = " + p1.hashCode());
System.out.println("p2.hashCode() = " + p2.hashCode());
h.put(p1, "P1");
System.out.println("Got: " + h.get(p2));
}
}
]]></programlisting>
</sect3>
</sect2>
</sect1>
<!-- ============================================================ -->
<!-- ============================================================ -->
<sect1 id="examples-development">
<title>Development Aspects</title>
<sect2 id="tracing-using-aspects" xreflabel="tracing-using-aspects">
<title>Tracing using aspects</title>
<para>
(The code for this example is in
<filename><replaceable>InstallDir</replaceable>/examples/tracing</filename>.)
</para>
<para>
Writing a class that provides tracing functionality is easy: a
couple of functions, a boolean flag for turning tracing on and
off, a choice for an output stream, maybe some code for
formatting the output -- these are all elements that
<classname>Trace</classname> classes have been known to
have. <classname>Trace</classname> classes may be highly
sophisticated, too, if the task of tracing the execution of a
program demands it.
</para>
<para>
But developing the support for tracing is just one part of the
effort of inserting tracing into a program, and, most likely, not
the biggest part. The other part of the effort is calling the
tracing functions at appropriate times. In large systems, this
interaction with the tracing support can be overwhelming. Plus,
tracing is one of those things that slows the system down, so
these calls should often be pulled out of the system before the
product is shipped. For these reasons, it is not unusual for
developers to write ad-hoc scripting programs that rewrite the
source code by inserting/deleting trace calls before and after
the method bodies.
</para>
<para>
AspectJ can be used for some of these tracing concerns in a less
ad-hoc way. Tracing can be seen as a concern that crosscuts the
entire system and as such is amenable to encapsulation in an
aspect. In addition, it is fairly independent of what the system
is doing. Therefore tracing is one of those kind of system
aspects that can potentially be plugged in and unplugged without
any side-effects in the basic functionality of the system.
</para>
<sect3>
<title>An Example Application</title>
<para>
Throughout this example we will use a simple application that
contains only four classes. The application is about shapes. The
<classname>TwoDShape</classname> class is the root of the shape
hierarchy:
</para>
<programlisting><![CDATA[
public abstract class TwoDShape {
protected double x, y;
protected TwoDShape(double x, double y) {
this.x = x; this.y = y;
}
public double getX() { return x; }
public double getY() { return y; }
public double distance(TwoDShape s) {
double dx = Math.abs(s.getX() - x);
double dy = Math.abs(s.getY() - y);
return Math.sqrt(dx*dx + dy*dy);
}
public abstract double perimeter();
public abstract double area();
public String toString() {
return (" @ (" + String.valueOf(x) + ", " + String.valueOf(y) + ") ");
}
}
]]></programlisting>
<para>
<classname>TwoDShape</classname> has two subclasses,
<classname>Circle</classname> and <classname>Square</classname>:
</para>
<programlisting><![CDATA[
public class Circle extends TwoDShape {
protected double r;
public Circle(double x, double y, double r) {
super(x, y); this.r = r;
}
public Circle(double x, double y) { this( x, y, 1.0); }
public Circle(double r) { this(0.0, 0.0, r); }
public Circle() { this(0.0, 0.0, 1.0); }
public double perimeter() {
return 2 * Math.PI * r;
}
public double area() {
return Math.PI * r*r;
}
public String toString() {
return ("Circle radius = " + String.valueOf(r) + super.toString());
}
}
]]></programlisting>
<programlisting><![CDATA[
public class Square extends TwoDShape {
protected double s; // side
public Square(double x, double y, double s) {
super(x, y); this.s = s;
}
public Square(double x, double y) { this( x, y, 1.0); }
public Square(double s) { this(0.0, 0.0, s); }
public Square() { this(0.0, 0.0, 1.0); }
public double perimeter() {
return 4 * s;
}
public double area() {
return s*s;
}
public String toString() {
return ("Square side = " + String.valueOf(s) + super.toString());
}
}
]]></programlisting>
<para>
To run this application, compile the classes. You can do it with or
without ajc, the AspectJ compiler. If you've installed AspectJ, go
to the directory
<filename><replaceable>InstallDir</replaceable>/examples</filename>
and type:
</para>
<programlisting>
ajc -argfile tracing/notrace.lst
</programlisting>
<para>To run the program, type</para>
<programlisting>
java tracing.ExampleMain
</programlisting>
<para>(we don't need anything special on the classpath since this is pure
Java code). You should see the following output:</para>
<programlisting><![CDATA[
c1.perimeter() = 12.566370614359172
c1.area() = 12.566370614359172
s1.perimeter() = 4.0
s1.area() = 1.0
c2.distance(c1) = 4.242640687119285
s1.distance(c1) = 2.23606797749979
s1.toString(): Square side = 1.0 @ (1.0, 2.0)
]]></programlisting>
</sect3>
<sect3>
<title>Tracing—Version 1</title>
<para>
In a first attempt to insert tracing in this application, we will
start by writing a <classname>Trace</classname> class that is
exactly what we would write if we didn't have aspects. The
implementation is in <filename>version1/Trace.java</filename>. Its
public interface is:
</para>
<programlisting><![CDATA[
public class Trace {
public static int TRACELEVEL = 0;
public static void initStream(PrintStream s) {...}
public static void traceEntry(String str) {...}
public static void traceExit(String str) {...}
}
]]></programlisting>
<para>
If we didn't have AspectJ, we would have to insert calls to
<literal>traceEntry</literal> and <literal>traceExit</literal> in
all methods and constructors we wanted to trace, and to initialize
<literal>TRACELEVEL</literal> and the stream. If we wanted to trace
all the methods and constructors in our example, that would amount
to around 40 calls, and we would hope we had not forgotten any
method. But we can do that more consistently and reliably with the
following aspect (found in
<filename>version1/TraceMyClasses.java</filename>):
</para>
<programlisting><![CDATA[
aspect TraceMyClasses {
pointcut myClass(): within(TwoDShape) || within(Circle) || within(Square);
pointcut myConstructor(): myClass() && execution(new(..));
pointcut myMethod(): myClass() && execution(* *(..));
before (): myConstructor() {
Trace.traceEntry("" + thisJoinPointStaticPart.getSignature());
}
after(): myConstructor() {
Trace.traceExit("" + thisJoinPointStaticPart.getSignature());
}
before (): myMethod() {
Trace.traceEntry("" + thisJoinPointStaticPart.getSignature());
}
after(): myMethod() {
Trace.traceExit("" + thisJoinPointStaticPart.getSignature());
}
}]]></programlisting>
<para>
This aspect performs the tracing calls at appropriate
times. According to this aspect, tracing is performed at the
entrance and exit of every method and constructor defined within
the shape hierarchy.
