File: IFCLoader.cpp

package info (click to toggle)
assimp 3.2~dfsg-3~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 12,348 kB
  • sloc: cpp: 108,331; ansic: 4,704; java: 2,036; python: 1,941; pascal: 341; xml: 146; sh: 134; objc: 122; makefile: 47
file content (961 lines) | stat: -rw-r--r-- 37,396 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------

Copyright (c) 2006-2015, assimp team
All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------
*/

/** @file  IFCLoad.cpp
 *  @brief Implementation of the Industry Foundation Classes loader.
 */


#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER

#include <iterator>
#include <limits>
#include <boost/tuple/tuple.hpp>

#ifndef ASSIMP_BUILD_NO_COMPRESSED_IFC
#   include "unzip.h"
#endif

#include "IFCLoader.h"
#include "STEPFileReader.h"

#include "IFCUtil.h"

#include "StreamReader.h"
#include "MemoryIOWrapper.h"
#include "../include/assimp/scene.h"
#include "../include/assimp/Importer.hpp"


namespace Assimp {
    template<> const std::string LogFunctions<IFCImporter>::log_prefix = "IFC: ";
}

using namespace Assimp;
using namespace Assimp::Formatter;
using namespace Assimp::IFC;

/* DO NOT REMOVE this comment block. The genentitylist.sh script
 * just looks for names adhering to the IfcSomething naming scheme
 * and includes all matches in the whitelist for code-generation. Thus,
 * all entity classes that are only indirectly referenced need to be
 * mentioned explicitly.

  IfcRepresentationMap
  IfcProductRepresentation
  IfcUnitAssignment
  IfcClosedShell
  IfcDoor

 */

namespace {


// forward declarations
void SetUnits(ConversionData& conv);
void SetCoordinateSpace(ConversionData& conv);
void ProcessSpatialStructures(ConversionData& conv);
void MakeTreeRelative(ConversionData& conv);
void ConvertUnit(const EXPRESS::DataType& dt,ConversionData& conv);

} // anon

static const aiImporterDesc desc = {
    "Industry Foundation Classes (IFC) Importer",
    "",
    "",
    "",
    aiImporterFlags_SupportBinaryFlavour,
    0,
    0,
    0,
    0,
    "ifc ifczip"
};


// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
IFCImporter::IFCImporter()
{}

// ------------------------------------------------------------------------------------------------
// Destructor, private as well
IFCImporter::~IFCImporter()
{
}

// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool IFCImporter::CanRead( const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const
{
    const std::string& extension = GetExtension(pFile);
    if (extension == "ifc" || extension == "ifczip") {
        return true;
    }

    else if ((!extension.length() || checkSig) && pIOHandler)   {
        // note: this is the common identification for STEP-encoded files, so
        // it is only unambiguous as long as we don't support any further
        // file formats with STEP as their encoding.
        const char* tokens[] = {"ISO-10303-21"};
        return SearchFileHeaderForToken(pIOHandler,pFile,tokens,1);
    }
    return false;
}

// ------------------------------------------------------------------------------------------------
// List all extensions handled by this loader
const aiImporterDesc* IFCImporter::GetInfo () const
{
    return &desc;
}


// ------------------------------------------------------------------------------------------------
// Setup configuration properties for the loader
void IFCImporter::SetupProperties(const Importer* pImp)
{
    settings.skipSpaceRepresentations = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_SKIP_SPACE_REPRESENTATIONS,true);
    settings.skipCurveRepresentations = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_SKIP_CURVE_REPRESENTATIONS,true);
    settings.useCustomTriangulation = pImp->GetPropertyBool(AI_CONFIG_IMPORT_IFC_CUSTOM_TRIANGULATION,true);

    settings.conicSamplingAngle = 10.f;
    settings.skipAnnotations = true;
}


// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void IFCImporter::InternReadFile( const std::string& pFile,
    aiScene* pScene, IOSystem* pIOHandler)
{
    boost::shared_ptr<IOStream> stream(pIOHandler->Open(pFile));
    if (!stream) {
        ThrowException("Could not open file for reading");
    }


    // if this is a ifczip file, decompress its contents first
    if(GetExtension(pFile) == "ifczip") {
#ifndef ASSIMP_BUILD_NO_COMPRESSED_IFC
        unzFile zip = unzOpen( pFile.c_str() );
        if(zip == NULL) {
            ThrowException("Could not open ifczip file for reading, unzip failed");
        }

