1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
|
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2016, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file SIBImporter.cpp
* @brief Implementation of the SIB importer class.
*
* The Nevercenter Silo SIB format is undocumented.
* All details here have been reverse engineered from
* studying the binary files output by Silo.
*
* Nevertheless, this implementation is reasonably complete.
*/
#ifndef ASSIMP_BUILD_NO_SIB_IMPORTER
// internal headers
#include "SIBImporter.h"
#include "ByteSwapper.h"
#include "StreamReader.h"
#include "TinyFormatter.h"
#include "../contrib/ConvertUTF/ConvertUTF.h"
#include <assimp/IOSystem.hpp>
#include <assimp/DefaultLogger.hpp>
#include <assimp/scene.h>
using namespace Assimp;
static const aiImporterDesc desc = {
"Silo SIB Importer",
"Richard Mitton (http://www.codersnotes.com/about)",
"",
"Does not apply subdivision.",
aiImporterFlags_SupportBinaryFlavour,
0, 0,
0, 0,
"sib"
};
struct SIBChunk
{
uint32_t Tag;
uint32_t Size;
} PACK_STRUCT;
enum { POS, NRM, UV, N };
typedef std::pair<uint32_t, uint32_t> SIBPair;
static SIBPair makePair(uint32_t a, uint32_t b) { return (a<b) ? SIBPair(a, b) : SIBPair(b, a); }
struct SIBEdge
{
uint32_t faceA, faceB;
bool creased;
};
struct SIBMesh
{
aiMatrix4x4 axis;
uint32_t numPts;
std::vector<aiVector3D> pos, nrm, uv;
std::vector<uint32_t> idx;
std::vector<uint32_t> faceStart;
std::vector<uint32_t> mtls;
std::vector<SIBEdge> edges;
std::map<SIBPair, uint32_t> edgeMap;
};
struct SIBObject
{
aiString name;
aiMatrix4x4 axis;
size_t meshIdx, meshCount;
};
struct SIB
{
std::vector<aiMaterial*> mtls;
std::vector<aiMesh*> meshes;
std::vector<aiLight*> lights;
std::vector<SIBObject> objs, insts;
};
// ------------------------------------------------------------------------------------------------
static SIBEdge& GetEdge(SIBMesh* mesh, uint32_t posA, uint32_t posB)
{
SIBPair pair = (posA < posB) ? SIBPair(posA, posB) : SIBPair(posB, posA);
std::map<SIBPair, uint32_t>::iterator it = mesh->edgeMap.find(pair);
if (it != mesh->edgeMap.end())
return mesh->edges[it->second];
SIBEdge edge;
edge.creased = false;
edge.faceA = edge.faceB = 0xffffffff;
mesh->edgeMap[pair] = mesh->edges.size();
mesh->edges.push_back(edge);
return mesh->edges.back();
}
// ------------------------------------------------------------------------------------------------
// Helpers for reading chunked data.
#define TAG(A,B,C,D) ((A << 24) | (B << 16) | (C << 8) | D)
static SIBChunk ReadChunk(StreamReaderLE* stream)
{
SIBChunk chunk;
chunk.Tag = stream->GetU4();
chunk.Size = stream->GetU4();
if (chunk.Size > stream->GetRemainingSizeToLimit())
DefaultLogger::get()->error("SIB: Chunk overflow");
ByteSwap::Swap4(&chunk.Tag);
return chunk;
}
static aiColor3D ReadColor(StreamReaderLE* stream)
{
float r = stream->GetF4();
float g = stream->GetF4();
float b = stream->GetF4();
stream->GetU4(); // Colors have an unused(?) 4th component.
return aiColor3D(r, g, b);
}
static void UnknownChunk(StreamReaderLE* stream, const SIBChunk& chunk)
{
char temp[5] = {
static_cast<char>(( chunk.Tag>>24 ) & 0xff),
static_cast<char>(( chunk.Tag>>16 ) & 0xff),
static_cast<char>(( chunk.Tag>>8 ) & 0xff),
static_cast<char>(chunk.Tag & 0xff), '\0'
};
DefaultLogger::get()->warn((Formatter::format(), "SIB: Skipping unknown '",temp,"' chunk."));
}
// Reads a UTF-16LE string and returns it at UTF-8.
static aiString ReadString(StreamReaderLE* stream, uint32_t numWChars)
{
// Allocate buffers (max expansion is 1 byte -> 4 bytes for UTF-8)
UTF16* temp = new UTF16[numWChars];
UTF8* str = new UTF8[numWChars * 4 + 1];
for (uint32_t n=0;n<numWChars;n++)
temp[n] = stream->GetU2();
// Convert it and NUL-terminate.
const UTF16 *start = temp, *end = temp + numWChars;
UTF8 *dest = str, *limit = str + numWChars*4;
ConvertUTF16toUTF8(&start, end, &dest, limit, lenientConversion);
*dest = '\0';
// Return the final string.