</para>
<para>
What is printed at before and after each of the traced join points
is the signature of the method executing. Since the signature is
static information, we can get it through
<literal>thisJoinPointStaticPart</literal>.
</para>
<para>
To run this version of tracing, go to the directory
<filename><replaceable>InstallDir</replaceable>/examples</filename>
and type:
</para>
<programlisting><![CDATA[
ajc -argfile tracing/tracev1.lst
]]></programlisting>
<para>
Running the main method of
<classname>tracing.version1.TraceMyClasses</classname> should produce
the output:
</para>
<programlisting><![CDATA[
--> tracing.TwoDShape(double, double)
<-- tracing.TwoDShape(double, double)
--> tracing.Circle(double, double, double)
<-- tracing.Circle(double, double, double)
--> tracing.TwoDShape(double, double)
<-- tracing.TwoDShape(double, double)
--> tracing.Circle(double, double, double)
<-- tracing.Circle(double, double, double)
--> tracing.Circle(double)
<-- tracing.Circle(double)
--> tracing.TwoDShape(double, double)
<-- tracing.TwoDShape(double, double)
--> tracing.Square(double, double, double)
<-- tracing.Square(double, double, double)
--> tracing.Square(double, double)
<-- tracing.Square(double, double)
--> double tracing.Circle.perimeter()
<-- double tracing.Circle.perimeter()
c1.perimeter() = 12.566370614359172
--> double tracing.Circle.area()
<-- double tracing.Circle.area()
c1.area() = 12.566370614359172
--> double tracing.Square.perimeter()
<-- double tracing.Square.perimeter()
s1.perimeter() = 4.0
--> double tracing.Square.area()
<-- double tracing.Square.area()
s1.area() = 1.0
--> double tracing.TwoDShape.distance(TwoDShape)
--> double tracing.TwoDShape.getX()
<-- double tracing.TwoDShape.getX()
--> double tracing.TwoDShape.getY()
<-- double tracing.TwoDShape.getY()
<-- double tracing.TwoDShape.distance(TwoDShape)
c2.distance(c1) = 4.242640687119285
--> double tracing.TwoDShape.distance(TwoDShape)
--> double tracing.TwoDShape.getX()
<-- double tracing.TwoDShape.getX()
--> double tracing.TwoDShape.getY()
<-- double tracing.TwoDShape.getY()
<-- double tracing.TwoDShape.distance(TwoDShape)
s1.distance(c1) = 2.23606797749979
--> String tracing.Square.toString()
--> String tracing.TwoDShape.toString()
<-- String tracing.TwoDShape.toString()
<-- String tracing.Square.toString()
s1.toString(): Square side = 1.0 @ (1.0, 2.0)
]]></programlisting>
<para>
When <filename>TraceMyClasses.java</filename> is not provided to
<command>ajc</command>, the aspect does not have any affect on the
system and the tracing is unplugged.
</para>
</sect3>
<sect3>
<title>Tracing—Version 2</title>
<para>
Another way to accomplish the same thing would be to write a
reusable tracing aspect that can be used not only for these
application classes, but for any class. One way to do this is to
merge the tracing functionality of
<literal>Trace—version1</literal> with the crosscutting
support of <literal>TraceMyClasses—version1</literal>. We end
up with a <literal>Trace</literal> aspect (found in
<filename>version2/Trace.java</filename>) with the following public
interface
</para>
<programlisting><![CDATA[
abstract aspect Trace {
public static int TRACELEVEL = 2;
public static void initStream(PrintStream s) {...}
protected static void traceEntry(String str) {...}
protected static void traceExit(String str) {...}
abstract pointcut myClass();
}
]]></programlisting>
<para>
In order to use it, we need to define our own subclass that knows
about our application classes, in
<filename>version2/TraceMyClasses.java</filename>:
</para>
<programlisting><![CDATA[
public aspect TraceMyClasses extends Trace {
pointcut myClass(): within(TwoDShape) || within(Circle) || within(Square);
public static void main(String[] args) {
Trace.TRACELEVEL = 2;
Trace.initStream(System.err);
ExampleMain.main(args);
}
}
]]></programlisting>
<para>
Notice that we've simply made the pointcut
<literal>classes</literal>, that was an abstract pointcut in the
super-aspect, concrete. To run this version of tracing, go to the
directory <filename>examples</filename> and type:
</para>
<programlisting><![CDATA[
ajc -argfile tracing/tracev2.lst
]]></programlisting>
<para>
The file tracev2.lst lists the application classes as well as this
version of the files Trace.java and TraceMyClasses.java. Running
the main method of
<classname>tracing.version2.TraceMyClasses</classname> should
output exactly the same trace information as that from version 1.
