File: affix.cpp

package info (click to toggle)
aspell 0.60.6-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 10,000 kB
  • ctags: 4,862
  • sloc: sh: 48,145; cpp: 22,153; perl: 1,546; ansic: 1,535; makefile: 684; sed: 16
file content (1439 lines) | stat: -rw-r--r-- 41,791 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
// This file is part of The New Aspell
// Copyright (C) 2004 by Kevin Atkinson under the GNU LGPL
// license version 2.0 or 2.1.  You should have received a copy of the
// LGPL license along with this library if you did not you can find it
// at http://www.gnu.org/.
//
// This code is based on the the MySpell affix code:
//
/*
 * Copyright 2002 Kevin B. Hendricks, Stratford, Ontario, Canada And
 * Contributors.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * 3. All modifications to the source code must be clearly marked as
 *    such.  Binary redistributions based on modified source code
 *    must be clearly marked as modified versions in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY KEVIN B. HENDRICKS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL
 * KEVIN B. HENDRICKS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 */

#include <cstdlib>
#include <cstring>
#include <cstdio>

//#include "iostream.hpp"

#include "affix.hpp"
#include "errors.hpp"
#include "getdata.hpp"
#include "parm_string.hpp"
#include "check_list.hpp"
#include "speller_impl.hpp"
#include "vararray.hpp"
#include "lsort.hpp"
#include "hash-t.hpp"

#include "gettext.h"

using namespace std;

namespace aspeller {

typedef unsigned char byte;
static char EMPTY[1] = {0};

//////////////////////////////////////////////////////////////////////
//
// Entry struct definations
//

struct Conds
{
  char * str;
  unsigned num;
  char conds[SETSIZE];
  char get(byte i) const {return conds[i];}
};

struct AffEntry
{
  const char *   appnd;
  const char *   strip;
  byte           appndl;
  byte           stripl;
  byte           xpflg;
  char           achar;
  const Conds *  conds;
  //unsigned int numconds;
  //char         conds[SETSIZE];
};

// A Prefix Entry
  
struct PfxEntry : public AffEntry
{
  PfxEntry * next;
  PfxEntry * next_eq;
  PfxEntry * next_ne;
  PfxEntry * flag_next;
  PfxEntry() {}

  bool check(const LookupInfo &, const AffixMgr * pmyMgr,
             ParmString, CheckInfo &, GuessInfo *, bool cross = true) const;

  inline bool          allow_cross() const { return ((xpflg & XPRODUCT) != 0); }
  inline byte flag() const { return achar;  }
  inline const char *  key() const  { return appnd;  }
  bool applicable(SimpleString) const;
  SimpleString add(SimpleString, ObjStack & buf) const;
};

// A Suffix Entry

struct SfxEntry : public AffEntry
{
  const char * rappnd; // this is set in AffixMgr::build_sfxlist
  
  SfxEntry *   next;
  SfxEntry *   next_eq;
  SfxEntry *   next_ne;
  SfxEntry *   flag_next;

  SfxEntry() {}

  bool check(const LookupInfo &, ParmString, CheckInfo &, GuessInfo *,
             int optflags, AffEntry * ppfx);

  inline bool          allow_cross() const { return ((xpflg & XPRODUCT) != 0); }
  inline byte flag() const { return achar;  }
  inline const char *  key() const  { return rappnd; } 
  bool applicable(SimpleString) const;
  SimpleString add(SimpleString, ObjStack & buf, int limit, SimpleString) const;
};

//////////////////////////////////////////////////////////////////////
//
// Utility functions declarations
//

/* return 1 if s1 is subset of s2 */
static bool isSubset(const char * s1, const char * s2)
{
  while( *s1 && (*s1 == *s2) ) {
    s1++;
    s2++;
  }
  return (*s1 == '\0');
}

// return 1 if s1 (reversed) is a leading subset of end of s2
static bool isRevSubset(const char * s1, const char * end_of_s2, int len)
{
  while( (len > 0) && *s1 && (*s1 == *end_of_s2) ) {
    s1++;
    end_of_s2--;
    len --;
  }
  return (*s1 == '\0');
}

template <class T>
struct AffixLess
{
  bool operator() (T * x, T * y) const {return strcmp(x->key(),y->key()) < 0;}
};

// struct StringLookup {
//   struct Parms {
//     typedef const char * Value;
//     typedef const char * Key;
//     static const bool is_multi = false;
//     hash<const char *> hfun;
//     size_t hash(const char * s) {return hfun(s);}
//     bool equal(const char * x, const char * y) {return strcmp(x,y) == 0;}
//     const char * key(const char * c) {return c;}
//   };
//   typedef HashTable<Parms> Lookup;
//   Lookup lookup;
//   ObjStack * data_buf;
//   StringLookup(ObjStack * b) : data_buf(b) {}
//   const char * dup(const char * orig) {
//     pair<Lookup::iterator, bool> res = lookup.insert(orig);
//     if (res.second) *res.first = data_buf->dup(orig);
//     return *res.first;
//     //return data_buf->dup(orig);
//   }
// };

struct CondsLookupParms {
  typedef const Conds * Value;
  typedef const char * Key;
  static const bool is_multi = false;
  acommon::hash<const char *> hfun;
  size_t hash(const char * s) {return hfun(s);}
  bool equal(const char * x, const char * y) {return strcmp(x,y) == 0;}
  const char * key(const Conds * c) {return c->str;}
};

typedef HashTable<CondsLookupParms> CondsLookup;