        // chop 'zip' postfix
        std::string fileName = pFile.substr(0,pFile.length() - 3);

        std::string::size_type s = pFile.find_last_of('\\');
        if(s == std::string::npos) {
            s = pFile.find_last_of('/');
        }
        if(s != std::string::npos) {
            fileName = fileName.substr(s+1);
        }

        // search file (same name as the IFCZIP except for the file extension) and place file pointer there
        if(UNZ_OK == unzGoToFirstFile(zip)) {
            do {
                // get file size, etc.
                unz_file_info fileInfo;
                char filename[256];
                unzGetCurrentFileInfo( zip , &fileInfo, filename, sizeof(filename), 0, 0, 0, 0 );
                if (GetExtension(filename) != "ifc") {
                    continue;
                }
                uint8_t* buff = new uint8_t[fileInfo.uncompressed_size];
                LogInfo("Decompressing IFCZIP file");
                unzOpenCurrentFile( zip  );
                const int ret = unzReadCurrentFile( zip, buff, fileInfo.uncompressed_size);
                size_t filesize = fileInfo.uncompressed_size;
                if ( ret < 0 || size_t(ret) != filesize )
                {
                    delete[] buff;
                    ThrowException("Failed to decompress IFC ZIP file");
                }
                unzCloseCurrentFile( zip );
                stream.reset(new MemoryIOStream(buff,fileInfo.uncompressed_size,true));
                break;

                if (unzGoToNextFile(zip) == UNZ_END_OF_LIST_OF_FILE) {
                    ThrowException("Found no IFC file member in IFCZIP file (1)");
                }

            } while(true);
        }
        else {
            ThrowException("Found no IFC file member in IFCZIP file (2)");
        }

        unzClose(zip);
#else
        ThrowException("Could not open ifczip file for reading, assimp was built without ifczip support");
#endif
    }

    boost::scoped_ptr<STEP::DB> db(STEP::ReadFileHeader(stream));
    const STEP::HeaderInfo& head = static_cast<const STEP::DB&>(*db).GetHeader();

    if(!head.fileSchema.size() || head.fileSchema.substr(0,3) != "IFC") {
        ThrowException("Unrecognized file schema: " + head.fileSchema);
    }

    if (!DefaultLogger::isNullLogger()) {
        LogDebug("File schema is \'" + head.fileSchema + '\'');
        if (head.timestamp.length()) {
            LogDebug("Timestamp \'" + head.timestamp + '\'');
        }
        if (head.app.length()) {
            LogDebug("Application/Exporter identline is \'" + head.app  + '\'');
        }
    }

    // obtain a copy of the machine-generated IFC scheme
    EXPRESS::ConversionSchema schema;
    GetSchema(schema);

    // tell the reader which entity types to track with special care
    static const char* const types_to_track[] = {
        "ifcsite", "ifcbuilding", "ifcproject"
    };

    // tell the reader for which types we need to simulate STEPs reverse indices
    static const char* const inverse_indices_to_track[] = {
        "ifcrelcontainedinspatialstructure", "ifcrelaggregates", "ifcrelvoidselement", "ifcreldefinesbyproperties", "ifcpropertyset", "ifcstyleditem"
    };

    // feed the IFC schema into the reader and pre-parse all lines
    STEP::ReadFile(*db, schema, types_to_track, inverse_indices_to_track);
    const STEP::LazyObject* proj =  db->GetObject("ifcproject");
    if (!proj) {
        ThrowException("missing IfcProject entity");
    }

    ConversionData conv(*db,proj->To<IfcProject>(),pScene,settings);
    SetUnits(conv);
    SetCoordinateSpace(conv);
    ProcessSpatialStructures(conv);
    MakeTreeRelative(conv);

    // NOTE - this is a stress test for the importer, but it works only
    // in a build with no entities disabled. See
    //     scripts/IFCImporter/CPPGenerator.py
    // for more information.
    #ifdef ASSIMP_IFC_TEST
        db->EvaluateAll();
    #endif

    // do final data copying
    if (conv.meshes.size()) {
        pScene->mNumMeshes = static_cast<unsigned int>(conv.meshes.size());
        pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]();
        std::copy(conv.meshes.begin(),conv.meshes.end(),pScene->mMeshes);

