1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
|
<chapter id="jpsigs" xreflabel="Join Point Signatures">
<title>Join Point Signatures</title>
<para>
Many of the extensions to the AspectJ language to address the new features of
Java 5 are derived from a simple set of principles for join point
matching. In this section, we outline these principles as a foundation
for understanding the matching rules in the presence of annotations,
generics, covariance, varargs, and autoboxing.
</para>
<sect1 id="join-point-matching">
<title>Join Point Matching</title>
<para>AspectJ supports 11 different kinds of join points. These are
the <literal>method call, method execution, constructor call,
constructor execution, field get, field set, pre-initialization,
initialization, static initialization, handler,</literal> and
<literal>advice execution</literal> join points.</para>
<para>The <emphasis>kinded</emphasis> pointcut designators match
based on the kind of a join point. These are the <literal>call,
execution, get, set, preinitialization, initialization,
staticinitialization, handler,</literal> and <literal>adviceexecution</literal>
designators.</para>
<para>A kinded pointcut is written using patterns, some of which
match based on <emphasis>signature</emphasis>, and some of which
match based on <emphasis>modifiers</emphasis>. For example, in
the <literal>call</literal> pointcut designator:</para>
<programlisting><![CDATA[
call(ModifierPattern TypePattern TypePattern.IdPattern(TypePatternList) ThrowsPattern)
]]></programlisting>
<para>the modifiers matching patterns are <literal>ModifierPattern</literal>
and <literal>ThrowsPattern</literal>, and the signature matching patterns
are <literal>TypePattern TypePattern.IdPattern(TypePatternList)</literal>.
</para>
<para>
A join point has potentially multiple signatures, but only one set of
modifiers. <emphasis>A kinded primitive pointcut matches a particular join point
if and only if</emphasis>:
</para>
<orderedlist>
<listitem>They are of the same kind</listitem>
<listitem>The signature pattern (exactly) matches at least one
signature of the join point</listitem>
<listitem>The modifiers pattern matches the modifiers of the
subject of the join point</listitem>
</orderedlist>
<para>These rules make it very easily to quickly determine whether a
given pointcut matches a given join point. In the next two sections,
we describe what the signature(s) of a join point are, and what the
subjects of join points are.</para>
</sect1>
<sect1 id="join-point-signatures">
<title>Join Point Signatures</title>
<para>Call, execution, get, and set join points may potentially have multiple
signatures. All other join points have exactly one signature. The
following table summarizes the constituent parts of a join point
signature for the different kinds of join point.</para>
<informaltable>
<tgroup cols="7">
<thead>
<row>
<entry>Join Point Kind</entry>
<entry>Return Type</entry>
<entry>Declaring Type</entry>
<entry>Id</entry>
<entry>Parameter Types</entry>
<entry>Field Type</entry>
<entry>Exception Type</entry>
</row>
</thead>
<tbody>
<row>
<entry>Method call</entry>
<entry>+</entry>
<entry>+</entry>
<entry>+</entry>
<entry>+</entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry>Method execution</entry>
<entry>+</entry>
<entry>+</entry>
<entry>+</entry>
<entry>+</entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry>Constructor call</entry>
<entry></entry>
<entry>+</entry>
<entry></entry>
<entry>+</entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry>Constructor execution</entry>
<entry></entry>
<entry>+</entry>
<entry></entry>
<entry>+</entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry>Field get</entry>
<entry></entry>
<entry>+</entry>
<entry>+</entry>
<entry></entry>
<entry>+</entry>
<entry></entry>
</row>
<row>
<entry>Field set</entry>
<entry></entry>
<entry>+</entry>
<entry>+</entry>
<entry></entry>
<entry>+</entry>
<entry></entry>
</row>
<row>
<entry>Pre-initialization</entry>
<entry></entry>
<entry>+</entry>
<entry></entry>
<entry>+</entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry>Initialization</entry>
<entry></entry>
<entry>+</entry>
<entry></entry>
<entry>+</entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry>Static initialization</entry>
<entry></entry>
<entry>+</entry>
<entry></entry>
<entry></entry>
<entry></entry>
<entry></entry>
</row>
<row>
<entry>Handler</entry>
<entry></entry>
<entry></entry>
<entry></entry>
<entry></entry>
<entry></entry>
<entry>+</entry>
</row>
<row>
<entry>Advice execution</entry>
<entry></entry>
<entry>+</entry>
<entry></entry>
<entry>+</entry>
<entry></entry>
<entry></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>Note that whilst an advice execution join point has a
signature comprising the declaring type of the advice and the
advice parameter types, the <literal>adviceexecution</literal>
pointcut designator does not support matching based on this
signature.</para>
<para>The signatures for most of the join point kinds should be
self-explanatory, except for field get and set, and method call and execution
join points, which can have multiple signatures. Each signature of
a method call or execution join point has the same id and parameter
types, but the declaring type and return type (with covariance) may vary.