// normalizes and checks the cond_str
// returns the lenth of the new string or -1 if invalid
static int normalize_cond_str(char * str)
{
  char * s = str;
  char * d = str;
  while (*s) {
    if (*s != '[') {
      *d++ = *s++;
    } else if (s[1] == '\0' || s[1] == ']') {
      return -1;
    } else if (s[2] == ']') {
      *d++ = s[1];
      s += 3;
    } else {
      *d++ = *s++;
      if (*s == '^') *d++ = *s++;
      while (*s != ']') {
        if (*s == '\0' || *s == '[') return -1;
        char * min = s;
        for (char * i = s + 1; *i != ']'; ++i) {
          if ((byte)*i < (byte)*min) min = i;}
        char c = *s;
        *d++ = *min;
        *min = c;
        ++s;
      }
      *d++ = *s++;
    }
  }
  *d = '\0';
  return d - str;
}

static void encodeit(CondsLookup &, ObjStack &, 
                     AffEntry * ptr, char * cs);

//////////////////////////////////////////////////////////////////////
//
// Affix Manager
//

PosibErr<void> AffixMgr::setup(ParmString affpath, Conv & iconv)
{
  // register hash manager and load affix data from aff file
  //cpdmin = 3;  // default value
  max_strip_ = 0;
  for (int i=0; i < SETSIZE; i++) {
    pStart[i] = NULL;
    sStart[i] = NULL;
    pFlag[i] = NULL;
    sFlag[i] = NULL;
    max_strip_f[i] = 0;
  }
  return parse_file(affpath, iconv);
}

AffixMgr::AffixMgr(const Language * l) 
  : lang(l), data_buf(1024*16) {}

AffixMgr::~AffixMgr() {}

static inline void max_(int & lhs, int rhs) 
{
  if (lhs < rhs) lhs = rhs;
}

// read in aff file and build up prefix and suffix entry objects 
PosibErr<void> AffixMgr::parse_file(const char * affpath, Conv & iconv)
{
  // io buffers
  String buf; DataPair dp;

  CondsLookup conds_lookup;
 
  // open the affix file
  affix_file = data_buf.dup(affpath);
  FStream afflst;
  RET_ON_ERR(afflst.open(affpath,"r"));

  // step one is to parse the affix file building up the internal
  // affix data structures

  // read in each line ignoring any that do not
  // start with a known line type indicator

  char prev_aff = '\0';

  while (getdata_pair(afflst,dp,buf)) {
    char affix_type = ' ';

    /* parse in the name of the character set used by the .dict and .aff */

    if (dp.key == "SET") {
      String buf;
      encoding = data_buf.dup(fix_encoding_str(dp.value, buf));
      if (strcmp(encoding, lang->data_encoding()) != 0)
        return make_err(incorrect_encoding, affix_file, lang->data_encoding(), encoding);
    }

    /* parse in the flag used by the controlled compound words */
    //else if (d.key == "COMPOUNDFLAG")
    //  compound = data_buf.dup(d.value);

    /* parse in the flag used by the controlled compound words */
    //else if (d.key == "COMPOUNDMIN")
    //  cpdmin = atoi(d.value); // FiXME

    //else if (dp.key == "TRY" || dp.key == "REP");

    else if (dp.key == "PFX" || dp.key == "SFX")
      affix_type = dp.key[0];

    if (affix_type == ' ') continue;

    //
    // parse this affix: P - prefix, S - suffix
    //

    int numents = 0;      // number of affentry structures to parse
    char achar='\0';      // affix char identifier
    short xpflg=0;
    AffEntry * nptr;
    {
      // split affix header line into pieces
      split(dp);
      if (dp.key.empty()) goto error;
      // key is affix char
      const char * astr = iconv(dp.key);
      if (astr[0] == '\0' || astr[1] != '\0') goto error;
      achar = astr[0];
      if (achar == prev_aff) goto error_count;
      prev_aff = achar;

      split(dp);
      if (dp.key.size != 1 || 
          !(dp.key[0] == 'Y' || dp.key[0] == 'N')) goto error;
      // key is cross product indicator 
      if (dp.key[0] == 'Y') xpflg = XPRODUCT;
    
      split(dp);
      if (dp.key.empty()) goto error;
      // key is number of affentries
      
      numents = atoi(dp.key); 
  
      for (int j = 0; j < numents; j++) {
        getdata_pair(afflst, dp, buf);

        if (affix_type == 'P') {
          nptr = (AffEntry *) data_buf.alloc_bottom(sizeof(PfxEntry));
          new (nptr) PfxEntry;
        } else {
          nptr = (AffEntry *) data_buf.alloc_bottom(sizeof(SfxEntry));
          new (nptr) SfxEntry;
        }

        nptr->xpflg = xpflg;

        split(dp);
        if (dp.key.empty()) goto error;
        // key is affix charter
        if (iconv(dp.key)[0] != achar) goto error_count;
        nptr->achar = achar;
 
        split(dp);
        if (dp.key.empty()) goto error;
        // key is strip 
        if (dp.key != "0") {
          ParmString s0(iconv(dp.key));
          max_(max_strip_, s0.size());
          max_(max_strip_f[(byte)achar], s0.size());
          nptr->strip = data_buf.dup(s0);
          nptr->stripl = s0.size();
        } else {
          nptr->strip  = "";
          nptr->stripl = 0;
        }
    