        // needed to keep the d'tor from burning us
        conv.meshes.clear();
    }

    if (conv.materials.size()) {
        pScene->mNumMaterials = static_cast<unsigned int>(conv.materials.size());
        pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials]();
        std::copy(conv.materials.begin(),conv.materials.end(),pScene->mMaterials);

        // needed to keep the d'tor from burning us
        conv.materials.clear();
    }

    // apply world coordinate system (which includes the scaling to convert to meters and a -90 degrees rotation around x)
    aiMatrix4x4 scale, rot;
    aiMatrix4x4::Scaling(static_cast<aiVector3D>(IfcVector3(conv.len_scale)),scale);
    aiMatrix4x4::RotationX(-AI_MATH_HALF_PI_F,rot);

    pScene->mRootNode->mTransformation = rot * scale * conv.wcs * pScene->mRootNode->mTransformation;

    // this must be last because objects are evaluated lazily as we process them
    if ( !DefaultLogger::isNullLogger() ){
        LogDebug((Formatter::format(),"STEP: evaluated ",db->GetEvaluatedObjectCount()," object records"));
    }
}

namespace {


// ------------------------------------------------------------------------------------------------
void ConvertUnit(const IfcNamedUnit& unit,ConversionData& conv)
{
    if(const IfcSIUnit* const si = unit.ToPtr<IfcSIUnit>()) {

        if(si->UnitType == "LENGTHUNIT") {
            conv.len_scale = si->Prefix ? ConvertSIPrefix(si->Prefix) : 1.f;
            IFCImporter::LogDebug("got units used for lengths");
        }
        if(si->UnitType == "PLANEANGLEUNIT") {
            if (si->Name != "RADIAN") {
                IFCImporter::LogWarn("expected base unit for angles to be radian");
            }
        }
    }
    else if(const IfcConversionBasedUnit* const convu = unit.ToPtr<IfcConversionBasedUnit>()) {

        if(convu->UnitType == "PLANEANGLEUNIT") {
            try {
                conv.angle_scale = convu->ConversionFactor->ValueComponent->To<EXPRESS::REAL>();
                ConvertUnit(*convu->ConversionFactor->UnitComponent,conv);
                IFCImporter::LogDebug("got units used for angles");
            }
            catch(std::bad_cast&) {
                IFCImporter::LogError("skipping unknown IfcConversionBasedUnit.ValueComponent entry - expected REAL");
            }
        }
    }
}

// ------------------------------------------------------------------------------------------------
void ConvertUnit(const EXPRESS::DataType& dt,ConversionData& conv)
{
    try {
        const EXPRESS::ENTITY& e = dt.To<ENTITY>();

        const IfcNamedUnit& unit = e.ResolveSelect<IfcNamedUnit>(conv.db);
        if(unit.UnitType != "LENGTHUNIT" && unit.UnitType != "PLANEANGLEUNIT") {
            return;
        }

        ConvertUnit(unit,conv);
    }
    catch(std::bad_cast&) {
        // not entity, somehow
        IFCImporter::LogError("skipping unknown IfcUnit entry - expected entity");
    }
}

// ------------------------------------------------------------------------------------------------
void SetUnits(ConversionData& conv)
{
    // see if we can determine the coordinate space used to express.
    for(size_t i = 0; i <  conv.proj.UnitsInContext->Units.size(); ++i ) {
        ConvertUnit(*conv.proj.UnitsInContext->Units[i],conv);
    }
}


// ------------------------------------------------------------------------------------------------
void SetCoordinateSpace(ConversionData& conv)
{
    const IfcRepresentationContext* fav = NULL;
    BOOST_FOREACH(const IfcRepresentationContext& v, conv.proj.RepresentationContexts) {
        fav = &v;
        // Model should be the most suitable type of context, hence ignore the others
        if (v.ContextType && v.ContextType.Get() == "Model") {
            break;
        }
    }
    if (fav) {
        if(const IfcGeometricRepresentationContext* const geo = fav->ToPtr<IfcGeometricRepresentationContext>()) {
            ConvertAxisPlacement(conv.wcs, *geo->WorldCoordinateSystem, conv);
            IFCImporter::LogDebug("got world coordinate system");
        }
    }
}