</para>
<para>
The entire implementation of the new <classname>Trace</classname>
class is:
</para>
<programlisting><![CDATA[
abstract aspect Trace {
// implementation part
public static int TRACELEVEL = 2;
protected static PrintStream stream = System.err;
protected static int callDepth = 0;
public static void initStream(PrintStream s) {
stream = s;
}
protected static void traceEntry(String str) {
if (TRACELEVEL == 0) return;
if (TRACELEVEL == 2) callDepth++;
printEntering(str);
}
protected static void traceExit(String str) {
if (TRACELEVEL == 0) return;
printExiting(str);
if (TRACELEVEL == 2) callDepth--;
}
private static void printEntering(String str) {
printIndent();
stream.println("--> " + str);
}
private static void printExiting(String str) {
printIndent();
stream.println("<-- " + str);
}
private static void printIndent() {
for (int i = 0; i < callDepth; i++)
stream.print(" ");
}
// protocol part
abstract pointcut myClass();
pointcut myConstructor(): myClass() && execution(new(..));
pointcut myMethod(): myClass() && execution(* *(..));
before(): myConstructor() {
traceEntry("" + thisJoinPointStaticPart.getSignature());
}
after(): myConstructor() {
traceExit("" + thisJoinPointStaticPart.getSignature());
}
before(): myMethod() {
traceEntry("" + thisJoinPointStaticPart.getSignature());
}
after(): myMethod() {
traceExit("" + thisJoinPointStaticPart.getSignature());
}
}
]]></programlisting>
<para>
This version differs from version 1 in several subtle ways. The
first thing to notice is that this <classname>Trace</classname>
class merges the functional part of tracing with the crosscutting
of the tracing calls. That is, in version 1, there was a sharp
separation between the tracing support (the class
<classname>Trace</classname>) and the crosscutting usage of it (by
the class <classname>TraceMyClasses</classname>). In this version
those two things are merged. That's why the description of this
class explicitly says that "Trace messages are printed before and
after constructors and methods are," which is what we wanted in the
first place. That is, the placement of the calls, in this version,
is established by the aspect class itself, leaving less opportunity
for misplacing calls.</para>
<para>
A consequence of this is that there is no need for providing
<literal>traceEntry</literal> and <literal>traceExit</literal> as
public operations of this class. You can see that they were
classified as protected. They are supposed to be internal
implementation details of the advice.
</para>
<para>
The key piece of this aspect is the abstract pointcut classes that
serves as the base for the definition of the pointcuts constructors
and methods. Even though <classname>classes</classname> is
abstract, and therefore no concrete classes are mentioned, we can
put advice on it, as well as on the pointcuts that are based on
it. The idea is "we don't know exactly what the pointcut will be,
but when we do, here's what we want to do with it." In some ways,
abstract pointcuts are similar to abstract methods. Abstract
methods don't provide the implementation, but you know that the
concrete subclasses will, so you can invoke those methods.
</para>
</sect3>
</sect2>
</sect1>
<!-- ============================================================ -->
<!-- ============================================================ -->
<sect1 id="examples-production">
<title>Production Aspects</title>
<!-- ==================== -->
<sect2 id="a-bean-aspect" xreflabel="a-bean-aspect"><!-- A Bean Aspect -->
<title>A Bean Aspect</title>
<para>
(The code for this example is in
<filename><replaceable>InstallDir</replaceable>/examples/bean</filename>.)
</para>
<para>
This example examines an aspect that makes Point objects into
Java beans with bound properties.
</para>
<para>
Java beans are reusable software components that can be visually
manipulated in a builder tool. The requirements for an object to be
a bean are few. Beans must define a no-argument constructor and
must be either <classname>Serializable</classname> or
<classname>Externalizable</classname>. Any properties of the object
that are to be treated as bean properties should be indicated by
the presence of appropriate <literal>get</literal> and
<literal>set</literal> methods whose names are
<literal>get</literal><emphasis>property</emphasis> and
<literal>set </literal><emphasis>property</emphasis> where
<emphasis>property</emphasis> is the name of a field in the bean
class. Some bean properties, known as bound properties, fire events
whenever their values change so that any registered listeners (such
as, other beans) will be informed of those changes. Making a bound
property involves keeping a list of registered listeners, and
creating and dispatching event objects in methods that change the
property values, such as set<emphasis>property</emphasis>
methods.
</para>
<para>
<classname>Point</classname> is a simple class representing points
with rectangular coordinates. <classname>Point</classname> does not
know anything about being a bean: there are set methods for
<literal>x</literal> and <literal>y</literal> but they do not fire
events, and the class is not serializable. Bound is an aspect that
makes <classname>Point</classname> a serializable class and makes
its <literal>get</literal> and <literal>set</literal> methods
support the bound property protocol.
</para>
<sect3>
<title>The <classname>Point</classname> class</title>
<para>
The <classname>Point</classname> class is a very simple class with
trivial getters and setters, and a simple vector offset method.
</para>
<programlisting><![CDATA[
class Point {
protected int x = 0;
protected int y = 0;
public int getX() {
return x;
}
public int getY() {
return y;
}
public void setRectangular(int newX, int newY) {
setX(newX);
setY(newY);
}
public void setX(int newX) {
x = newX;
}
public void setY(int newY) {
y = newY;
}
public void offset(int deltaX, int deltaY) {
setRectangular(x + deltaX, y + deltaY);
}
public String toString() {
return "(" + getX() + ", " + getY() + ")" ;
}
}
]]></programlisting>
</sect3>
<sect3>
<title>The <classname>BoundPoint</classname> aspect</title>
<para>
The <classname>BoundPoint</classname> aspect is responsible for
<literal>Point</literal>'s "beanness". The first thing it does is
privately declare that each <literal>Point</literal> has a
<literal>support</literal> field that holds reference to an
instance of <classname>PropertyChangeSupport</classname>.
<programlisting><![CDATA[
private PropertyChangeSupport Point.support = new PropertyChangeSupport(this);
]]></programlisting>
The property change support object must be constructed with a
reference to the bean for which it is providing support, so it is
initialized by passing it <literal>this</literal>, an instance of
<classname>Point</classname>. Since the <literal>support</literal>
field is private declared in the aspect, only the code in the
aspect can refer to it.
</para>
<para>
The aspect also declares <literal>Point</literal>'s methods for
registering and managing listeners for property change events,
which delegate the work to the property change support object:
<programlisting><![CDATA[
public void Point.addPropertyChangeListener(PropertyChangeListener listener){
support.addPropertyChangeListener(listener);
}
public void Point.addPropertyChangeListener(String propertyName,
PropertyChangeListener listener){
support.addPropertyChangeListener(propertyName, listener);
}
public void Point.removePropertyChangeListener(String propertyName,
PropertyChangeListener listener) {
support.removePropertyChangeListener(propertyName, listener);
}
public void Point.removePropertyChangeListener(PropertyChangeListener listener) {
support.removePropertyChangeListener(listener);
}
public void Point.hasListeners(String propertyName) {
support.hasListeners(propertyName);
}
]]></programlisting>
</para>
<para>
The aspect is also responsible for making sure
<classname>Point</classname> implements the
<classname>Serializable</classname> interface:
<programlisting><![CDATA[
declare parents: Point implements Serializable;
]]></programlisting>
Implementing this interface in Java does not require any methods to
be implemented. Serialization for <classname>Point</classname>
objects is provided by the default serialization method.