        split(dp);
        if (dp.key.empty()) goto error;
        // key is affix string or 0 for null
        if (dp.key != "0") {
          nptr->appnd  = data_buf.dup(iconv(dp.key));
          nptr->appndl = strlen(nptr->appnd);
        } else {
          nptr->appnd  = "";
          nptr->appndl = 0;
        }
    
        split(dp);
        if (dp.key.empty()) goto error;
        // key is the conditions descriptions
        char * cond = iconv(dp.key);
        int cond_len = normalize_cond_str(cond);
        if (cond_len < 0)
          return (make_err(invalid_cond, MsgConv(lang)(cond))
                  .with_file(affix_file, dp.line_num));
        if (nptr->stripl != 0) {
          char * cc = cond;
          if (affix_type == 'S') cc += cond_len - nptr->stripl;
          if (cond_len < nptr->stripl || 
              memcmp(cc, nptr->strip, nptr->stripl) != 0)
            return (make_err(invalid_cond_strip, 
                             MsgConv(lang)(cond), MsgConv(lang)(nptr->strip))
                    .with_file(affix_file, dp.line_num));
        }
        encodeit(conds_lookup, data_buf, nptr, cond);
    
        // now create SfxEntry or PfxEntry objects and use links to
        // build an ordered (sorted by affix string) list
        if (affix_type == 'P')
          build_pfxlist(static_cast<PfxEntry *>(nptr));
        else
          build_sfxlist(static_cast<SfxEntry *>(nptr)); 
      }
    }
    continue;
  error:
    return make_err(corrupt_affix, MsgConv(lang)(achar)).with_file(affix_file, dp.line_num);
  error_count:
    return make_err(corrupt_affix, MsgConv(lang)(achar), 
                    _("Possibly incorrect count.")).with_file(affix_file, dp.line_num);
  }
  afflst.close();

  // now we can speed up performance greatly taking advantage of the 
  // relationship between the affixes and the idea of "subsets".

  // View each prefix as a potential leading subset of another and view
  // each suffix (reversed) as a potential trailing subset of another.

  // To illustrate this relationship if we know the prefix "ab" is
  // found in the word to examine, only prefixes that "ab" is a
  // leading subset of need be examined.  Furthermore is "ab" is not
  // present then none of the prefixes that "ab" is is a subset need
  // be examined.

  // The same argument goes for suffix string that are reversed.

  // Then to top this off why not examine the first char of the word
  // to quickly limit the set of prefixes to examine (i.e. the
  // prefixes to examine must be leading supersets of the first
  // character of the word (if they exist)
 
  // To take advantage of this "subset" relationship, we need to add
  // two links from entry.  One to take next if the current prefix
  // is found (call it nexteq) and one to take next if the current
  // prefix is not found (call it nextne).

  // Since we have built ordered lists, all that remains is to
  // properly intialize the nextne and nexteq pointers that relate
  // them

  process_pfx_order();
  process_sfx_order();

  //CERR.printf("%u\n", data_buf.calc_size()/1024);

  return no_err;

}


// we want to be able to quickly access prefix information
// both by prefix flag, and sorted by prefix string itself
// so we need to set up two indexes

PosibErr<void> AffixMgr::build_pfxlist(PfxEntry* pfxptr)
{
  PfxEntry * ptr;
  PfxEntry * ep = pfxptr;

  // get the right starting point 
  const char * key = ep->key();
  const byte flg = ep->flag();

  // first index by flag which must exist
  ptr = pFlag[flg];
  ep->flag_next = ptr;
  pFlag[flg] = ep;

  // next insert the affix string, it will be sorted latter

  byte sp = *((const byte *)key);
  ptr = pStart[sp];
  ep->next = ptr;
  pStart[sp] = ep;
  return no_err;
}

// we want to be able to quickly access suffix information
// both by suffix flag, and sorted by the reverse of the
// suffix string itself; so we need to set up two indexes

PosibErr<void> AffixMgr::build_sfxlist(SfxEntry* sfxptr)
{
  SfxEntry * ptr;
  SfxEntry * ep = sfxptr;
  char * tmp = (char *)data_buf.alloc(sfxptr->appndl + 1);
  sfxptr->rappnd = tmp;

  // reverse the string
  char * dest = tmp + sfxptr->appndl;
  *dest-- = 0;
  const char * src = sfxptr->appnd;
  for (; dest >= tmp; --dest, ++src)
    *dest = *src;

  /* get the right starting point */
  const char * key = ep->key();
  const byte flg = ep->flag();

  // first index by flag which must exist
  ptr = sFlag[flg];
  ep->flag_next = ptr;
  sFlag[flg] = ep;

  // next insert the affix string, it will be sorted latter
    
  byte sp = *((const byte *)key);
  ptr = sStart[sp];
  ep->next = ptr;
  sStart[sp] = ep;
  return no_err;
}



// initialize the PfxEntry links NextEQ and NextNE to speed searching
PosibErr<void> AffixMgr::process_pfx_order()
{
  PfxEntry* ptr;

  // loop through each prefix list starting point
  for (int i=1; i < SETSIZE; i++) {

    ptr = pStart[i];

    if (ptr && ptr->next)
      ptr = pStart[i] = sort(ptr, AffixLess<PfxEntry>());

