1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
|
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2016, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** @file IFCUtil.cpp
* @brief Implementation of conversion routines for some common Ifc helper entities.
*/
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
#include "IFCUtil.h"
#include "PolyTools.h"
#include "ProcessHelper.h"
#include "Defines.h"
namespace Assimp {
namespace IFC {
// ------------------------------------------------------------------------------------------------
void TempOpening::Transform(const IfcMatrix4& mat)
{
if(profileMesh) {
profileMesh->Transform(mat);
}
if(profileMesh2D) {
profileMesh2D->Transform(mat);
}
extrusionDir *= IfcMatrix3(mat);
}
// ------------------------------------------------------------------------------------------------
aiMesh* TempMesh::ToMesh()
{
ai_assert(verts.size() == std::accumulate(vertcnt.begin(),vertcnt.end(),size_t(0)));
if (verts.empty()) {
return NULL;
}
std::unique_ptr<aiMesh> mesh(new aiMesh());
// copy vertices
mesh->mNumVertices = static_cast<unsigned int>(verts.size());
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
std::copy(verts.begin(),verts.end(),mesh->mVertices);
// and build up faces
mesh->mNumFaces = static_cast<unsigned int>(vertcnt.size());
mesh->mFaces = new aiFace[mesh->mNumFaces];
for(unsigned int i = 0,n=0, acc = 0; i < mesh->mNumFaces; ++n) {
aiFace& f = mesh->mFaces[i];
if (!vertcnt[n]) {
--mesh->mNumFaces;
continue;
}
f.mNumIndices = vertcnt[n];
f.mIndices = new unsigned int[f.mNumIndices];
for(unsigned int a = 0; a < f.mNumIndices; ++a) {
f.mIndices[a] = acc++;
}
++i;
}
return mesh.release();
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Clear()
{
verts.clear();
vertcnt.clear();
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Transform(const IfcMatrix4& mat)
{
for(IfcVector3& v : verts) {
v *= mat;
}
}
// ------------------------------------------------------------------------------
IfcVector3 TempMesh::Center() const
{
return (verts.size() == 0) ? IfcVector3(0.0f, 0.0f, 0.0f) : (std::accumulate(verts.begin(),verts.end(),IfcVector3()) / static_cast<IfcFloat>(verts.size()));
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Append(const TempMesh& other)
{
verts.insert(verts.end(),other.verts.begin(),other.verts.end());
vertcnt.insert(vertcnt.end(),other.vertcnt.begin(),other.vertcnt.end());
}
// ------------------------------------------------------------------------------------------------
void TempMesh::RemoveDegenerates()
{
// The strategy is simple: walk the mesh and compute normals using
// Newell's algorithm. The length of the normals gives the area
// of the polygons, which is close to zero for lines.
std::vector<IfcVector3> normals;
ComputePolygonNormals(normals, false);
bool drop = false;
size_t inor = 0;
std::vector<IfcVector3>::iterator vit = verts.begin();
for (std::vector<unsigned int>::iterator it = vertcnt.begin(); it != vertcnt.end(); ++inor) {
const unsigned int pcount = *it;
if (normals[inor].SquareLength() < 1e-10f) {
it = vertcnt.erase(it);
vit = verts.erase(vit, vit + pcount);
drop = true;
continue;
}
vit += pcount;
++it;
}
if(drop) {
IFCImporter::LogDebug("removing degenerate faces");
}
}
// ------------------------------------------------------------------------------------------------
IfcVector3 TempMesh::ComputePolygonNormal(const IfcVector3* vtcs, size_t cnt, bool normalize)
{
std::vector<IfcFloat> temp((cnt+2)*3);
for( size_t vofs = 0, i = 0; vofs < cnt; ++vofs )
{
const IfcVector3& v = vtcs[vofs];
temp[i++] = v.x;
temp[i++] = v.y;
temp[i++] = v.z;
}
IfcVector3 nor;
NewellNormal<3, 3, 3>(nor, cnt, &temp[0], &temp[1], &temp[2]);
return normalize ? nor.Normalize() : nor;
}
// ------------------------------------------------------------------------------------------------
void TempMesh::ComputePolygonNormals(std::vector<IfcVector3>& normals,
bool normalize,
size_t ofs) const
{
size_t max_vcount = 0;
std::vector<unsigned int>::const_iterator begin = vertcnt.begin()+ofs, end = vertcnt.end(), iit;
for(iit = begin; iit != end; ++iit) {
max_vcount = std::max(max_vcount,static_cast<size_t>(*iit));
}
std::vector<IfcFloat> temp((max_vcount+2)*4);
normals.reserve( normals.size() + vertcnt.size()-ofs );
// `NewellNormal()` currently has a relatively strange interface and need to
// re-structure things a bit to meet them.