</para>
<para>
The <function>setters</function> pointcut picks out calls to the
<literal>Point</literal>'s <literal>set</literal> methods: any
method whose name begins with "<literal>set</literal>" and takes
one parameter. The around advice on <literal>setters()</literal>
stores the values of the <literal>X</literal> and
<literal>Y</literal> properties, calls the original
<literal>set</literal> method and then fires the appropriate
property change event according to which set method was
called.
</para>
<programlisting><![CDATA[
aspect BoundPoint {
private PropertyChangeSupport Point.support = new PropertyChangeSupport(this);
public void Point.addPropertyChangeListener(PropertyChangeListener listener){
support.addPropertyChangeListener(listener);
}
public void Point.addPropertyChangeListener(String propertyName,
PropertyChangeListener listener){
support.addPropertyChangeListener(propertyName, listener);
}
public void Point.removePropertyChangeListener(String propertyName,
PropertyChangeListener listener) {
support.removePropertyChangeListener(propertyName, listener);
}
public void Point.removePropertyChangeListener(PropertyChangeListener listener) {
support.removePropertyChangeListener(listener);
}
public void Point.hasListeners(String propertyName) {
support.hasListeners(propertyName);
}
declare parents: Point implements Serializable;
pointcut setter(Point p): call(void Point.set*(*)) && target(p);
void around(Point p): setter(p) {
String propertyName =
thisJoinPointStaticPart.getSignature().getName().substring("set".length());
int oldX = p.getX();
int oldY = p.getY();
proceed(p);
if (propertyName.equals("X")){
firePropertyChange(p, propertyName, oldX, p.getX());
} else {
firePropertyChange(p, propertyName, oldY, p.getY());
}
}
void firePropertyChange(Point p,
String property,
double oldval,
double newval) {
p.support.firePropertyChange(property,
new Double(oldval),
new Double(newval));
}
}
]]></programlisting>
</sect3>
<sect3>
<title>The Test Program</title>
<para>
The test program registers itself as a property change listener to
a <literal>Point</literal> object that it creates and then performs
simple manipulation of that point: calling its set methods and the
offset method. Then it serializes the point and writes it to a file
and then reads it back. The result of saving and restoring the
point is that a new point is created.
</para>
<programlisting><![CDATA[
class Demo implements PropertyChangeListener {
static final String fileName = "test.tmp";
public void propertyChange(PropertyChangeEvent e){
System.out.println("Property " + e.getPropertyName() + " changed from " +
e.getOldValue() + " to " + e.getNewValue() );
}
public static void main(String[] args){
Point p1 = new Point();
p1.addPropertyChangeListener(new Demo());
System.out.println("p1 =" + p1);
p1.setRectangular(5,2);
System.out.println("p1 =" + p1);
p1.setX( 6 );
p1.setY( 3 );
System.out.println("p1 =" + p1);
p1.offset(6,4);
System.out.println("p1 =" + p1);
save(p1, fileName);
Point p2 = (Point) restore(fileName);
System.out.println("Had: " + p1);
System.out.println("Got: " + p2);
}
...
}
]]></programlisting>
</sect3>
<sect3>
<title>Compiling and Running the Example</title>
<para>
To compile and run this example, go to the examples directory and type:
</para>
<programlisting><![CDATA[
ajc -argfile bean/files.lst
java bean.Demo
]]></programlisting>
</sect3>
</sect2>
<!-- ==================== -->
<sect2 id="the-subject-observer-protocol" xreflabel="the-subject-observer-protocol">
<title>The Subject/Observer Protocol</title>
<para>
(The code for this example is in
<filename><replaceable>InstallDir</replaceable>/examples/observer</filename>.)
</para>
<para>
This demo illustrates how the Subject/Observer design pattern can be
coded with aspects.
</para>
<para>
The demo consists of the following: A colored label is a
renderable object that has a color that cycles through a set of
colors, and a number that records the number of cycles it has been
through. A button is an action item that records when it is
clicked.
</para>
<para>
With these two kinds of objects, we can build up a Subject/Observer
relationship in which colored labels observe the clicks of buttons;
that is, where colored labels are the observers and buttons are the
subjects.
</para>
<para>
The demo is designed and implemented using the Subject/Observer
design pattern. The remainder of this example explains the classes
and aspects of this demo, and tells you how to run it.
</para>
<sect3>
<title>Generic Components</title>
<para>
The generic parts of the protocol are the interfaces
<classname>Subject</classname> and <classname>Observer</classname>,
and the abstract aspect
<classname>SubjectObserverProtocol</classname>. The
<classname>Subject</classname> interface is simple, containing
methods to add, remove, and view <classname>Observer</classname>
objects, and a method for getting data about state changes:
</para>
<programlisting><![CDATA[
interface Subject {
void addObserver(Observer obs);
void removeObserver(Observer obs);
Vector getObservers();
Object getData();
}
]]></programlisting>
<para>
The <classname>Observer</classname> interface is just as simple,
with methods to set and get <classname>Subject</classname> objects,
and a method to call when the subject gets updated.
</para>
<programlisting><![CDATA[
interface Observer {
void setSubject(Subject s);
Subject getSubject();
void update();
}
]]></programlisting>
<para>
The <classname>SubjectObserverProtocol</classname> aspect contains
within it all of the generic parts of the protocol, namely, how to
fire the <classname>Observer</classname> objects' update methods
when some state changes in a subject.
</para>
<programlisting><![CDATA[
abstract aspect SubjectObserverProtocol {
abstract pointcut stateChanges(Subject s);
after(Subject s): stateChanges(s) {
for (int i = 0; i < s.getObservers().size(); i++) {
((Observer)s.getObservers().elementAt(i)).update();
}
}
private Vector Subject.observers = new Vector();
public void Subject.addObserver(Observer obs) {
observers.addElement(obs);
obs.setSubject(this);
}
public void Subject.removeObserver(Observer obs) {
observers.removeElement(obs);
obs.setSubject(null);
}
public Vector Subject.getObservers() { return observers; }
private Subject Observer.subject = null;
public void Observer.setSubject(Subject s) { subject = s; }
public Subject Observer.getSubject() { return subject; }
}
]]></programlisting>
<para>
Note that this aspect does three things. It define an abstract
pointcut that extending aspects can override. It defines advice
that should run after the join points of the pointcut. And it
declares an inter-tpye field and two inter-type methods so that
each <literal>Observer</literal> can hold onto its <literal>Subject</literal>.