    // look through the remainder of the list
    //  and find next entry with affix that 
    // the current one is not a subset of
    // mark that as destination for NextNE
    // use next in list that you are a subset
    // of as NextEQ

    for (; ptr != NULL; ptr = ptr->next) {

      PfxEntry * nptr = ptr->next;
      for (; nptr != NULL; nptr = nptr->next) {
        if (! isSubset( ptr->key() , nptr->key() )) break;
      }
      ptr->next_ne = nptr;
      ptr->next_eq = NULL;
      if ((ptr->next) && isSubset(ptr->key() , 
                                  (ptr->next)->key())) 
        ptr->next_eq = ptr->next;
    }

    // now clean up by adding smart search termination strings
    // if you are already a superset of the previous prefix
    // but not a subset of the next, search can end here
    // so set NextNE properly

    ptr = pStart[i];
    for (; ptr != NULL; ptr = ptr->next) {
      PfxEntry * nptr = ptr->next;
      PfxEntry * mptr = NULL;
      for (; nptr != NULL; nptr = nptr->next) {
        if (! isSubset(ptr->key(),nptr->key())) break;
        mptr = nptr;
      }
      if (mptr) mptr->next_ne = NULL;
    }
  }
  return no_err;
}



// initialize the SfxEntry links NextEQ and NextNE to speed searching
PosibErr<void> AffixMgr::process_sfx_order()
{
  SfxEntry* ptr;

  // loop through each prefix list starting point
  for (int i=1; i < SETSIZE; i++) {

    ptr = sStart[i];

    if (ptr && ptr->next)
      ptr = sStart[i] = sort(ptr, AffixLess<SfxEntry>());

    // look through the remainder of the list
    //  and find next entry with affix that 
    // the current one is not a subset of
    // mark that as destination for NextNE
    // use next in list that you are a subset
    // of as NextEQ

    for (; ptr != NULL; ptr = ptr->next) {
      SfxEntry * nptr = ptr->next;
      for (; nptr != NULL; nptr = nptr->next) {
        if (! isSubset(ptr->key(),nptr->key())) break;
      }
      ptr->next_ne = nptr;
      ptr->next_eq = NULL;
      if ((ptr->next) && isSubset(ptr->key(),(ptr->next)->key())) 
        ptr->next_eq = ptr->next;
    }


    // now clean up by adding smart search termination strings:
    // if you are already a superset of the previous suffix
    // but not a subset of the next, search can end here
    // so set NextNE properly

    ptr = sStart[i];
    for (; ptr != NULL; ptr = ptr->next) {
      SfxEntry * nptr = ptr->next;
      SfxEntry * mptr = NULL;
      for (; nptr != NULL; nptr = nptr->next) {
        if (! isSubset(ptr->key(),nptr->key())) break;
        mptr = nptr;
      }
      if (mptr) mptr->next_ne = NULL;
    }
  }
  return no_err;
}

// takes aff file condition string and creates the
// conds array - please see the appendix at the end of the
// file affentry.cxx which describes what is going on here
// in much more detail

static void encodeit(CondsLookup & l, ObjStack & buf, 
                     AffEntry * ptr, char * cs)
{
  byte c;
  int i, j, k;

  // see if we already have this conds matrix

  CondsLookup::iterator itr = l.find(cs);
  if (!(itr == l.end())) {
    ptr->conds = *itr;
    return;
  }

  Conds * cds = (Conds *)buf.alloc_bottom(sizeof(Conds));
  cds->str = buf.dup(cs);
  l.insert(cds);
  ptr->conds = cds;

  int nc = strlen(cs);
  VARARRAYM(byte, mbr, nc + 1, MAXLNLEN);

  // now clear the conditions array
  memset(cds->conds, 0, sizeof(cds->conds));

  // now parse the string to create the conds array
  
  int neg = 0;   // complement indicator
  int grp = 0;   // group indicator
  int n = 0;     // number of conditions
  int ec = 0;    // end condition indicator
  int nm = 0;    // number of member in group

  // if no condition just return
  if (strcmp(cs,".")==0) {
    cds->num = 0;
    return;
  }

  i = 0;
  while (i < nc) {
    c = *((byte *)(cs + i));

    // start group indicator
    if (c == '[') {
      grp = 1;
      c = 0;
    }

    // complement flag
    if ((grp == 1) && (c == '^')) {
      neg = 1;
      c = 0;
    }

    // end goup indicator
    if (c == ']') {
      ec = 1;
      c = 0;
    }

    // add character of group to list
    if ((grp == 1) && (c != 0)) {
      *(mbr + nm) = c;
      nm++;
      c = 0;
    }

    // end of condition 
    if (c != 0) {
      ec = 1;
    }

    
    if (ec) {
      if (grp == 1) {
        if (neg == 0) {
          // set the proper bits in the condition array vals for those chars
          for (j=0;j<nm;j++) {
            k = (unsigned int) mbr[j];
            cds->conds[k] = cds->conds[k] | (1 << n);
          }
        } else {
          // complement so set all of them and then unset indicated ones
          for (j=0;j<SETSIZE;j++) cds->conds[j] = cds->conds[j] | (1 << n);
          for (j=0;j<nm;j++) {
            k = (unsigned int) mbr[j];
            cds->conds[k] = cds->conds[k] & ~(1 << n);
          }
        }
        neg = 0;
        grp = 0;   
        nm = 0;
      } else {
        // not a group so just set the proper bit for this char
        // but first handle special case of . inside condition
        if (c == '.') {
          // wild card character so set them all
          for (j=0;j<SETSIZE;j++) cds->conds[j] = cds->conds[j] | (1 << n);
        } else {  
          cds->conds[(unsigned int)c] = cds->conds[(unsigned int)c] | (1 << n);
        }
      }
      n++;
      ec = 0;
    }


    i++;
  }
  cds->num = n;
  return;
}


// check word for prefixes
bool AffixMgr::prefix_check (const LookupInfo & linf, ParmString word, 
                             CheckInfo & ci, GuessInfo * gi, bool cross) const
{
 