size_t vidx = std::accumulate(vertcnt.begin(),begin,0);
for(iit = begin; iit != end; vidx += *iit++) {
if (!*iit) {
normals.push_back(IfcVector3());
continue;
}
for(size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
const IfcVector3& v = verts[vidx+vofs];
temp[cnt++] = v.x;
temp[cnt++] = v.y;
temp[cnt++] = v.z;
#ifdef ASSIMP_BUILD_DEBUG
temp[cnt] = std::numeric_limits<IfcFloat>::quiet_NaN();
#endif
++cnt;
}
normals.push_back(IfcVector3());
NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
}
if(normalize) {
for(IfcVector3& n : normals) {
n.Normalize();
}
}
}
// ------------------------------------------------------------------------------------------------
// Compute the normal of the last polygon in the given mesh
IfcVector3 TempMesh::ComputeLastPolygonNormal(bool normalize) const
{
return ComputePolygonNormal(&verts[verts.size() - vertcnt.back()], vertcnt.back(), normalize);
}
struct CompareVector
{
bool operator () (const IfcVector3& a, const IfcVector3& b) const
{
IfcVector3 d = a - b;
IfcFloat eps = 1e-6;
return d.x < -eps || (std::abs(d.x) < eps && d.y < -eps) || (std::abs(d.x) < eps && std::abs(d.y) < eps && d.z < -eps);
}
};
struct FindVector
{
IfcVector3 v;
FindVector(const IfcVector3& p) : v(p) { }
bool operator () (const IfcVector3& p) { return FuzzyVectorCompare(1e-6)(p, v); }
};
// ------------------------------------------------------------------------------------------------
void TempMesh::FixupFaceOrientation()
{
const IfcVector3 vavg = Center();
// create a list of start indices for all faces to allow random access to faces
std::vector<size_t> faceStartIndices(vertcnt.size());
for( size_t i = 0, a = 0; a < vertcnt.size(); i += vertcnt[a], ++a )
faceStartIndices[a] = i;
// list all faces on a vertex
std::map<IfcVector3, std::vector<size_t>, CompareVector> facesByVertex;
for( size_t a = 0; a < vertcnt.size(); ++a )
{
for( size_t b = 0; b < vertcnt[a]; ++b )
facesByVertex[verts[faceStartIndices[a] + b]].push_back(a);
}
// determine neighbourhood for all polys
std::vector<size_t> neighbour(verts.size(), SIZE_MAX);
std::vector<size_t> tempIntersect(10);
for( size_t a = 0; a < vertcnt.size(); ++a )
{
for( size_t b = 0; b < vertcnt[a]; ++b )
{
size_t ib = faceStartIndices[a] + b, nib = faceStartIndices[a] + (b + 1) % vertcnt[a];
const std::vector<size_t>& facesOnB = facesByVertex[verts[ib]];
const std::vector<size_t>& facesOnNB = facesByVertex[verts[nib]];
// there should be exactly one or two faces which appear in both lists. Our face and the other side
std::vector<size_t>::iterator sectstart = tempIntersect.begin();
std::vector<size_t>::iterator sectend = std::set_intersection(
facesOnB.begin(), facesOnB.end(), facesOnNB.begin(), facesOnNB.end(), sectstart);
if( std::distance(sectstart, sectend) != 2 )
continue;
if( *sectstart == a )
++sectstart;
neighbour[ib] = *sectstart;
}
}
// now we're getting started. We take the face which is the farthest away from the center. This face is most probably
// facing outwards. So we reverse this face to point outwards in relation to the center. Then we adapt neighbouring
// faces to have the same winding until all faces have been tested.