</para>
</sect3>
<sect3>
<title>Application Classes</title>
<para>
<classname>Button</classname> objects extend
<classname>java.awt.Button</classname>, and all they do is make
sure the <literal>void click()</literal> method is called whenever
a button is clicked.
</para>
<programlisting><![CDATA[
class Button extends java.awt.Button {
static final Color defaultBackgroundColor = Color.gray;
static final Color defaultForegroundColor = Color.black;
static final String defaultText = "cycle color";
Button(Display display) {
super();
setLabel(defaultText);
setBackground(defaultBackgroundColor);
setForeground(defaultForegroundColor);
addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
Button.this.click();
}
});
display.addToFrame(this);
}
public void click() {}
}
]]></programlisting>
<para>
Note that this class knows nothing about being a Subject.
</para>
<para>
ColorLabel objects are labels that support the void colorCycle()
method. Again, they know nothing about being an observer.
</para>
<programlisting><![CDATA[
class ColorLabel extends Label {
ColorLabel(Display display) {
super();
display.addToFrame(this);
}
final static Color[] colors = {Color.red, Color.blue,
Color.green, Color.magenta};
private int colorIndex = 0;
private int cycleCount = 0;
void colorCycle() {
cycleCount++;
colorIndex = (colorIndex + 1) % colors.length;
setBackground(colors[colorIndex]);
setText("" + cycleCount);
}
}
]]></programlisting>
<para>
Finally, the <classname>SubjectObserverProtocolImpl</classname>
implements the subject/observer protocol, with
<classname>Button</classname> objects as subjects and
<classname>ColorLabel</classname> objects as observers:
</para>
<programlisting><![CDATA[
package observer;
import java.util.Vector;
aspect SubjectObserverProtocolImpl extends SubjectObserverProtocol {
declare parents: Button implements Subject;
public Object Button.getData() { return this; }
declare parents: ColorLabel implements Observer;
public void ColorLabel.update() {
colorCycle();
}
pointcut stateChanges(Subject s):
target(s) &&
call(void Button.click());
}]]></programlisting>
<para>
It does this by assuring that <classname>Button</classname> and
<classname>ColorLabel</classname> implement the appropriate
interfaces, declaring that they implement the methods required by
those interfaces, and providing a definition for the abstract
<literal>stateChanges</literal> pointcut. Now, every time a
<classname>Button</classname> is clicked, all
<classname>ColorLabel</classname> objects observing that button
will <literal>colorCycle</literal>.
</para>
</sect3>
<sect3>
<title>Compiling and Running</title>
<para>
<classname>Demo</classname> is the top class that starts this
demo. It instantiates a two buttons and three observers and links
them together as subjects and observers. So to run the demo, go to
the <filename>examples</filename> directory and type:
</para>
<programlisting><![CDATA[
ajc -argfile observer/files.lst
java observer.Demo
]]></programlisting>
</sect3>
</sect2>
<!-- ==================== -->
<sect2 id="a-simple-telecom-simulation" xreflabel="a-simple-telecom-simulation">
<title>A Simple Telecom Simulation</title>
<para>
(The code for this example is in
<filename><replaceable>InstallDir</replaceable>/examples/telecom</filename>.)
</para>
<para>
This example illustrates some ways that dependent concerns can be
encoded with aspects. It uses an example system comprising a simple
model of telephone connections to which timing and billing features
are added using aspects, where the billing feature depends upon the
timing feature.
</para>
<sect3>
<title>The Application</title>
<para>
The example application is a simple simulation of a telephony
system in which customers make, accept, merge and hang-up both
local and long distance calls. The application architecture is in
three layers.
</para>
<itemizedlist>
<listitem>
<para>
The basic objects provide basic functionality to simulate
customers, calls and connections (regular calls have one
connection, conference calls have more than one).
</para>
</listitem>
<listitem>
<para>
The timing feature is concerned with timing the connections
and keeping the total connection time per customer. Aspects
are used to add a timer to each connection and to manage the
total time per customer.
</para>
</listitem>
<listitem>
<para>
The billing feature is concerned with charging customers for
the calls they make. Aspects are used to calculate a charge
per connection and, upon termination of a connection, to add
the charge to the appropriate customer's bill. The billing
aspect builds upon the timing aspect: it uses a pointcut
defined in Timing and it uses the timers that are associated
with connections.
</para>
</listitem>
</itemizedlist>
<para>
The simulation of system has three configurations: basic, timing
and billing. Programs for the three configurations are in classes
<classname>BasicSimulation</classname>,
<classname>TimingSimulation</classname> and
<classname>BillingSimulation</classname>. These share a common
superclass <classname>AbstractSimulation</classname>, which
defines the method run with the simulation itself and the method
wait used to simulate elapsed time.
</para>
</sect3>
<sect3>
<title>The Basic Objects</title>
<para>
The telecom simulation comprises the classes
<classname>Customer</classname>, <classname>Call</classname> and
the abstract class <classname>Connection</classname> with its two
concrete subclasses <classname>Local</classname> and
<classname>LongDistance</classname>. Customers have a name and a
numeric area code. They also have methods for managing
calls. Simple calls are made between one customer (the caller)
and another (the receiver), a <classname>Connection</classname>
object is used to connect them. Conference calls between more
than two customers will involve more than one connection. A
customer may be involved in many calls at one time.
<inlinemediaobject>
<imageobject>
<imagedata fileref="telecom.gif"/>
</imageobject>
</inlinemediaobject>
</para>
</sect3>
<sect3>
<title>The <classname>Customer</classname> class</title>
<para>
<classname>Customer</classname> has methods
<literal>call</literal>, <literal>pickup</literal>,
<literal>hangup</literal> and <literal>merge</literal> for
managing calls.