// ------------------------------------------------------------------------------------------------
void ResolveObjectPlacement(aiMatrix4x4& m, const IfcObjectPlacement& place, ConversionData& conv)
{
    if (const IfcLocalPlacement* const local = place.ToPtr<IfcLocalPlacement>()){
        IfcMatrix4 tmp;
        ConvertAxisPlacement(tmp, *local->RelativePlacement, conv);

        m = static_cast<aiMatrix4x4>(tmp);

        if (local->PlacementRelTo) {
            aiMatrix4x4 tmp;
            ResolveObjectPlacement(tmp,local->PlacementRelTo.Get(),conv);
            m = tmp * m;
        }
    }
    else {
        IFCImporter::LogWarn("skipping unknown IfcObjectPlacement entity, type is " + place.GetClassName());
    }
}

// ------------------------------------------------------------------------------------------------
bool ProcessMappedItem(const IfcMappedItem& mapped, aiNode* nd_src, std::vector< aiNode* >& subnodes_src, unsigned int matid, ConversionData& conv)
{
    // insert a custom node here, the cartesian transform operator is simply a conventional transformation matrix
    std::auto_ptr<aiNode> nd(new aiNode());
    nd->mName.Set("IfcMappedItem");

    // handle the Cartesian operator
    IfcMatrix4 m;
    ConvertTransformOperator(m, *mapped.MappingTarget);

    IfcMatrix4 msrc;
    ConvertAxisPlacement(msrc,*mapped.MappingSource->MappingOrigin,conv);

    msrc = m*msrc;

    std::vector<unsigned int> meshes;
    const size_t old_openings = conv.collect_openings ? conv.collect_openings->size() : 0;
    if (conv.apply_openings) {
        IfcMatrix4 minv = msrc;
        minv.Inverse();
        BOOST_FOREACH(TempOpening& open,*conv.apply_openings){
            open.Transform(minv);
        }
    }

    unsigned int localmatid = ProcessMaterials(mapped.GetID(),matid,conv,false);
    const IfcRepresentation& repr = mapped.MappingSource->MappedRepresentation;

    bool got = false;
    BOOST_FOREACH(const IfcRepresentationItem& item, repr.Items) {
        if(!ProcessRepresentationItem(item,localmatid,meshes,conv)) {
            IFCImporter::LogWarn("skipping mapped entity of type " + item.GetClassName() + ", no representations could be generated");
        }
        else got = true;
    }

    if (!got) {
        return false;
    }

    AssignAddedMeshes(meshes,nd.get(),conv);
    if (conv.collect_openings) {

        // if this pass serves us only to collect opening geometry,
        // make sure we transform the TempMesh's which we need to
        // preserve as well.
        if(const size_t diff = conv.collect_openings->size() - old_openings) {
            for(size_t i = 0; i < diff; ++i) {
                (*conv.collect_openings)[old_openings+i].Transform(msrc);
            }
        }
    }

    nd->mTransformation =  nd_src->mTransformation * static_cast<aiMatrix4x4>( msrc );
    subnodes_src.push_back(nd.release());

    return true;
}

// ------------------------------------------------------------------------------------------------
struct RateRepresentationPredicate {

    int Rate(const IfcRepresentation* r) const {
        // the smaller, the better

        if (! r->RepresentationIdentifier) {
            // neutral choice if no extra information is specified
            return 0;
        }


        const std::string& name = r->RepresentationIdentifier.Get();
        if (name == "MappedRepresentation") {
            if (!r->Items.empty()) {
                // take the first item and base our choice on it
                const IfcMappedItem* const m = r->Items.front()->ToPtr<IfcMappedItem>();
                if (m) {
                    return Rate(m->MappingSource->MappedRepresentation);
                }
            }
            return 100;
        }

        return Rate(name);
    }

    int Rate(const std::string& r) const {


        if (r == "SolidModel") {
            return -3;
        }

        // give strong preference to extruded geometry.
        if (r == "SweptSolid") {
            return -10;
        }

        if (r == "Clipping") {
            return -5;
        }

        // 'Brep' is difficult to get right due to possible voids in the
        // polygon boundaries, so take it only if we are forced to (i.e.
        // if the only alternative is (non-clipping) boolean operations,
        // which are not supported at all).
        if (r == "Brep") {
            return -2;
        }