  // first handle the special case of 0 length prefixes
  PfxEntry * pe = pStart[0];
  while (pe) {
    if (pe->check(linf,this,word,ci,gi)) return true;
    pe = pe->next;
  }
  
  // now handle the general case
  byte sp = *reinterpret_cast<const byte *>(word.str());
  PfxEntry * pptr = pStart[sp];

  while (pptr) {
    if (isSubset(pptr->key(),word)) {
      if (pptr->check(linf,this,word,ci,gi,cross)) return true;
      pptr = pptr->next_eq;
    } else {
      pptr = pptr->next_ne;
    }
  }
    
  return false;
}


// check word for suffixes
bool AffixMgr::suffix_check (const LookupInfo & linf, ParmString word, 
                             CheckInfo & ci, GuessInfo * gi,
                             int sfxopts, AffEntry * ppfx) const
{

  // first handle the special case of 0 length suffixes
  SfxEntry * se = sStart[0];
  while (se) {
    if (se->check(linf, word, ci, gi, sfxopts, ppfx)) return true;
    se = se->next;
  }
  
  // now handle the general case
  byte sp = *((const byte *)(word + word.size() - 1));
  SfxEntry * sptr = sStart[sp];

  while (sptr) {
    if (isRevSubset(sptr->key(), word + word.size() - 1, word.size())) {
      if (sptr->check(linf, word, ci, gi, sfxopts, ppfx)) return true;
      sptr = sptr->next_eq;
    } else {
      sptr = sptr->next_ne;
    }
  }
    
  return false;
}

// check if word with affixes is correctly spelled
bool AffixMgr::affix_check(const LookupInfo & linf, ParmString word, 
                           CheckInfo & ci, GuessInfo * gi) const
{
  // Deal With Case in a semi-intelligent manner
  CasePattern cp = lang->LangImpl::case_pattern(word);
  ParmString pword = word;
  ParmString sword = word;
  CharVector lower;
  if (cp == FirstUpper) {
    lower.append(word, word.size() + 1);
    lower[0] = lang->to_lower(word[0]);
    pword = ParmString(lower.data(), lower.size() - 1);
  } else if (cp == AllUpper) {
    lower.resize(word.size() + 1);
    unsigned int i = 0;
    for (; i != word.size(); ++i)
      lower[i] = lang->to_lower(word[i]);
    lower[i] = '\0';
    pword = ParmString(lower.data(), lower.size() - 1);
    sword = pword;
  }

  // check all prefixes (also crossed with suffixes if allowed) 
  if (prefix_check(linf, pword, ci, gi)) return true;

  // if still not found check all suffixes
  if (suffix_check(linf, sword, ci, gi, 0, NULL)) return true;

  // if still not found check again but with the lower case version
  // which can make a difference if the entire word matches the cond
  // string
  if (cp == FirstUpper) {
    return suffix_check(linf, pword, ci, gi, 0, NULL);
  } else {
    return false;
  }
}

void AffixMgr::munch(ParmString word, GuessInfo * gi, bool cross) const
{
  LookupInfo li(0, LookupInfo::AlwaysTrue);
  CheckInfo ci;
  gi->reset();
  CasePattern cp = lang->LangImpl::case_pattern(word);
  if (cp == AllUpper) return;
  if (cp != FirstUpper)
    prefix_check(li, word, ci, gi, cross);
  suffix_check(li, word, ci, gi, 0, NULL);
}

WordAff * AffixMgr::expand(ParmString word, ParmString aff, 
                           ObjStack & buf, int limit) const
{
  byte * empty = (byte *)buf.alloc(1);
  *empty = 0;

  byte * suf  = (byte *)buf.alloc(aff.size() + 1); 
  byte * suf_e = suf;
  byte * csuf = (byte *)buf.alloc(aff.size() + 1); 
  byte * csuf_e = csuf;

  WordAff * head = (WordAff *)buf.alloc_bottom(sizeof(WordAff));
  WordAff * cur = head;
  cur->word = buf.dup(word);
  cur->aff  = suf;

  for (const byte * c = (const byte *)aff.str(), * end = c + aff.size();
       c != end; 
       ++c) 
  {
    if (sFlag[*c]) *suf_e++ = *c; 
    if (sFlag[*c] && sFlag[*c]->allow_cross()) *csuf_e++ = *c;
    
    for (PfxEntry * p = pFlag[*c]; p; p = p->flag_next) {
      SimpleString newword = p->add(word, buf);
      if (!newword) continue;
      cur->next = (WordAff *)buf.alloc_bottom(sizeof(WordAff));
      cur = cur->next;
      cur->word = newword;
      cur->aff = p->allow_cross() ? csuf : empty;
    }
  }

  *suf_e = 0;
  *csuf_e = 0;
  cur->next = 0;

  if (limit == 0) return head;