std::vector<bool> faceDone(vertcnt.size(), false);
while( std::count(faceDone.begin(), faceDone.end(), false) != 0 )
{
// find the farthest of the remaining faces
size_t farthestIndex = SIZE_MAX;
IfcFloat farthestDistance = -1.0;
for( size_t a = 0; a < vertcnt.size(); ++a )
{
if( faceDone[a] )
continue;
IfcVector3 faceCenter = std::accumulate(verts.begin() + faceStartIndices[a],
verts.begin() + faceStartIndices[a] + vertcnt[a], IfcVector3(0.0)) / IfcFloat(vertcnt[a]);
IfcFloat dst = (faceCenter - vavg).SquareLength();
if( dst > farthestDistance ) { farthestDistance = dst; farthestIndex = a; }
}
// calculate its normal and reverse the poly if its facing towards the mesh center
IfcVector3 farthestNormal = ComputePolygonNormal(verts.data() + faceStartIndices[farthestIndex], vertcnt[farthestIndex]);
IfcVector3 farthestCenter = std::accumulate(verts.begin() + faceStartIndices[farthestIndex],
verts.begin() + faceStartIndices[farthestIndex] + vertcnt[farthestIndex], IfcVector3(0.0))
/ IfcFloat(vertcnt[farthestIndex]);
// We accapt a bit of negative orientation without reversing. In case of doubt, prefer the orientation given in
// the file.
if( (farthestNormal * (farthestCenter - vavg).Normalize()) < -0.4 )
{
size_t fsi = faceStartIndices[farthestIndex], fvc = vertcnt[farthestIndex];
std::reverse(verts.begin() + fsi, verts.begin() + fsi + fvc);
std::reverse(neighbour.begin() + fsi, neighbour.begin() + fsi + fvc);
// because of the neighbour index belonging to the edge starting with the point at the same index, we need to
// cycle the neighbours through to match the edges again.
// Before: points A - B - C - D with edge neighbour p - q - r - s
// After: points D - C - B - A, reversed neighbours are s - r - q - p, but the should be
// r q p s
for( size_t a = 0; a < fvc - 1; ++a )
std::swap(neighbour[fsi + a], neighbour[fsi + a + 1]);
}
faceDone[farthestIndex] = true;
std::vector<size_t> todo;
todo.push_back(farthestIndex);
// go over its neighbour faces recursively and adapt their winding order to match the farthest face
while( !todo.empty() )
{
size_t tdf = todo.back();
size_t vsi = faceStartIndices[tdf], vc = vertcnt[tdf];
todo.pop_back();
// check its neighbours
for( size_t a = 0; a < vc; ++a )
{
// ignore neighbours if we already checked them
size_t nbi = neighbour[vsi + a];
if( nbi == SIZE_MAX || faceDone[nbi] )
continue;
const IfcVector3& vp = verts[vsi + a];
size_t nbvsi = faceStartIndices[nbi], nbvc = vertcnt[nbi];
std::vector<IfcVector3>::iterator it = std::find_if(verts.begin() + nbvsi, verts.begin() + nbvsi + nbvc, FindVector(vp));
ai_assert(it != verts.begin() + nbvsi + nbvc);
size_t nb_vidx = std::distance(verts.begin() + nbvsi, it);
// two faces winded in the same direction should have a crossed edge, where one face has p0->p1 and the other
// has p1'->p0'. If the next point on the neighbouring face is also the next on the current face, we need
// to reverse the neighbour
nb_vidx = (nb_vidx + 1) % nbvc;
size_t oursideidx = (a + 1) % vc;
if( FuzzyVectorCompare(1e-6)(verts[vsi + oursideidx], verts[nbvsi + nb_vidx]) )
{
std::reverse(verts.begin() + nbvsi, verts.begin() + nbvsi + nbvc);
std::reverse(neighbour.begin() + nbvsi, neighbour.begin() + nbvsi + nbvc);
for( size_t a = 0; a < nbvc - 1; ++a )
std::swap(neighbour[nbvsi + a], neighbour[nbvsi + a + 1]);
}
// either way we're done with the neighbour. Mark it as done and continue checking from there recursively
faceDone[nbi] = true;
todo.push_back(nbi);
}
}
// no more faces reachable from this part of the surface, start over with a disjunct part and its farthest face
}
}
// ------------------------------------------------------------------------------------------------
void TempMesh::RemoveAdjacentDuplicates()
{
bool drop = false;
std::vector<IfcVector3>::iterator base = verts.begin();
for(unsigned int& cnt : vertcnt) {
if (cnt < 2){
base += cnt;
continue;
}
IfcVector3 vmin,vmax;
ArrayBounds(&*base, cnt ,vmin,vmax);
const IfcFloat epsilon = (vmax-vmin).SquareLength() / static_cast<IfcFloat>(1e9);
//const IfcFloat dotepsilon = 1e-9;
//// look for vertices that lie directly on the line between their predecessor and their
//// successor and replace them with either of them.