</para>
<programlisting><![CDATA[
public class Customer {
private String name;
private int areacode;
private Vector calls = new Vector();
protected void removeCall(Call c){
calls.removeElement(c);
}
protected void addCall(Call c){
calls.addElement(c);
}
public Customer(String name, int areacode) {
this.name = name;
this.areacode = areacode;
}
public String toString() {
return name + "(" + areacode + ")";
}
public int getAreacode(){
return areacode;
}
public boolean localTo(Customer other){
return areacode == other.areacode;
}
public Call call(Customer receiver) {
Call call = new Call(this, receiver);
addCall(call);
return call;
}
public void pickup(Call call) {
call.pickup();
addCall(call);
}
public void hangup(Call call) {
call.hangup(this);
removeCall(call);
}
public void merge(Call call1, Call call2){
call1.merge(call2);
removeCall(call2);
}
}
]]></programlisting>
</sect3>
<sect3>
<title>The <classname>Call</classname> class</title>
<para>
Calls are created with a caller and receiver who are customers. If
the caller and receiver have the same area code then the call can
be established with a <classname>Local</classname> connection (see
below), otherwise a <classname>LongDistance</classname> connection
is required. A call comprises a number of connections between
customers. Initially there is only the connection between the
caller and receiver but additional connections can be added if
calls are merged to form conference calls.
</para>
</sect3>
<sect3>
<title>The <classname>Connection</classname> class</title>
<para>
The class <classname>Connection</classname> models the physical
details of establishing a connection between customers. It does
this with a simple state machine (connections are initially
<literal>PENDING</literal>, then <literal>COMPLETED</literal> and
finally <literal>DROPPED</literal>). Messages are printed to the
console so that the state of connections can be
observed. Connection is an abstract class with two concrete
subclasses: <classname>Local</classname> and
<classname>LongDistance</classname>.
</para>
<programlisting><![CDATA[
abstract class Connection {
public static final int PENDING = 0;
public static final int COMPLETE = 1;
public static final int DROPPED = 2;
Customer caller, receiver;
private int state = PENDING;
Connection(Customer a, Customer b) {
this.caller = a;
this.receiver = b;
}
public int getState(){
return state;
}
public Customer getCaller() { return caller; }
public Customer getReceiver() { return receiver; }
void complete() {
state = COMPLETE;
System.out.println("connection completed");
}
void drop() {
state = DROPPED;
System.out.println("connection dropped");
}
public boolean connects(Customer c){
return (caller == c || receiver == c);
}
}
]]></programlisting>
</sect3>
<sect3>
<title>The <literal>Local</literal> and <literal>LongDistance</literal> classes</title>
<para>
The two kinds of connections supported by our simulation are
<literal>Local</literal> and <literal>LongDistance</literal>
connections.
</para>
<programlisting><![CDATA[
class Local extends Connection {
Local(Customer a, Customer b) {
super(a, b);
System.out.println("[new local connection from " +
a + " to " + b + "]");
}
}
]]></programlisting>
<programlisting><![CDATA[
class LongDistance extends Connection {
LongDistance(Customer a, Customer b) {
super(a, b);
System.out.println("[new long distance connection from " +
a + " to " + b + "]");
}
}
]]></programlisting>
</sect3>
<sect3>
<title>Compiling and Running the Basic Simulation</title>
<para>
The source files for the basic system are listed in the file
<filename>basic.lst</filename>. To build and run the basic system,
in a shell window, type these commands:
</para>
<programlisting><![CDATA[
ajc -argfile telecom/basic.lst
java telecom.BasicSimulation
]]></programlisting>
</sect3>
<sect3>
<title>The Timing aspect</title>
<para>
The <classname>Timing</classname> aspect keeps track of total
connection time for each <classname>Customer</classname> by
starting and stopping a timer associated with each connection. It
uses some helper classes:
</para>
<sect4>
<title>The <classname>Timer</classname> class</title>
<para>
A <classname>Timer</classname> object simply records the current
time when it is started and stopped, and returns their difference
when asked for the elapsed time. The aspect
<classname>TimerLog</classname> (below) can be used to cause the
start and stop times to be printed to standard output.
</para>
<programlisting><![CDATA[
class Timer {
long startTime, stopTime;
public void start() {
startTime = System.currentTimeMillis();
stopTime = startTime;
}
public void stop() {
stopTime = System.currentTimeMillis();
}
public long getTime() {
return stopTime - startTime;
}
}
]]></programlisting>
</sect4>
</sect3>
<sect3>
<title>The <classname>TimerLog</classname> aspect</title>
<para>
The <classname>TimerLog</classname> aspect can be included in a
build to get the timer to announce when it is started and
stopped.
</para>
<programlisting><![CDATA[
public aspect TimerLog {
after(Timer t): target(t) && call(* Timer.start()) {
System.err.println("Timer started: " + t.startTime);
}
after(Timer t): target(t) && call(* Timer.stop()) {
System.err.println("Timer stopped: " + t.stopTime);
}
}
]]></programlisting>
</sect3>
<sect3>
<title>The <classname>Timing</classname> aspect</title>
<para>
The <classname>Timing</classname> aspect is declares an
inter-type field <literal>totalConnectTime</literal> for
<classname>Customer</classname> to store the accumulated connection
time per <classname>Customer</classname>. It also declares that
each <classname>Connection</classname> object has a timer.
<programlisting><![CDATA[
public long Customer.totalConnectTime = 0;
private Timer Connection.timer = new Timer();
]]></programlisting>
Two pieces of after advice ensure that the timer is started when
a connection is completed and and stopped when it is dropped. The
pointcut <literal>endTiming</literal> is defined so that it can
be used by the <classname>Billing</classname> aspect.
</para>
<programlisting><![CDATA[
public aspect Timing {
public long Customer.totalConnectTime = 0;
public long getTotalConnectTime(Customer cust) {
return cust.totalConnectTime;
}
private Timer Connection.timer = new Timer();
public Timer getTimer(Connection conn) { return conn.timer; }
after (Connection c): target(c) && call(void Connection.complete()) {
getTimer(c).start();
}
pointcut endTiming(Connection c): target(c) &&
call(void Connection.drop());
after(Connection c): endTiming(c) {
getTimer(c).stop();
c.getCaller().totalConnectTime += getTimer(c).getTime();
c.getReceiver().totalConnectTime += getTimer(c).getTime();
}
}]]></programlisting>
</sect3>
<sect3>
<title>The <literal>Billing</literal> aspect</title>
<para>
The Billing system adds billing functionality to the telecom
application on top of timing.