  WordAff * * end = &cur->next;
  WordAff * * very_end = end;
  size_t nsuf_s = suf_e - suf + 1;

  for (WordAff * * cur = &head; cur != end; cur = &(*cur)->next) {
    if ((int)(*cur)->word.size - max_strip_ >= limit) continue;
    byte * nsuf = (byte *)buf.alloc(nsuf_s);
    expand_suffix((*cur)->word, (*cur)->aff, buf, limit, nsuf, &very_end, word);
    (*cur)->aff = nsuf;
  }

  return head;
}

WordAff * AffixMgr::expand_suffix(ParmString word, const byte * aff, 
                                  ObjStack & buf, int limit,
                                  byte * new_aff, WordAff * * * l,
                                  ParmString orig_word) const
{
  WordAff * head = 0;
  if (l) head = **l;
  WordAff * * cur = l ? *l : &head;
  bool expanded     = false;
  bool not_expanded = false;
  if (!orig_word) orig_word = word;

  while (*aff) {
    if ((int)word.size() - max_strip_f[*aff] < limit) {
      for (SfxEntry * p = sFlag[*aff]; p; p = p->flag_next) {
        SimpleString newword = p->add(word, buf, limit, orig_word);
        if (!newword) continue;
        if (newword == EMPTY) {not_expanded = true; continue;}
        *cur = (WordAff *)buf.alloc_bottom(sizeof(WordAff));
        (*cur)->word = newword;
        (*cur)->aff  = (const byte *)EMPTY;
        cur = &(*cur)->next;
        expanded = true;
      }
    }
    if (new_aff && (!expanded || not_expanded)) *new_aff++ = *aff;
    ++aff;
  }
  *cur = 0;
  if (new_aff) *new_aff = 0;
  if (l) *l = cur;
  return head;
}

CheckAffixRes AffixMgr::check_affix(ParmString word, char aff) const
{
  CheckAffixRes res = InvalidAffix;
  
  for (PfxEntry * p = pFlag[(unsigned char)aff]; p; p = p->flag_next) {
    res = InapplicableAffix;
    if (p->applicable(word)) return ValidAffix;
  }

  for (SfxEntry * p = sFlag[(unsigned char)aff]; p; p = p->flag_next) {
    if (res == InvalidAffix) res = InapplicableAffix;
    if (p->applicable(word)) return ValidAffix;
  }

  return res;
}



//////////////////////////////////////////////////////////////////////
//
// LookupInfo
//

int LookupInfo::lookup (ParmString word, const SensitiveCompare * c, 
                        char achar, 
                        WordEntry & o, GuessInfo * gi) const
{
  SpellerImpl::WS::const_iterator i = begin;
  const char * g = 0;
  if (mode == Word) {
    do {
      (*i)->lookup(word, c, o);
      for (;!o.at_end(); o.adv()) {
        if (TESTAFF(o.aff, achar))
          return 1;
        else
          g = o.word;
      }
      ++i;
    } while (i != end);
  } else if (mode == Clean) {
    do {
      (*i)->clean_lookup(word, o);
      for (;!o.at_end(); o.adv()) {
        if (TESTAFF(o.aff, achar))
          return 1;
        else
          g = o.word;
      }
      ++i;
    } while (i != end);
  } else if (gi) {
    g = gi->dup(word);
  }
  if (gi && g) {
    CheckInfo * ci = gi->add();
    ci->word = g;
    return -1;
  }
  return 0;
}

//////////////////////////////////////////////////////////////////////
//
// Affix Entry
//

bool PfxEntry::applicable(SimpleString word) const
{
  unsigned int cond;
  /* make sure all conditions match */
  if ((word.size > stripl) && (word.size >= conds->num)) {
    const byte * cp = (const byte *) word.str;
    for (cond = 0;  cond < conds->num;  cond++) {
      if ((conds->get(*cp++) & (1 << cond)) == 0)
        break;
    }
    if (cond >= conds->num) return true;
  }
  return false;
}

// add prefix to this word assuming conditions hold
SimpleString PfxEntry::add(SimpleString word, ObjStack & buf) const
{
  unsigned int cond;
  /* make sure all conditions match */
  if ((word.size > stripl) && (word.size >= conds->num)) {
    const byte * cp = (const byte *) word.str;
    for (cond = 0;  cond < conds->num;  cond++) {
      if ((conds->get(*cp++) & (1 << cond)) == 0)
        break;
    }
    if (cond >= conds->num) {
      /* */
      int alen = word.size - stripl;
      char * newword = (char *)buf.alloc(alen + appndl + 1);
      if (appndl) memcpy(newword, appnd, appndl);
      memcpy(newword + appndl, word + stripl, alen + 1);
      return SimpleString(newword, alen + appndl);
    }
  }
  return SimpleString();
}

// check if this prefix entry matches 
bool PfxEntry::check(const LookupInfo & linf, const AffixMgr * pmyMgr,
                     ParmString word,
                     CheckInfo & ci, GuessInfo * gi, bool cross) const
{
  unsigned int		cond;	// condition number being examined
  unsigned              tmpl;   // length of tmpword
  WordEntry             wordinfo;     // hash entry of root word or NULL
  byte *	cp;		
  VARARRAYM(char, tmpword, word.size()+stripl+1, MAXWORDLEN+1);

  // on entry prefix is 0 length or already matches the beginning of the word.
  // So if the remaining root word has positive length
  // and if there are enough chars in root word and added back strip chars
  // to meet the number of characters conditions, then test it

  tmpl = word.size() - appndl;

  if ((tmpl > 0) &&  (tmpl + stripl >= conds->num)) {

    // generate new root word by removing prefix and adding
    // back any characters that would have been stripped

    if (stripl) strcpy (tmpword, strip);
    strcpy ((tmpword + stripl), (word + appndl));