aiString result = aiString((const char *)str);
delete[] str;
delete[] temp;
return result;
}
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
SIBImporter::SIBImporter()
{}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
SIBImporter::~SIBImporter()
{}
// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool SIBImporter::CanRead( const std::string& pFile, IOSystem* /*pIOHandler*/, bool /*checkSig*/) const
{
return SimpleExtensionCheck(pFile, "sib");
}
// ------------------------------------------------------------------------------------------------
const aiImporterDesc* SIBImporter::GetInfo () const
{
return &desc;
}
// ------------------------------------------------------------------------------------------------
static void ReadVerts(SIBMesh* mesh, StreamReaderLE* stream, uint32_t count)
{
mesh->pos.resize(count);
for (uint32_t n=0;n<count;n++) {
mesh->pos[n].x = stream->GetF4();
mesh->pos[n].y = stream->GetF4();
mesh->pos[n].z = stream->GetF4();
}
}
// ------------------------------------------------------------------------------------------------
static void ReadFaces(SIBMesh* mesh, StreamReaderLE* stream)
{
uint32_t ptIdx = 0;
while (stream->GetRemainingSizeToLimit() > 0)
{
uint32_t numPoints = stream->GetU4();
// Store room for the N index channels, plus the point count.
size_t pos = mesh->idx.size() + 1;
mesh->idx.resize(pos + numPoints*N);
mesh->idx[pos-1] = numPoints;
uint32_t *idx = &mesh->idx[pos];
mesh->faceStart.push_back(pos-1);
mesh->mtls.push_back(0);
// Read all the position data.
// UV/normals will be supplied later.
// Positions are supplied indexed already, so we preserve that
// mapping. UVs are supplied uniquely, so we allocate unique indices.
for (uint32_t n=0;n<numPoints;n++,idx+=N,ptIdx++)
{
uint32_t p = stream->GetU4();
if (p >= mesh->pos.size())
throw DeadlyImportError("Vertex index is out of range.");
idx[POS] = p;
idx[NRM] = ptIdx;
idx[UV] = ptIdx;
}
}
// Allocate data channels for normals/UVs.
mesh->nrm.resize(ptIdx, aiVector3D(0,0,0));
mesh->uv.resize(ptIdx, aiVector3D(0,0,0));
mesh->numPts = ptIdx;
}
// ------------------------------------------------------------------------------------------------
static void ReadUVs(SIBMesh* mesh, StreamReaderLE* stream)
{
while (stream->GetRemainingSizeToLimit() > 0)
{
uint32_t faceIdx = stream->GetU4();
uint32_t numPoints = stream->GetU4();
if (faceIdx >= mesh->faceStart.size())
throw DeadlyImportError("Invalid face index.");
uint32_t pos = mesh->faceStart[faceIdx];
uint32_t *idx = &mesh->idx[pos + 1];
for (uint32_t n=0;n<numPoints;n++,idx+=N)
{
uint32_t id = idx[UV];
mesh->uv[id].x = stream->GetF4();
mesh->uv[id].y = stream->GetF4();
}
}
}
// ------------------------------------------------------------------------------------------------
static void ReadMtls(SIBMesh* mesh, StreamReaderLE* stream)
{
// Material assignments are stored run-length encoded.
// Also, we add 1 to each material so that we can use mtl #0
// as the default material.
uint32_t prevFace = stream->GetU4();
uint32_t prevMtl = stream->GetU4() + 1;
while (stream->GetRemainingSizeToLimit() > 0)
{
uint32_t face = stream->GetU4();
uint32_t mtl = stream->GetU4() + 1;
while (prevFace < face)
{
if (prevFace >= mesh->mtls.size())
throw DeadlyImportError("Invalid face index.");
mesh->mtls[prevFace++] = prevMtl;
}
prevFace = face;
prevMtl = mtl;
}
while (prevFace < mesh->mtls.size())
mesh->mtls[prevFace++] = prevMtl;
}
// ------------------------------------------------------------------------------------------------
static void ReadAxis(aiMatrix4x4& axis, StreamReaderLE* stream)
{
axis.a4 = stream->GetF4();
axis.b4 = stream->GetF4();
axis.c4 = stream->GetF4();
axis.d4 = 1;
axis.a1 = stream->GetF4();
axis.b1 = stream->GetF4();
axis.c1 = stream->GetF4();
axis.d1 = 0;
axis.a2 = stream->GetF4();
axis.b2 = stream->GetF4();
axis.c2 = stream->GetF4();
axis.d2 = 0;
axis.a3 = stream->GetF4();
axis.b3 = stream->GetF4();
axis.c3 = stream->GetF4();
axis.d3 = 0;
}
// ------------------------------------------------------------------------------------------------
static void ReadEdges(SIBMesh* mesh, StreamReaderLE* stream)
{
while (stream->GetRemainingSizeToLimit() > 0)
{
uint32_t posA = stream->GetU4();
uint32_t posB = stream->GetU4();
GetEdge(mesh, posA, posB);
}
}
// ------------------------------------------------------------------------------------------------
static void ReadCreases(SIBMesh* mesh, StreamReaderLE* stream)
{
while (stream->GetRemainingSizeToLimit() > 0)
{
uint32_t edge = stream->GetU4();
if (edge >= mesh->edges.size())
throw DeadlyImportError("SIB: Invalid edge index.");
mesh->edges[edge].creased = true;
}
}
// ------------------------------------------------------------------------------------------------
static void ConnectFaces(SIBMesh* mesh)
{
// Find faces connected to each edge.