        // Curves, bounding boxes - those will most likely not be loaded
        // as we can't make any use out of this data. So consider them
        // last.
        if (r == "BoundingBox" || r == "Curve2D") {
            return 100;
        }
        return 0;
    }

    bool operator() (const IfcRepresentation* a, const IfcRepresentation* b) const {
        return Rate(a) < Rate(b);
    }
};

// ------------------------------------------------------------------------------------------------
void ProcessProductRepresentation(const IfcProduct& el, aiNode* nd, std::vector< aiNode* >& subnodes, ConversionData& conv)
{
    if(!el.Representation) {
        return;
    }

    // extract Color from metadata, if present
    unsigned int matid = ProcessMaterials( el.GetID(), std::numeric_limits<uint32_t>::max(), conv, false);
    std::vector<unsigned int> meshes;

    // we want only one representation type, so bring them in a suitable order (i.e try those
    // that look as if we could read them quickly at first). This way of reading
    // representation is relatively generic and allows the concrete implementations
    // for the different representation types to make some sensible choices what
    // to load and what not to load.
    const STEP::ListOf< STEP::Lazy< IfcRepresentation >, 1, 0 >& src = el.Representation.Get()->Representations;
    std::vector<const IfcRepresentation*> repr_ordered(src.size());
    std::copy(src.begin(),src.end(),repr_ordered.begin());
    std::sort(repr_ordered.begin(),repr_ordered.end(),RateRepresentationPredicate());
    BOOST_FOREACH(const IfcRepresentation* repr, repr_ordered) {
        bool res = false;
        BOOST_FOREACH(const IfcRepresentationItem& item, repr->Items) {
            if(const IfcMappedItem* const geo = item.ToPtr<IfcMappedItem>()) {
                res = ProcessMappedItem(*geo,nd,subnodes,matid,conv) || res;
            }
            else {
                res = ProcessRepresentationItem(item,matid,meshes,conv) || res;
            }
        }
        // if we got something meaningful at this point, skip any further representations
        if(res) {
            break;
        }
    }
    AssignAddedMeshes(meshes,nd,conv);
}

typedef std::map<std::string, std::string> Metadata;

// ------------------------------------------------------------------------------------------------
void ProcessMetadata(const ListOf< Lazy< IfcProperty >, 1, 0 >& set, ConversionData& conv, Metadata& properties,
    const std::string& prefix = "",
    unsigned int nest = 0)
{
    BOOST_FOREACH(const IfcProperty& property, set) {
        const std::string& key = prefix.length() > 0 ? (prefix + "." + property.Name) : property.Name;
        if (const IfcPropertySingleValue* const singleValue = property.ToPtr<IfcPropertySingleValue>()) {
            if (singleValue->NominalValue) {
                if (const EXPRESS::STRING* str = singleValue->NominalValue.Get()->ToPtr<EXPRESS::STRING>()) {
                    std::string value = static_cast<std::string>(*str);
                    properties[key]=value;
                }
                else if (const EXPRESS::REAL* val = singleValue->NominalValue.Get()->ToPtr<EXPRESS::REAL>()) {
                    float value = static_cast<float>(*val);
                    std::stringstream s;
                    s << value;
                    properties[key]=s.str();
                }
                else if (const EXPRESS::INTEGER* val = singleValue->NominalValue.Get()->ToPtr<EXPRESS::INTEGER>()) {
                    int64_t value = static_cast<int64_t>(*val);
                    std::stringstream s;
                    s << value;
                    properties[key]=s.str();
                }
            }
        }
        else if (const IfcPropertyListValue* const listValue = property.ToPtr<IfcPropertyListValue>()) {
            std::stringstream ss;
            ss << "[";
            unsigned index=0;
            BOOST_FOREACH(const IfcValue::Out& v, listValue->ListValues) {
                if (!v) continue;
                if (const EXPRESS::STRING* str = v->ToPtr<EXPRESS::STRING>()) {
                    std::string value = static_cast<std::string>(*str);
                    ss << "'" << value << "'";
                }
                else if (const EXPRESS::REAL* val = v->ToPtr<EXPRESS::REAL>()) {
                    float value = static_cast<float>(*val);
                    ss << value;
                }
                else if (const EXPRESS::INTEGER* val = v->ToPtr<EXPRESS::INTEGER>()) {
                    int64_t value = static_cast<int64_t>(*val);
                    ss << value;
                }
                if (index+1<listValue->ListValues.size()) {
                    ss << ",";
                }
                index++;
            }
            ss << "]";
            properties[key]=ss.str();
        }
        else if (const IfcComplexProperty* const complexProp = property.ToPtr<IfcComplexProperty>()) {
            if(nest > 2) { // mostly arbitrary limit to prevent stack overflow vulnerabilities
                IFCImporter::LogError("maximum nesting level for IfcComplexProperty reached, skipping this property.");
            }
            else {
                ProcessMetadata(complexProp->HasProperties, conv, properties, key, nest + 1);
            }
        }
        else {
            properties[key]="";
        }
    }
}