Each signature of a field get or set join point has the same id and field
type, but the declaring type may vary.
</para>
<para>The following sections examine signatures for these join points
in more detail.</para>
<sect2 id="method-call-join-point-signatures" xreflabel="method-call-join-point-signatures">
<title>Method call join point signatures</title>
<para>
For a call join point where a call is made to a method
<literal>m(parameter_types)</literal> on a target type <literal>T</literal> (where
<literal>T</literal> is the static type of the target):
</para>
<programlisting><![CDATA[
T t = new T();
t.m("hello"); <= call join point occurs when this line is executed
]]></programlisting>
<para>
Then the signature <literal>R(T) T.m(parameter_types)</literal> is a signature
of the call join point, where <literal>R(T)</literal> is the return
type of <literal>m</literal> in <literal>T</literal>, and
<literal>parameter_types</literal> are the parameter types of
<literal>m</literal>. If <literal>T</literal> itself does not
declare a definition of <literal>m(parameter_types)</literal>, then
<literal>R(T)</literal> is the return type in the definition of
<literal>m</literal> that <literal>T</literal> inherits. Given the
call above, and the definition of <literal>T.m</literal>:
</para>
<programlisting><![CDATA[
interface Q {
R m(String s);
}
class P implements Q {
R m(String s) {...}
}
class S extends P {
R' m(String s) {...}
}
class T extends S {}
]]></programlisting>
<para>Then <literal>R' T.m(String)</literal> is a signature of the
call join point for <literal>t.m("hello")</literal>.</para>
<para>
For each ancestor (super-type) <literal>A</literal> of <literal>T</literal>,
if <literal>m(parameter_types)</literal> is defined for that super-type, then
<literal>R(A) A.m(parameter_types)</literal> is a signature of the call join
point, where <literal>R(A)</literal> is the return type of <literal>
m(parameter_types)</literal> as defined in <literal>A</literal>, or as inherited
by <literal>A</literal> if <literal>A</literal> itself does not
provide a definition of <literal>m(parameter_types)</literal>.
</para>
<para>
Continuing the example from above,we can deduce that
</para>
<programlisting><![CDATA[
R' S.m(String)
R P.m(String)
R Q.m(String)
]]></programlisting>
<para>are all additional signatures for the call join point arising
from the call <literal>t.m("hello")</literal>. Thus this call
join point has four signatures in total. Every signature has the same
id and parameter types, and a different declaring type.</para>
</sect2>
<sect2 id="method-execution-join-point-signatures" xreflabel="method-execution-join-point-signatures">
<title>Method execution join point signatures</title>
<para>Join point signatures for execution join points are defined
in a similar manner to signatures for call join points. Given the
hierarchy:
</para>
<programlisting><![CDATA[
interface Q {
R m(String s);
}
class P implements Q {
R m(String s) {...}
}
class S extends P {
R' m(String s) {...}
}
class T extends S { }
class U extends T {
R' m(String s) {...}
}
]]></programlisting>
<para>Then the execution join point signatures arising as a result
of the call to <literal>u.m("hello")</literal> are: </para>
<programlisting><![CDATA[
R' U.m(String)
R' S.m(String)
R P.m(String)
R Q.m(String)
]]></programlisting>
<para>Each signature has the same id and parameter types, and a
different declaring type. There is one signature for each type
that provides its own declaration of the method. Hence in this
example there is no signature <literal>R' T.m(String)</literal>
as <literal>T</literal> does not provide its own declaration of
the method.</para>
</sect2>
<sect2 id="field-get-and-set-join-point-signatures" xreflabel="field-get-and-set-join-point-signatures">
<title>Field get and set join point signatures</title>
<para>
For a field get join point where an access is made to a field
<literal>f</literal> of type <literal>F</literal>
on a object with declared type <literal>T</literal>, then
<literal>F T.f</literal> is a signature of the get join point.