size_t numFaces = mesh->faceStart.size();
for (size_t faceIdx=0;faceIdx<numFaces;faceIdx++)
{
uint32_t *idx = &mesh->idx[mesh->faceStart[faceIdx]];
uint32_t numPoints = *idx++;
uint32_t prev = idx[(numPoints-1)*N+POS];
for (uint32_t i=0;i<numPoints;i++,idx+=N)
{
uint32_t next = idx[POS];
// Find this edge.
SIBEdge& edge = GetEdge(mesh, prev, next);
// Link this face onto it.
// This gives potentially undesirable normals when used
// with non-2-manifold surfaces, but then so does Silo to begin with.
if (edge.faceA == 0xffffffff)
edge.faceA = faceIdx;
else
edge.faceB = faceIdx;
prev = next;
}
}
}
// ------------------------------------------------------------------------------------------------
static aiVector3D CalculateVertexNormal(SIBMesh* mesh, uint32_t faceIdx, uint32_t pos,
const std::vector<aiVector3D>& faceNormals)
{
// Creased edges complicate this. We need to find the start/end range of the
// ring of faces that touch this position.
// We do this in two passes. The first pass is to find the end of the range,
// the second is to work backwards to the start and calculate the final normal.
aiVector3D vtxNormal;
for (int pass=0;pass<2;pass++)
{
vtxNormal = aiVector3D(0, 0, 0);
uint32_t startFaceIdx = faceIdx;
uint32_t prevFaceIdx = faceIdx;
// Process each connected face.
while (true)
{
// Accumulate the face normal.
vtxNormal += faceNormals[faceIdx];
uint32_t nextFaceIdx = 0xffffffff;
// Move to the next edge sharing this position.
uint32_t* idx = &mesh->idx[mesh->faceStart[faceIdx]];
uint32_t numPoints = *idx++;
uint32_t posA = idx[(numPoints-1)*N+POS];
for (uint32_t n=0;n<numPoints;n++,idx+=N)
{
uint32_t posB = idx[POS];
// Test if this edge shares our target position.
if (posA == pos || posB == pos)
{
SIBEdge& edge = GetEdge(mesh, posA, posB);
// Move to whichever side we didn't just come from.
if (!edge.creased) {
if (edge.faceA != prevFaceIdx && edge.faceA != faceIdx)
nextFaceIdx = edge.faceA;
else if (edge.faceB != prevFaceIdx && edge.faceB != faceIdx)
nextFaceIdx = edge.faceB;
}
}
posA = posB;
}
// Stop once we hit either an creased/unconnected edge, or we
// wrapped around and hit our start point.
if (nextFaceIdx == 0xffffffff || nextFaceIdx == startFaceIdx)
break;
prevFaceIdx = faceIdx;
faceIdx = nextFaceIdx;
}
}
// Normalize it.
float len = vtxNormal.Length();
if (len > 0.000000001f)
vtxNormal /= len;
return vtxNormal;
}
// ------------------------------------------------------------------------------------------------
static void CalculateNormals(SIBMesh* mesh)
{
size_t numFaces = mesh->faceStart.size();
// Calculate face normals.
std::vector<aiVector3D> faceNormals(numFaces);
for (size_t faceIdx=0;faceIdx<numFaces;faceIdx++)
{
uint32_t* idx = &mesh->idx[mesh->faceStart[faceIdx]];
uint32_t numPoints = *idx++;
aiVector3D faceNormal(0, 0, 0);
uint32_t *prev = &idx[(numPoints-1)*N];
for (uint32_t i=0;i<numPoints;i++)
{
uint32_t *next = &idx[i*N];
faceNormal += mesh->pos[prev[POS]] ^ mesh->pos[next[POS]];
prev = next;
}
faceNormals[faceIdx] = faceNormal;
}
// Calculate vertex normals.