//for(size_t i = 0; i < cnt; ++i) {
// IfcVector3& v1 = *(base+i), &v0 = *(base+(i?i-1:cnt-1)), &v2 = *(base+(i+1)%cnt);
// const IfcVector3& d0 = (v1-v0), &d1 = (v2-v1);
// const IfcFloat l0 = d0.SquareLength(), l1 = d1.SquareLength();
// if (!l0 || !l1) {
// continue;
// }
// const IfcFloat d = (d0/std::sqrt(l0))*(d1/std::sqrt(l1));
// if ( d >= 1.f-dotepsilon ) {
// v1 = v0;
// }
// else if ( d < -1.f+dotepsilon ) {
// v2 = v1;
// continue;
// }
//}
// drop any identical, adjacent vertices. this pass will collect the dropouts
// of the previous pass as a side-effect.
FuzzyVectorCompare fz(epsilon);
std::vector<IfcVector3>::iterator end = base+cnt, e = std::unique( base, end, fz );
if (e != end) {
cnt -= static_cast<unsigned int>(std::distance(e, end));
verts.erase(e,end);
drop = true;
}
// check front and back vertices for this polygon
if (cnt > 1 && fz(*base,*(base+cnt-1))) {
verts.erase(base+ --cnt);
drop = true;
}
// removing adjacent duplicates shouldn't erase everything :-)
ai_assert(cnt>0);
base += cnt;
}
if(drop) {
IFCImporter::LogDebug("removing duplicate vertices");
}
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Swap(TempMesh& other)
{
vertcnt.swap(other.vertcnt);
verts.swap(other.verts);
}
// ------------------------------------------------------------------------------------------------
bool IsTrue(const EXPRESS::BOOLEAN& in)
{
return (std::string)in == "TRUE" || (std::string)in == "T";
}
// ------------------------------------------------------------------------------------------------
IfcFloat ConvertSIPrefix(const std::string& prefix)
{
if (prefix == "EXA") {
return 1e18f;
}
else if (prefix == "PETA") {
return 1e15f;
}
else if (prefix == "TERA") {
return 1e12f;
}
else if (prefix == "GIGA") {
return 1e9f;
}
else if (prefix == "MEGA") {
return 1e6f;
}
else if (prefix == "KILO") {
return 1e3f;
}
else if (prefix == "HECTO") {
return 1e2f;
}
else if (prefix == "DECA") {
return 1e-0f;
}
else if (prefix == "DECI") {
return 1e-1f;
}
else if (prefix == "CENTI") {
return 1e-2f;
}
else if (prefix == "MILLI") {
return 1e-3f;
}
else if (prefix == "MICRO") {
return 1e-6f;
}
else if (prefix == "NANO") {
return 1e-9f;
}
else if (prefix == "PICO") {
return 1e-12f;
}
else if (prefix == "FEMTO") {
return 1e-15f;
}
else if (prefix == "ATTO") {
return 1e-18f;
}
else {
IFCImporter::LogError("Unrecognized SI prefix: " + prefix);
return 1;
}
}
// ------------------------------------------------------------------------------------------------
void ConvertColor(aiColor4D& out, const IfcColourRgb& in)
{
out.r = static_cast<float>( in.Red );
out.g = static_cast<float>( in.Green );
out.b = static_cast<float>( in.Blue );
out.a = static_cast<float>( 1.f );
}
// ------------------------------------------------------------------------------------------------
void ConvertColor(aiColor4D& out, const IfcColourOrFactor& in,ConversionData& conv,const aiColor4D* base)
{
if (const EXPRESS::REAL* const r = in.ToPtr<EXPRESS::REAL>()) {
out.r = out.g = out.b = static_cast<float>(*r);
if(base) {
out.r *= static_cast<float>( base->r );
out.g *= static_cast<float>( base->g );
out.b *= static_cast<float>( base->b );
out.a = static_cast<float>( base->a );
}
else out.a = 1.0;
}
else if (const IfcColourRgb* const rgb = in.ResolveSelectPtr<IfcColourRgb>(conv.db)) {
ConvertColor(out,*rgb);
}
else {
IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity");
}
}
// ------------------------------------------------------------------------------------------------
void ConvertCartesianPoint(IfcVector3& out, const IfcCartesianPoint& in)
{
out = IfcVector3();
for(size_t i = 0; i < in.Coordinates.size(); ++i) {
out[i] = in.Coordinates[i];
