File: Assemblytics_dotplot.R

package info (click to toggle)
assemblytics 1.0%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 416 kB
  • sloc: python: 564; perl: 234; php: 124; sh: 94; makefile: 11
file content (129 lines) | stat: -rw-r--r-- 5,283 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
library(ggplot2)


args<-commandArgs(TRUE)
prefix <- args[1]



filename <- paste(prefix,".oriented_coords.csv",sep="")
plot.output.filename <- paste(prefix,".Assemblytics.Dotplot_filtered",sep="")

plot.title <- "Dot plot of Assemblytics filtered alignments"



ref.pos <- function(chrom,pos,chr.lengths) {
    
    chrom.index <- which(names(chr.lengths)==chrom)-1
    offset.based.on.previous.chromosomes <- 0
    if (chrom.index != 0) {
        offset.based.on.previous.chromosomes <- sum(as.numeric(chr.lengths[c(1:chrom.index)])) 
    }
    
    loc <- offset.based.on.previous.chromosomes + pos   
    loc
}


coords <- read.csv(filename,sep=",",header=TRUE)

if (nrow(coords)>100000) {
    coords <- coords[1:100000,]
}

# names(coords) <- c("ref_start", "ref_end","query_start","query_end","ref_length","query_length","ref","query")


coords$ref <- as.character(coords$ref)
coords$query <- as.character(coords$query)



ordered_common_chromosome_names <- c(seq(1,100),paste("chr",seq(1,100),sep=""),paste("Chr",seq(1,100),sep=""),c("X","Y","M","MT","Chr0","chr0","0"))

all_chromosomes_some_ordered <- c(intersect(ordered_common_chromosome_names,unique(coords$ref)),setdiff(unique(coords$ref),ordered_common_chromosome_names))



coords$ref <- factor(coords$ref,levels=all_chromosomes_some_ordered)


chromosomes <- levels(coords$ref)

chr.lengths <- sapply(chromosomes,function(chr){max(coords[coords$ref==chr,"ref_length"])})
names(chr.lengths) <- chromosomes

coords <- cbind(coords, alignment.length=abs(coords$query_start-coords$query_end))


coords <- cbind(coords, ref.loc.start=mapply(FUN=ref.pos,coords$ref,coords$ref_start,MoreArgs=list(chr.lengths)),
                ref.loc.stop=mapply(FUN=ref.pos,coords$ref,coords$ref_end,MoreArgs=list(chr.lengths)))

# pick longest alignment. then pick the ref.loc.start of that
query.group <- split(coords,factor(coords$query))

ref.loc.of.longest.alignment.by.query <- unlist(sapply(query.group, function(coords.for.each.query) {coords.for.each.query$ref.loc.start[coords.for.each.query$alignment.length==max(coords.for.each.query$alignment.length)][1]}),recursive=FALSE)


# decide optimal-ish ordering of the queries
ordered.query.names <- names(ref.loc.of.longest.alignment.by.query)[order(ref.loc.of.longest.alignment.by.query)]

# construct a query.lengths list
query.lengths <- sapply(ordered.query.names,function(each.query){
    max(coords[coords$query==each.query,"query_length"])
})

# use the query.lengths to give offset positions to each query, adding a query.loc.start column and a query.loc.stop column to each entry in filtered.coords

coords$query.loc.start <- mapply(FUN=ref.pos,coords$query,coords$query_start,MoreArgs=list(query.lengths))
coords$query.loc.stop <- mapply(FUN=ref.pos,coords$query,coords$query_end,MoreArgs=list(query.lengths))


# Hide labels for chromosomes accounting for less than 2% of the reference
chr.labels <- names(chr.lengths)
chr.labels[chr.lengths < 0.02*sum(as.numeric(chr.lengths))] <- ""

query.labels <- names(query.lengths)
query.labels[query.lengths < 0.02*sum(as.numeric(query.lengths))] <- ""


theme_set(theme_bw(base_size = 24))

colors <- c("black","red")

coords$tag <- factor(coords$tag,levels=c("unique","repetitive"))



#  CREATE PNG
png(file=paste(plot.output.filename, ".png",sep=""),width=1000,height=1000)    
print(ggplot(coords, aes(x=ref.loc.start,xend=ref.loc.stop,y=query.loc.start,yend=query.loc.stop,color=tag)) + geom_segment(lineend="butt",size=1.5) + labs(x="Reference",y="Query",title=plot.title) + scale_y_continuous(breaks = cumsum(as.numeric(query.lengths)),labels=query.labels,expand=c(0,0), limits = c(0,sum(as.numeric(query.lengths)))) + scale_x_continuous(breaks = cumsum(as.numeric(chr.lengths)),labels=chr.labels,expand=c(0,0),limits=c(0,sum(as.numeric(chr.lengths)))) + scale_color_manual(values=colors,name="Filter") + theme(
    axis.ticks.y=element_line(size=0),
    axis.text.x = element_text(angle = 90, hjust = 1,vjust=-0.5),
    axis.text.y = element_text(size=12,vjust=1.1),
    plot.title = element_text(vjust=3),
    panel.grid.major.x = element_line(colour = "black",size=0.1), 
    panel.grid.major.y = element_line(colour = "black",size=0.1), 
    panel.grid.minor = element_line(NA)
))

dev.off()

#  CREATE PDF
# pdf(file=paste(plot.output.filename, ".pdf",sep=""),width=100,height=100,res=100)
# print(ggplot(coords, aes(x=ref.loc.start,xend=ref.loc.stop,y=query.loc.start,yend=query.loc.stop)) + geom_segment(lineend="butt",size=1.5) + labs(x="Reference",y="Query",title=plot.title) + scale_y_continuous(breaks = cumsum(as.numeric(query.lengths)),labels=query.labels,expand=c(0,0), limits = c(0,sum(as.numeric(query.lengths)))) + scale_color_manual(values=colors) + scale_x_continuous(breaks = cumsum(as.numeric(chr.lengths)),labels=chr.labels,expand=c(0,0),limits=c(0,sum(as.numeric(chr.lengths)))) + theme(
#     axis.ticks.y=element_line(size=0),
#     axis.text.x = element_text(angle = 90, hjust = 1,vjust=-0.5),
#     axis.text.y = element_text(size=12,vjust=1.1),
#     plot.title = element_text(vjust=3),
#     panel.grid.major.x = element_line(colour = "black",size=0.1), 
#     panel.grid.major.y = element_line(colour = "black",size=0.1), 
#     panel.grid.minor = element_line(NA)
# ))
# 
# dev.off()