// ------------------------------------------------------------------------------------------------
void ProcessMetadata(uint64_t relDefinesByPropertiesID, ConversionData& conv, Metadata& properties)
{
    if (const IfcRelDefinesByProperties* const pset = conv.db.GetObject(relDefinesByPropertiesID)->ToPtr<IfcRelDefinesByProperties>()) {
        if (const IfcPropertySet* const set = conv.db.GetObject(pset->RelatingPropertyDefinition->GetID())->ToPtr<IfcPropertySet>()) {
            ProcessMetadata(set->HasProperties, conv, properties);
        }
    }
}

// ------------------------------------------------------------------------------------------------
aiNode* ProcessSpatialStructure(aiNode* parent, const IfcProduct& el, ConversionData& conv, std::vector<TempOpening>* collect_openings = NULL)
{
    const STEP::DB::RefMap& refs = conv.db.GetRefs();

    // skip over space and annotation nodes - usually, these have no meaning in Assimp's context
    bool skipGeometry = false;
    if(conv.settings.skipSpaceRepresentations) {
        if(el.ToPtr<IfcSpace>()) {
            IFCImporter::LogDebug("skipping IfcSpace entity due to importer settings");
            skipGeometry = true;
        }
    }

    if(conv.settings.skipAnnotations) {
        if(el.ToPtr<IfcAnnotation>()) {
            IFCImporter::LogDebug("skipping IfcAnnotation entity due to importer settings");
            return NULL;
        }
    }

    // add an output node for this spatial structure
    std::auto_ptr<aiNode> nd(new aiNode());
    nd->mName.Set(el.GetClassName()+"_"+(el.Name?el.Name.Get():"Unnamed")+"_"+el.GlobalId);
    nd->mParent = parent;

    conv.already_processed.insert(el.GetID());

    // check for node metadata
    STEP::DB::RefMapRange children = refs.equal_range(el.GetID());
    if (children.first!=refs.end()) {
        Metadata properties;
        if (children.first==children.second) {
            // handles single property set
            ProcessMetadata((*children.first).second, conv, properties);
        }
        else {
            // handles multiple property sets (currently all property sets are merged,
            // which may not be the best solution in the long run)
            for (STEP::DB::RefMap::const_iterator it=children.first; it!=children.second; ++it) {
                ProcessMetadata((*it).second, conv, properties);
            }
        }

        if (!properties.empty()) {
            aiMetadata* data = new aiMetadata();
            data->mNumProperties = properties.size();
            data->mKeys = new aiString[data->mNumProperties]();
            data->mValues = new aiMetadataEntry[data->mNumProperties]();

            unsigned int index = 0;
            BOOST_FOREACH(const Metadata::value_type& kv, properties)
                data->Set(index++, kv.first, aiString(kv.second));

            nd->mMetaData = data;
        }
    }

    if(el.ObjectPlacement) {
        ResolveObjectPlacement(nd->mTransformation,el.ObjectPlacement.Get(),conv);
    }

    std::vector<TempOpening> openings;

    IfcMatrix4 myInv;
    bool didinv = false;

    // convert everything contained directly within this structure,
    // this may result in more nodes.
    std::vector< aiNode* > subnodes;
    try {
        // locate aggregates and 'contained-in-here'-elements of this spatial structure and add them in recursively
        // on our way, collect openings in *this* element
        STEP::DB::RefMapRange range = refs.equal_range(el.GetID());

        for(STEP::DB::RefMapRange range2 = range; range2.first != range.second; ++range2.first) {
            // skip over meshes that have already been processed before. This is strictly necessary
            // because the reverse indices also include references contained in argument lists and
            // therefore every element has a back-reference hold by its parent.
            if (conv.already_processed.find((*range2.first).second) != conv.already_processed.end()) {
                continue;
            }
            const STEP::LazyObject& obj = conv.db.MustGetObject((*range2.first).second);