}
}
// ------------------------------------------------------------------------------------------------
void ConvertVector(IfcVector3& out, const IfcVector& in)
{
ConvertDirection(out,in.Orientation);
out *= in.Magnitude;
}
// ------------------------------------------------------------------------------------------------
void ConvertDirection(IfcVector3& out, const IfcDirection& in)
{
out = IfcVector3();
for(size_t i = 0; i < in.DirectionRatios.size(); ++i) {
out[i] = in.DirectionRatios[i];
}
const IfcFloat len = out.Length();
if (len<1e-6) {
IFCImporter::LogWarn("direction vector magnitude too small, normalization would result in a division by zero");
return;
}
out /= len;
}
// ------------------------------------------------------------------------------------------------
void AssignMatrixAxes(IfcMatrix4& out, const IfcVector3& x, const IfcVector3& y, const IfcVector3& z)
{
out.a1 = x.x;
out.b1 = x.y;
out.c1 = x.z;
out.a2 = y.x;
out.b2 = y.y;
out.c2 = y.z;
out.a3 = z.x;
out.b3 = z.y;
out.c3 = z.z;
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement3D& in)
{
IfcVector3 loc;
ConvertCartesianPoint(loc,in.Location);
IfcVector3 z(0.f,0.f,1.f),r(1.f,0.f,0.f),x;
if (in.Axis) {
ConvertDirection(z,*in.Axis.Get());
}
if (in.RefDirection) {
ConvertDirection(r,*in.RefDirection.Get());
}
IfcVector3 v = r.Normalize();
IfcVector3 tmpx = z * (v*z);
x = (v-tmpx).Normalize();
IfcVector3 y = (z^x);
IfcMatrix4::Translation(loc,out);
AssignMatrixAxes(out,x,y,z);
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement2D& in)
{
IfcVector3 loc;
ConvertCartesianPoint(loc,in.Location);
IfcVector3 x(1.f,0.f,0.f);
if (in.RefDirection) {
ConvertDirection(x,*in.RefDirection.Get());
}
const IfcVector3 y = IfcVector3(x.y,-x.x,0.f);
IfcMatrix4::Translation(loc,out);
AssignMatrixAxes(out,x,y,IfcVector3(0.f,0.f,1.f));
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcVector3& axis, IfcVector3& pos, const IfcAxis1Placement& in)
{
ConvertCartesianPoint(pos,in.Location);
if (in.Axis) {
ConvertDirection(axis,in.Axis.Get());
}
else {
axis = IfcVector3(0.f,0.f,1.f);
}
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const IfcAxis2Placement& in, ConversionData& conv)
{
if(const IfcAxis2Placement3D* pl3 = in.ResolveSelectPtr<IfcAxis2Placement3D>(conv.db)) {
ConvertAxisPlacement(out,*pl3);
}
else if(const IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<IfcAxis2Placement2D>(conv.db)) {
ConvertAxisPlacement(out,*pl2);
}
else {
IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity");
}
}
// ------------------------------------------------------------------------------------------------
void ConvertTransformOperator(IfcMatrix4& out, const IfcCartesianTransformationOperator& op)
{
IfcVector3 loc;
ConvertCartesianPoint(loc,op.LocalOrigin);
IfcVector3 x(1.f,0.f,0.f),y(0.f,1.f,0.f),z(0.f,0.f,1.f);
if (op.Axis1) {
ConvertDirection(x,*op.Axis1.Get());
}
if (op.Axis2) {
ConvertDirection(y,*op.Axis2.Get());
}
if (const IfcCartesianTransformationOperator3D* op2 = op.ToPtr<IfcCartesianTransformationOperator3D>()) {
if(op2->Axis3) {
ConvertDirection(z,*op2->Axis3.Get());
}
}
IfcMatrix4 locm;
IfcMatrix4::Translation(loc,locm);
AssignMatrixAxes(out,x,y,z);
IfcVector3 vscale;
if (const IfcCartesianTransformationOperator3DnonUniform* nuni = op.ToPtr<IfcCartesianTransformationOperator3DnonUniform>()) {
vscale.x = nuni->Scale?op.Scale.Get():1.f;
vscale.y = nuni->Scale2?nuni->Scale2.Get():1.f;
vscale.z = nuni->Scale3?nuni->Scale3.Get():1.f;
}
else {
const IfcFloat sc = op.Scale?op.Scale.Get():1.f;
vscale = IfcVector3(sc,sc,sc);
}
IfcMatrix4 s;
IfcMatrix4::Scaling(vscale,s);
out = locm * out * s;
}
} // ! IFC
} // ! Assimp
#endif
|