    // now make sure all of the conditions on characters
    // are met.  Please see the appendix at the end of
    // this file for more info on exactly what is being
    // tested

    cp = (byte *)tmpword;
    for (cond = 0;  cond < conds->num;  cond++) {
      if ((conds->get(*cp++) & (1 << cond)) == 0) break;
    }

    // if all conditions are met then check if resulting
    // root word in the dictionary

    if (cond >= conds->num) {
      CheckInfo * lci = 0;
      CheckInfo * guess = 0;
      tmpl += stripl;

      int res = linf.lookup(tmpword, &linf.sp->s_cmp_end, achar, wordinfo, gi);

      if (res == 1) {

        lci = &ci;
        lci->word = wordinfo.word;
        goto quit;
        
      } else if (res == -1) {

        guess = gi->head;

      }
      
      // prefix matched but no root word was found 
      // if XPRODUCT is allowed, try again but now 
      // cross checked combined with a suffix
      
      if (gi)
        lci = gi->head;
      
      if (cross && xpflg & XPRODUCT) {
        if (pmyMgr->suffix_check(linf, ParmString(tmpword, tmpl), 
                                 ci, gi,
                                 XPRODUCT, (AffEntry *)this)) {
          lci = &ci;
          
        } else if (gi) {
          
          CheckInfo * stop = lci;
          for (lci = gi->head; 
               lci != stop; 
               lci = const_cast<CheckInfo *>(lci->next)) 
          {
            lci->pre_flag = achar;
            lci->pre_strip_len = stripl;
            lci->pre_add_len = appndl;
            lci->pre_add = appnd;
          }
          
        } else {
          
          lci = 0;
          
        }
      }
    
      if (guess)
        lci = guess;
      
    quit:
      if (lci) {
        lci->pre_flag = achar;
        lci->pre_strip_len = stripl;
        lci->pre_add_len = appndl;
        lci->pre_add = appnd;
      }
      if (lci == &ci) return true;
    }
  }
  return false;
}

bool SfxEntry::applicable(SimpleString word) const
{
  int cond;
  /* make sure all conditions match */
  if ((word.size > stripl) && (word.size >= conds->num)) {
    const byte * cp = (const byte *) (word + word.size);
    for (cond = conds->num; --cond >=0; ) {
      if ((conds->get(*--cp) & (1 << cond)) == 0)
        break;
    }
    if (cond < 0) return true;
  }
  return false;
}

// add suffix to this word assuming conditions hold
SimpleString SfxEntry::add(SimpleString word, ObjStack & buf, 
                           int limit, SimpleString orig_word) const
{
  int cond;
  /* make sure all conditions match */
  if ((orig_word.size > stripl) && (orig_word.size >= conds->num)) {
    const byte * cp = (const byte *) (orig_word + orig_word.size);
    for (cond = conds->num; --cond >=0; ) {
      if ((conds->get(*--cp) & (1 << cond)) == 0)
        break;
    }
    if (cond < 0) {
      int alen = word.size - stripl;
      if (alen >= limit) return EMPTY;
      /* we have a match so add suffix */
      char * newword = (char *)buf.alloc(alen + appndl + 1);
      memcpy(newword, word, alen);
      memcpy(newword + alen, appnd, appndl + 1);
      return SimpleString(newword, alen + appndl);
    }
  }
  return SimpleString();
}

// see if this suffix is present in the word 
bool SfxEntry::check(const LookupInfo & linf, ParmString word,
                     CheckInfo & ci, GuessInfo * gi,
                     int optflags, AffEntry* ppfx)
{
  unsigned              tmpl;		 // length of tmpword 
  int			cond;		 // condition beng examined
  WordEntry             wordinfo;        // hash entry pointer
  byte *	cp;
  VARARRAYM(char, tmpword, word.size()+stripl+1, MAXWORDLEN+1);
  PfxEntry* ep = (PfxEntry *) ppfx;

  // if this suffix is being cross checked with a prefix
  // but it does not support cross products skip it

  if ((optflags & XPRODUCT) != 0 &&  (xpflg & XPRODUCT) == 0)
    return false;

  // upon entry suffix is 0 length or already matches the end of the word.
  // So if the remaining root word has positive length
  // and if there are enough chars in root word and added back strip chars
  // to meet the number of characters conditions, then test it

  tmpl = word.size() - appndl;

  if ((tmpl > 0)  &&  (tmpl + stripl >= conds->num)) {

    // generate new root word by removing suffix and adding
    // back any characters that would have been stripped or
    // or null terminating the shorter string

    strcpy (tmpword, word);
    cp = (byte *)(tmpword + tmpl);
    if (stripl) {
      strcpy ((char *)cp, strip);
      tmpl += stripl;
      cp = (byte *)(tmpword + tmpl);
    } else *cp = '\0';

    // now make sure all of the conditions on characters
    // are met.  Please see the appendix at the end of
    // this file for more info on exactly what is being
    // tested

    for (cond = conds->num;  --cond >= 0; ) {
      if ((conds->get(*--cp) & (1 << cond)) == 0) break;
    }