            // handle regularly-contained elements
            if(const IfcRelContainedInSpatialStructure* const cont = obj->ToPtr<IfcRelContainedInSpatialStructure>()) {
                if(cont->RelatingStructure->GetID() != el.GetID()) {
                    continue;
                }
                BOOST_FOREACH(const IfcProduct& pro, cont->RelatedElements) {
                    if(pro.ToPtr<IfcOpeningElement>()) {
                        // IfcOpeningElement is handled below. Sadly we can't use it here as is:
                        // The docs say that opening elements are USUALLY attached to building storey,
                        // but we want them for the building elements to which they belong.
                        continue;
                    }

                    aiNode* const ndnew = ProcessSpatialStructure(nd.get(),pro,conv,NULL);
                    if(ndnew) {
                        subnodes.push_back( ndnew );
                    }
                }
            }
            // handle openings, which we collect in a list rather than adding them to the node graph
            else if(const IfcRelVoidsElement* const fills = obj->ToPtr<IfcRelVoidsElement>()) {
                if(fills->RelatingBuildingElement->GetID() == el.GetID()) {
                    const IfcFeatureElementSubtraction& open = fills->RelatedOpeningElement;

                    // move opening elements to a separate node since they are semantically different than elements that are just 'contained'
                    std::auto_ptr<aiNode> nd_aggr(new aiNode());
                    nd_aggr->mName.Set("$RelVoidsElement");
                    nd_aggr->mParent = nd.get();

                    nd_aggr->mTransformation = nd->mTransformation;

                    std::vector<TempOpening> openings_local;
                    aiNode* const ndnew = ProcessSpatialStructure( nd_aggr.get(),open, conv,&openings_local);
                    if (ndnew) {

                        nd_aggr->mNumChildren = 1;
                        nd_aggr->mChildren = new aiNode*[1]();


                        nd_aggr->mChildren[0] = ndnew;

                        if(openings_local.size()) {
                            if (!didinv) {
                                myInv = aiMatrix4x4(nd->mTransformation ).Inverse();
                                didinv = true;
                            }

                            // we need all openings to be in the local space of *this* node, so transform them
                            BOOST_FOREACH(TempOpening& op,openings_local) {
                                op.Transform( myInv*nd_aggr->mChildren[0]->mTransformation);
                                openings.push_back(op);
                            }
                        }
                        subnodes.push_back( nd_aggr.release() );
                    }
                }
            }
        }

        for(;range.first != range.second; ++range.first) {
            // see note in loop above
            if (conv.already_processed.find((*range.first).second) != conv.already_processed.end()) {
                continue;
            }
            if(const IfcRelAggregates* const aggr = conv.db.GetObject((*range.first).second)->ToPtr<IfcRelAggregates>()) {
                if(aggr->RelatingObject->GetID() != el.GetID()) {
                    continue;
                }

                // move aggregate elements to a separate node since they are semantically different than elements that are just 'contained'
                std::auto_ptr<aiNode> nd_aggr(new aiNode());
                nd_aggr->mName.Set("$RelAggregates");
                nd_aggr->mParent = nd.get();

                nd_aggr->mTransformation = nd->mTransformation;

                nd_aggr->mChildren = new aiNode*[aggr->RelatedObjects.size()]();
                BOOST_FOREACH(const IfcObjectDefinition& def, aggr->RelatedObjects) {
                    if(const IfcProduct* const prod = def.ToPtr<IfcProduct>()) {

                        aiNode* const ndnew = ProcessSpatialStructure(nd_aggr.get(),*prod,conv,NULL);
                        if(ndnew) {
                            nd_aggr->mChildren[nd_aggr->mNumChildren++] = ndnew;
                        }
                    }
                }

                subnodes.push_back( nd_aggr.release() );
            }
        }

        conv.collect_openings = collect_openings;
        if(!conv.collect_openings) {
            conv.apply_openings = &openings;
        }

        if (!skipGeometry) {
          ProcessProductRepresentation(el,nd.get(),subnodes,conv);
          conv.apply_openings = conv.collect_openings = NULL;
        }