</para>
<para>
The <classname>Billing</classname> aspect declares that each
<classname>Connection</classname> has a <literal>payer</literal>
inter-type field to indicate who initiated the call and therefore
who is responsible to pay for it. It also declares the inter-type
method <literal>callRate</literal> of
<classname>Connection</classname> so that local and long distance
calls can be charged differently. The call charge must be
calculated after the timer is stopped; the after advice on pointcut
<literal>Timing.endTiming</literal> does this, and
<classname>Billing</classname> is declared to be more precedent
than <classname>Timing</classname> to make sure that this advice
runs after <classname>Timing</classname>'s advice on the same join
point. Finally, it declares inter-type methods and fields for
<classname>Customer</classname> to handle the
<literal>totalCharge</literal>.
</para>
<programlisting><![CDATA[
public aspect Billing {
// precedence required to get advice on endtiming in the right order
declare precedence: Billing, Timing;
public static final long LOCAL_RATE = 3;
public static final long LONG_DISTANCE_RATE = 10;
public Customer Connection.payer;
public Customer getPayer(Connection conn) { return conn.payer; }
after(Customer cust) returning (Connection conn):
args(cust, ..) && call(Connection+.new(..)) {
conn.payer = cust;
}
public abstract long Connection.callRate();
public long LongDistance.callRate() { return LONG_DISTANCE_RATE; }
public long Local.callRate() { return LOCAL_RATE; }
after(Connection conn): Timing.endTiming(conn) {
long time = Timing.aspectOf().getTimer(conn).getTime();
long rate = conn.callRate();
long cost = rate * time;
getPayer(conn).addCharge(cost);
}
public long Customer.totalCharge = 0;
public long getTotalCharge(Customer cust) { return cust.totalCharge; }
public void Customer.addCharge(long charge){
totalCharge += charge;
}
}
]]></programlisting>
</sect3>
<sect3>
<title>Accessing the inter-type state</title>
<para>
Both the aspects <classname>Timing</classname> and
<classname>Billing</classname> contain the definition of operations
that the rest of the system may want to access. For example, when
running the simulation with one or both aspects, we want to find
out how much time each customer spent on the telephone and how big
their bill is. That information is also stored in the classes, but
they are accessed through static methods of the aspects, since the
state they refer to is private to the aspect.
</para>
<para>
Take a look at the file
<filename>TimingSimulation.java</filename>. The most important
method of this class is the method
<filename>report(Customer)</filename>, which is used in the method
run of the superclass
<classname>AbstractSimulation</classname>. This method is intended
to print out the status of the customer, with respect to the
<classname>Timing</classname> feature.
</para>
<programlisting><![CDATA[
protected void report(Customer c){
Timing t = Timing.aspectOf();
System.out.println(c + " spent " + t.getTotalConnectTime(c));
}
]]></programlisting>
</sect3>
<sect3>
<title>Compiling and Running</title>
<para>
The files timing.lst and billing.lst contain file lists for the
timing and billing configurations. To build and run the application
with only the timing feature, go to the directory examples and
type:
</para>
<programlisting><![CDATA[
ajc -argfile telecom/timing.lst
java telecom.TimingSimulation
]]></programlisting>
<para>
To build and run the application with the timing and billing
features, go to the directory examples and type:
</para>
<programlisting><![CDATA[
ajc -argfile telecom/billing.lst
java telecom.BillingSimulation
]]></programlisting>
</sect3>
<sect3>
<title>Discussion</title>
<para>
There are some explicit dependencies between the aspects Billing
and Timing:
<itemizedlist>
<listitem>
<para>
Billing is declared more precedent than Timing so that Billing's
after advice runs after that of Timing when they are on the
same join point.
</para>
</listitem>
<listitem>
<para>
Billing uses the pointcut Timing.endTiming.
</para>
</listitem>
<listitem>
<para>
Billing needs access to the timer associated with a connection.
</para>
</listitem>
</itemizedlist>
</para>
</sect3>
</sect2>
</sect1>
<!-- ============================================================ -->
<!-- ============================================================ -->
<sect1 id="examples-reusable">
<title>Reusable Aspects</title>
<sect2 id="tracing-using-aspects-revisited" xreflabel="tracing-using-aspects-revisited">
<title>Tracing using Aspects, Revisited</title>
<para>
(The code for this example is in
<filename><replaceable>InstallDir</replaceable>/examples/tracing</filename>.)
</para>
<sect3>
<title>Tracing—Version 3</title>
<para>
One advantage of not exposing the methods traceEntry and
traceExit as public operations is that we can easily change their
interface without any dramatic consequences in the rest of the
code.
</para>
<para>
Consider, again, the program without AspectJ. Suppose, for
example, that at some point later the requirements for tracing
change, stating that the trace messages should always include the
string representation of the object whose methods are being
traced. This can be achieved in at least two ways. One way is
keep the interface of the methods <literal>traceEntry</literal>
and <literal>traceExit</literal> as it was before,
</para>
<programlisting><![CDATA[
public static void traceEntry(String str);
public static void traceExit(String str);
]]></programlisting>
<para>
In this case, the caller is responsible for ensuring that the
string representation of the object is part of the string given
as argument. So, calls must look like:
</para>
<programlisting><![CDATA[
Trace.traceEntry("Square.distance in " + toString());
]]></programlisting>
<para>
Another way is to enforce the requirement with a second argument
in the trace operations, e.g.
</para>
<programlisting><![CDATA[
public static void traceEntry(String str, Object obj);
public static void traceExit(String str, Object obj);
]]></programlisting>
<para>
In this case, the caller is still responsible for sending the
right object, but at least there is some guarantees that some
object will be passed. The calls will look like:
</para>
<programlisting><![CDATA[
Trace.traceEntry("Square.distance", this);
]]></programlisting>
<para>
In either case, this change to the requirements of tracing will
have dramatic consequences in the rest of the code -- every call
to the trace operations traceEntry and traceExit must be changed!