    // if all conditions are met then check if resulting
    // root word in the dictionary

    if (cond < 0) {
      CheckInfo * lci = 0;
      tmpl += stripl;
      const SensitiveCompare * cmp = 
        optflags & XPRODUCT ? &linf.sp->s_cmp_middle : &linf.sp->s_cmp_begin;
      int res = linf.lookup(tmpword, cmp, achar, wordinfo, gi);
      if (res == 1
          && ((optflags & XPRODUCT) == 0 || TESTAFF(wordinfo.aff, ep->achar)))
      {
        lci = &ci;
        lci->word = wordinfo.word;
      } else if (res == 1 && gi) {
        lci = gi->add();
        lci->word = wordinfo.word;
      } else if (res == -1) { // gi must be defined
        lci = gi->head;
      }

      if (lci) {
        lci->suf_flag = achar;
        lci->suf_strip_len = stripl;
        lci->suf_add_len = appndl;
        lci->suf_add = appnd;
      }
      
      if (lci == &ci) return true;
    }
  }
  return false;
}

//////////////////////////////////////////////////////////////////////
//
// new_affix_mgr
//


PosibErr<AffixMgr *> new_affix_mgr(ParmString name, 
                                   Conv & iconv,
                                   const Language * lang)
{
  if (name == "none")
    return 0;
  //CERR << "NEW AFFIX MGR\n";
  String file;
  file += lang->data_dir();
  file += '/';
  file += lang->name();
  file += "_affix.dat";
  AffixMgr * affix;
  affix = new AffixMgr(lang);
  PosibErrBase pe = affix->setup(file, iconv);
  if (pe.has_err()) {
    delete affix;
    return pe;
  } else {
    return affix;
  }
}
}

/**************************************************************************

Appendix:  Understanding Affix Code


An affix is either a  prefix or a suffix attached to root words to make 
other words.

Basically a Prefix or a Suffix is set of AffEntry objects
which store information about the prefix or suffix along 
with supporting routines to check if a word has a particular 
prefix or suffix or a combination.

The structure affentry is defined as follows:

struct AffEntry
{
   unsigned char achar;   // char used to represent the affix
   char * strip;          // string to strip before adding affix
   char * appnd;          // the affix string to add
   short  stripl;         // length of the strip string
   short  appndl;         // length of the affix string
   short  numconds;       // the number of conditions that must be met
   short  xpflg;          // flag: XPRODUCT- combine both prefix and suffix 
   char   conds[SETSIZE]; // array which encodes the conditions to be met
};


Here is a suffix borrowed from the en_US.aff file.  This file 
is whitespace delimited.

SFX D Y 4 
SFX D   0     e          d
SFX D   y     ied        [^aeiou]y
SFX D   0     ed         [^ey]
SFX D   0     ed         [aeiou]y

This information can be interpreted as follows:

In the first line has 4 fields

Field
-----
1     SFX - indicates this is a suffix
2     D   - is the name of the character flag which represents this suffix
3     Y   - indicates it can be combined with prefixes (cross product)
4     4   - indicates that sequence of 4 affentry structures are needed to
               properly store the affix information

The remaining lines describe the unique information for the 4 SfxEntry 
objects that make up this affix.  Each line can be interpreted
as follows: (note fields 1 and 2 are as a check against line 1 info)

Field
-----
1     SFX         - indicates this is a suffix
2     D           - is the name of the character flag for this affix
3     y           - the string of chars to strip off before adding affix
                         (a 0 here indicates the NULL string)
4     ied         - the string of affix characters to add
5     [^aeiou]y   - the conditions which must be met before the affix
                    can be applied

Field 5 is interesting.  Since this is a suffix, field 5 tells us that
there are 2 conditions that must be met.  The first condition is that 
the next to the last character in the word must *NOT* be any of the 
following "a", "e", "i", "o" or "u".  The second condition is that
the last character of the word must end in "y".

So how can we encode this information concisely and be able to 
test for both conditions in a fast manner?  The answer is found
but studying the wonderful ispell code of Geoff Kuenning, et.al. 
(now available under a normal BSD license).

If we set up a conds array of 256 bytes indexed (0 to 255) and access it
using a character (cast to an unsigned char) of a string, we have 8 bits
of information we can store about that character.  Specifically we
could use each bit to say if that character is allowed in any of the 
last (or first for prefixes) 8 characters of the word.

Basically, each character at one end of the word (up to the number 
of conditions) is used to index into the conds array and the resulting 
value found there says whether the that character is valid for a 
specific character position in the word.  

For prefixes, it does this by setting bit 0 if that char is valid 
in the first position, bit 1 if valid in the second position, and so on. 

If a bit is not set, then that char is not valid for that postion in the
word.

If working with suffixes bit 0 is used for the character closest 
to the front, bit 1 for the next character towards the end, ..., 
with bit numconds-1 representing the last char at the end of the string. 

Note: since entries in the conds[] are 8 bits, only 8 conditions 
(read that only 8 character positions) can be examined at one
end of a word (the beginning for prefixes and the end for suffixes.

So to make this clearer, lets encode the conds array values for the 
first two affentries for the suffix D described earlier.


  For the first affentry:    
     numconds = 1             (only examine the last character)

     conds['e'] =  (1 << 0)   (the word must end in an E)
     all others are all 0

  For the second affentry:
     numconds = 2             (only examine the last two characters)     

     conds[X] = conds[X] | (1 << 0)     (aeiou are not allowed)
         where X is all characters *but* a, e, i, o, or u
         

     conds['y'] = (1 << 1)     (the last char must be a y)
     all other bits for all other entries in the conds array are zero


**************************************************************************/