        if (subnodes.size()) {
            nd->mChildren = new aiNode*[subnodes.size()]();
            BOOST_FOREACH(aiNode* nd2, subnodes) {
                nd->mChildren[nd->mNumChildren++] = nd2;
                nd2->mParent = nd.get();
            }
        }
    }
    catch(...) {
        // it hurts, but I don't want to pull boost::ptr_vector into -noboost only for these few spots here
        std::for_each(subnodes.begin(),subnodes.end(),delete_fun<aiNode>());
        throw;
    }

    ai_assert(conv.already_processed.find(el.GetID()) != conv.already_processed.end());
    conv.already_processed.erase(conv.already_processed.find(el.GetID()));
    return nd.release();
}

// ------------------------------------------------------------------------------------------------
void ProcessSpatialStructures(ConversionData& conv)
{
    // XXX add support for multiple sites (i.e. IfcSpatialStructureElements with composition == COMPLEX)


    // process all products in the file. it is reasonable to assume that a
    // file that is relevant for us contains at least a site or a building.
    const STEP::DB::ObjectMapByType& map = conv.db.GetObjectsByType();

    ai_assert(map.find("ifcsite") != map.end());
    const STEP::DB::ObjectSet* range = &map.find("ifcsite")->second;

    if (range->empty()) {
        ai_assert(map.find("ifcbuilding") != map.end());
        range = &map.find("ifcbuilding")->second;
        if (range->empty()) {
            // no site, no building -  fail;
            IFCImporter::ThrowException("no root element found (expected IfcBuilding or preferably IfcSite)");
        }
    }


    BOOST_FOREACH(const STEP::LazyObject* lz, *range) {
        const IfcSpatialStructureElement* const prod = lz->ToPtr<IfcSpatialStructureElement>();
        if(!prod) {
            continue;
        }
        IFCImporter::LogDebug("looking at spatial structure `" + (prod->Name ? prod->Name.Get() : "unnamed") + "`" + (prod->ObjectType? " which is of type " + prod->ObjectType.Get():""));

        // the primary site is referenced by an IFCRELAGGREGATES element which assigns it to the IFCPRODUCT
        const STEP::DB::RefMap& refs = conv.db.GetRefs();
        STEP::DB::RefMapRange range = refs.equal_range(conv.proj.GetID());
        for(;range.first != range.second; ++range.first) {
            if(const IfcRelAggregates* const aggr = conv.db.GetObject((*range.first).second)->ToPtr<IfcRelAggregates>()) {

                BOOST_FOREACH(const IfcObjectDefinition& def, aggr->RelatedObjects) {
                    // comparing pointer values is not sufficient, we would need to cast them to the same type first
                    // as there is multiple inheritance in the game.
                    if (def.GetID() == prod->GetID()) {
                        IFCImporter::LogDebug("selecting this spatial structure as root structure");
                        // got it, this is the primary site.
                        conv.out->mRootNode = ProcessSpatialStructure(NULL,*prod,conv,NULL);
                        return;
                    }
                }

            }
        }
    }


    IFCImporter::LogWarn("failed to determine primary site element, taking the first IfcSite");
    BOOST_FOREACH(const STEP::LazyObject* lz, *range) {
        const IfcSpatialStructureElement* const prod = lz->ToPtr<IfcSpatialStructureElement>();
        if(!prod) {
            continue;
        }

        conv.out->mRootNode = ProcessSpatialStructure(NULL,*prod,conv,NULL);
        return;
    }

    IFCImporter::ThrowException("failed to determine primary site element");
}

// ------------------------------------------------------------------------------------------------
void MakeTreeRelative(aiNode* start, const aiMatrix4x4& combined)
{
    // combined is the parent's absolute transformation matrix
    const aiMatrix4x4 old = start->mTransformation;

    if (!combined.IsIdentity()) {
        start->mTransformation = aiMatrix4x4(combined).Inverse() * start->mTransformation;
    }

    // All nodes store absolute transformations right now, so we need to make them relative
    for (unsigned int i = 0; i < start->mNumChildren; ++i) {
        MakeTreeRelative(start->mChildren[i],old);
    }
}

// ------------------------------------------------------------------------------------------------
void MakeTreeRelative(ConversionData& conv)
{
    MakeTreeRelative(conv.out->mRootNode,IfcMatrix4());
}

} // !anon



#endif