</para>
<para>
Here's another advantage of doing tracing with an aspect. We've
already seen that in version 2 <literal>traceEntry</literal> and
<literal>traceExit</literal> are not publicly exposed. So
changing their interfaces, or the way they are used, has only a
small effect inside the <classname>Trace</classname>
class. Here's a partial view at the implementation of
<classname>Trace</classname>, version 3. The differences with
respect to version 2 are stressed in the comments:
</para>
<programlisting><![CDATA[
abstract aspect Trace {
public static int TRACELEVEL = 0;
protected static PrintStream stream = null;
protected static int callDepth = 0;
public static void initStream(PrintStream s) {
stream = s;
}
protected static void traceEntry(String str, Object o) {
if (TRACELEVEL == 0) return;
if (TRACELEVEL == 2) callDepth++;
printEntering(str + ": " + o.toString());
}
protected static void traceExit(String str, Object o) {
if (TRACELEVEL == 0) return;
printExiting(str + ": " + o.toString());
if (TRACELEVEL == 2) callDepth--;
}
private static void printEntering(String str) {
printIndent();
stream.println("Entering " + str);
}
private static void printExiting(String str) {
printIndent();
stream.println("Exiting " + str);
}
private static void printIndent() {
for (int i = 0; i < callDepth; i++)
stream.print(" ");
}
abstract pointcut myClass(Object obj);
pointcut myConstructor(Object obj): myClass(obj) && execution(new(..));
pointcut myMethod(Object obj): myClass(obj) &&
execution(* *(..)) && !execution(String toString());
before(Object obj): myConstructor(obj) {
traceEntry("" + thisJoinPointStaticPart.getSignature(), obj);
}
after(Object obj): myConstructor(obj) {
traceExit("" + thisJoinPointStaticPart.getSignature(), obj);
}
before(Object obj): myMethod(obj) {
traceEntry("" + thisJoinPointStaticPart.getSignature(), obj);
}
after(Object obj): myMethod(obj) {
traceExit("" + thisJoinPointStaticPart.getSignature(), obj);
}
}
]]></programlisting>
<para>
As you can see, we decided to apply the first design by preserving
the interface of the methods <literal>traceEntry</literal> and
<literal>traceExit</literal>. But it doesn't matter—we could
as easily have applied the second design (the code in the directory
<filename>examples/tracing/version3</filename> has the second
design). The point is that the effects of this change in the
tracing requirements are limited to the
<classname>Trace</classname> aspect class.
</para>
<para>
One implementation change worth noticing is the specification of
the pointcuts. They now expose the object. To maintain full
consistency with the behavior of version 2, we should have included
tracing for static methods, by defining another pointcut for static
methods and advising it. We leave that as an exercise.
</para>
<para>
Moreover, we had to exclude the execution join point of the method
<filename>toString</filename> from the <literal>methods</literal>
pointcut. The problem here is that <literal>toString</literal> is
being called from inside the advice. Therefore if we trace it, we
will end up in an infinite recursion of calls. This is a subtle
point, and one that you must be aware when writing advice. If the
advice calls back to the objects, there is always the possibility
of recursion. Keep that in mind!
</para>
<para>
In fact, esimply excluding the execution join point may not be
enough, if there are calls to other traced methods within it -- in
which case, the restriction should be
</para>
<programlisting><![CDATA[
&& !cflow(execution(String toString()))
]]></programlisting>
<para>
excluding both the execution of toString methods and all join
points under that execution.
</para>
<para>
In summary, to implement the change in the tracing requirements we
had to make a couple of changes in the implementation of the
<classname>Trace</classname> aspect class, including changing the
specification of the pointcuts. That's only natural. But the
implementation changes were limited to this aspect. Without
aspects, we would have to change the implementation of every
application class.
</para>
<para>
Finally, to run this version of tracing, go to the directory
<filename>examples</filename> and type:
</para>
<programlisting><![CDATA[
ajc -argfile tracing/tracev3.lst
]]></programlisting>
<para>
The file tracev3.lst lists the application classes as well as this
version of the files <filename>Trace.java</filename> and
<filename>TraceMyClasses.java</filename>. To run the program, type
</para>
<programlisting><![CDATA[
java tracing.version3.TraceMyClasses
]]></programlisting>
<para>The output should be:</para>
<programlisting><![CDATA[
--> tracing.TwoDShape(double, double)
<-- tracing.TwoDShape(double, double)
--> tracing.Circle(double, double, double)
<-- tracing.Circle(double, double, double)
--> tracing.TwoDShape(double, double)
<-- tracing.TwoDShape(double, double)
--> tracing.Circle(double, double, double)
<-- tracing.Circle(double, double, double)
--> tracing.Circle(double)
<-- tracing.Circle(double)
--> tracing.TwoDShape(double, double)
<-- tracing.TwoDShape(double, double)
--> tracing.Square(double, double, double)
<-- tracing.Square(double, double, double)
--> tracing.Square(double, double)
<-- tracing.Square(double, double)
--> double tracing.Circle.perimeter()
<-- double tracing.Circle.perimeter()
c1.perimeter() = 12.566370614359172
--> double tracing.Circle.area()
<-- double tracing.Circle.area()
c1.area() = 12.566370614359172
--> double tracing.Square.perimeter()
<-- double tracing.Square.perimeter()
s1.perimeter() = 4.0
--> double tracing.Square.area()
<-- double tracing.Square.area()
s1.area() = 1.0
--> double tracing.TwoDShape.distance(TwoDShape)
--> double tracing.TwoDShape.getX()
<-- double tracing.TwoDShape.getX()
--> double tracing.TwoDShape.getY()
<-- double tracing.TwoDShape.getY()
<-- double tracing.TwoDShape.distance(TwoDShape)
c2.distance(c1) = 4.242640687119285
--> double tracing.TwoDShape.distance(TwoDShape)
--> double tracing.TwoDShape.getX()
<-- double tracing.TwoDShape.getX()
--> double tracing.TwoDShape.getY()
<-- double tracing.TwoDShape.getY()
<-- double tracing.TwoDShape.distance(TwoDShape)
s1.distance(c1) = 2.23606797749979
--> String tracing.Square.toString()
--> String tracing.TwoDShape.toString()
<-- String tracing.TwoDShape.toString()
<-- String tracing.Square.toString()
s1.toString(): Square side = 1.0 @ (1.0, 2.0)
]]></programlisting>
</sect3>
</sect2>
</sect1>
</chapter>
|