</para>
<para>
If <literal>T</literal> does not directly declare a member
<literal>f</literal>, then for each super type <literal>S</literal>
of <literal>T</literal>, up to and including the most specific
super type of <literal>T</literal> that does declare the member
<literal>f</literal>, <literal>F S.f</literal> is a signature
of the join point. For example, given the hierarchy:
</para>
<programlisting><![CDATA[
class P {
F f;
}
class S extends P {
F f;
}
class T extends S { }
]]></programlisting>
<para>
Then the join point signatures for a field get join point of
the field <literal>f</literal> on an object with declared type
<literal>T</literal> are:
</para>
<programlisting><![CDATA[
F S.f
F T.f
]]></programlisting>
<para>The signatures for a field set join point are derived in an
identical manner.</para>
</sect2>
</sect1>
<sect1 id="join-point-modifiers">
<title>Join Point Modifiers</title>
<para>Every join point has a single set of modifiers - these include
the standard Java modifiers such as <literal>public, private,
static, abstract</literal> etc., any annotations, and the throws
clauses of methods and constructors. These modifiers are the
modifiers of the <emphasis>subject</emphasis> of the join point.</para>
<para>
The following table defines the join point subject for each kind
of join point.
</para>
<informaltable>
<tgroup cols="2">
<thead>
<row>
<entry>Join Point Kind</entry>
<entry>Subject</entry>
</row>
</thead>
<tbody>
<row>
<entry>Method call</entry>
<entry>The method picked out by Java as
the static target of the method call.</entry>
</row>
<row>
<entry>Method execution</entry>
<entry>The method that is executing.</entry>
</row>
<row>
<entry>Constructor call</entry>
<entry>The constructor being called.</entry>
</row>
<row>
<entry>Constructor execution</entry>
<entry>The constructor executing.</entry>
</row>
<row>
<entry>Field get</entry>
<entry>The field being accessed.</entry>
</row>
<row>
<entry>Field set</entry>
<entry>The field being set.</entry>
</row>
<row>
<entry>Pre-initialization</entry>
<entry>The first constructor executing in
this constructor chain.</entry>
</row>
<row>
<entry>Initialization</entry>
<entry>The first constructor executing in
this constructor chain.</entry>
</row>
<row>
<entry>Static initialization</entry>
<entry>The type being initialized.</entry>
</row>
<row>
<entry>Handler</entry>
<entry>The declared type of the
exception being handled.</entry>
</row>
<row>
<entry>Advice execution</entry>
<entry>The advice being executed.</entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>For example, given the following types</para>
<programlisting><![CDATA[
public class X {
@Foo
protected void doIt() {...}
}
public class Y extends X {
public void doIt() {...}
}
]]></programlisting>
<para>Then the modifiers for a call to <literal>(Y y) y.doIt()</literal>
are simply <literal>{public}</literal>. The modifiers for a call to
<literal>(X x) x.doIt()</literal> are <literal>{@Foo,protected}</literal>.
</para>
</sect1>
<sect1 id="join-point-matching-summary">
<title>Summary of Join Point Matching</title>
<para>
A join point has potentially multiple signatures, but only one set of
modifiers. <emphasis>A kinded primitive pointcut matches a particular join point
if and only if</emphasis>:
</para>
<orderedlist>
<listitem>They are of the same kind</listitem>
<listitem>The signature pattern (exactly) matches at least one
signature of the join point</listitem>
<listitem>The modifiers pattern matches the modifiers of the
subject of the join point</listitem>
</orderedlist>
<para>Given the hierarchy</para>
<programlisting><![CDATA[
interface Q {
R m(String s);
}
class P implements Q {
@Foo
public R m(String s) {...}
}
class S extends P {
@Bar
public R' m(String s) {...}
}
class T extends S {}
]]></programlisting>
<para>and the program fragment:</para>
<programlisting><![CDATA[
P p = new P();
S s = new S();
T t = new T();
...
p.m("hello");
s.m("hello");
t.m("hello");
]]></programlisting>
<para>
The the pointcut <literal>call(@Foo R P.m(String))</literal> matches the
call <literal>p.m("hello")</literal> since both the signature and the
modifiers match. It does not match the call <literal>s.m("hello")</literal>
because even though the signature pattern matches one of the signatures
of the join point, the modifiers pattern does not match the modifiers of
the method m in S which is the static target of the call.
</para>
<para>The pointcut <literal>call(R' m(String))</literal> matches the
calls <literal>t.m("hello")</literal> and <literal>s.m("hello")</literal>.
It does not match the call <literal>p.m("hello")</literal> since the
signature pattern does not match any signature for the call join point
of m in P.</para>
</sect1>
</chapter>
|