for (size_t faceIdx=0;faceIdx<numFaces;faceIdx++)
{
uint32_t* idx = &mesh->idx[mesh->faceStart[faceIdx]];
uint32_t numPoints = *idx++;
for (uint32_t i=0;i<numPoints;i++)
{
uint32_t pos = idx[i*N+POS];
uint32_t nrm = idx[i*N+NRM];
aiVector3D vtxNorm = CalculateVertexNormal(mesh, faceIdx, pos, faceNormals);
mesh->nrm[nrm] = vtxNorm;
}
}
}
// ------------------------------------------------------------------------------------------------
struct TempMesh
{
std::vector<aiVector3D> vtx;
std::vector<aiVector3D> nrm;
std::vector<aiVector3D> uv;
std::vector<aiFace> faces;
};
static void ReadShape(SIB* sib, StreamReaderLE* stream)
{
SIBMesh smesh;
aiString name;
while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk))
{
SIBChunk chunk = ReadChunk(stream);
unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);
switch (chunk.Tag)
{
case TAG('M','I','R','P'): break; // mirror plane maybe?
case TAG('I','M','R','P'): break; // instance mirror? (not supported here yet)
case TAG('D','I','N','F'): break; // display info, not needed
case TAG('P','I','N','F'): break; // ?
case TAG('V','M','I','R'): break; // ?
case TAG('F','M','I','R'): break; // ?
case TAG('T','X','S','M'): break; // ?
case TAG('F','A','H','S'): break; // ?
case TAG('V','R','T','S'): ReadVerts(&smesh, stream, chunk.Size/12); break;
case TAG('F','A','C','S'): ReadFaces(&smesh, stream); break;
case TAG('F','T','V','S'): ReadUVs(&smesh, stream); break;
case TAG('S','N','A','M'): name = ReadString(stream, chunk.Size/2); break;
case TAG('F','A','M','A'): ReadMtls(&smesh, stream); break;
case TAG('A','X','I','S'): ReadAxis(smesh.axis, stream); break;
case TAG('E','D','G','S'): ReadEdges(&smesh, stream); break;
case TAG('E','C','R','S'): ReadCreases(&smesh, stream); break;
default: UnknownChunk(stream, chunk); break;
}
stream->SetCurrentPos(stream->GetReadLimit());
stream->SetReadLimit(oldLimit);
}
assert(smesh.faceStart.size() == smesh.mtls.size()); // sanity check
// Silo doesn't store any normals in the file - we need to compute
// them ourselves. We can't let AssImp handle it as AssImp doesn't
// know about our creased edges.
ConnectFaces(&smesh);
CalculateNormals(&smesh);
// Construct the transforms.
aiMatrix4x4 worldToLocal = smesh.axis;
worldToLocal.Inverse();
aiMatrix4x4 worldToLocalN = worldToLocal;
worldToLocalN.a4 = worldToLocalN.b4 = worldToLocalN.c4 = 0.0f;
worldToLocalN.Inverse().Transpose();
// Allocate final mesh data.
// We'll allocate one mesh for each material. (we'll strip unused ones after)
std::vector<TempMesh> meshes(sib->mtls.size());
// Un-index the source data and apply to each vertex.
for (unsigned fi=0;fi<smesh.faceStart.size();fi++)
{
uint32_t start = smesh.faceStart[fi];
uint32_t mtl = smesh.mtls[fi];
uint32_t *idx = &smesh.idx[start];
if (mtl >= meshes.size())
{
DefaultLogger::get()->error("SIB: Face material index is invalid.");
mtl = 0;
}
TempMesh& dest = meshes[mtl];
aiFace face;
face.mNumIndices = *idx++;
face.mIndices = new unsigned[face.mNumIndices];
for (unsigned pt=0;pt<face.mNumIndices;pt++,idx+=N)
{
size_t vtxIdx = dest.vtx.size();
face.mIndices[pt] = vtxIdx;
// De-index it. We don't need to validate here as
// we did it when creating the data.
aiVector3D pos = smesh.pos[idx[POS]];
aiVector3D nrm = smesh.nrm[idx[NRM]];
aiVector3D uv = smesh.uv[idx[UV]];
// The verts are supplied in world-space, so let's
// transform them back into the local space of this mesh:
pos = worldToLocal * pos;
nrm = worldToLocalN * nrm;
dest.vtx.push_back(pos);
dest.nrm.push_back(nrm);
dest.uv.push_back(uv);
}
dest.faces.push_back(face);
}
SIBObject obj;
obj.name = name;
obj.axis = smesh.axis;
obj.meshIdx = sib->meshes.size();
// Now that we know the size of everything,
// we can build the final one-material-per-mesh data.
for (size_t n=0;n<meshes.size();n++)
{
TempMesh& src = meshes[n];
if (src.faces.empty())
continue;
aiMesh* mesh = new aiMesh;
mesh->mName = name;
mesh->mNumFaces = src.faces.size();
mesh->mFaces = new aiFace[mesh->mNumFaces];
mesh->mNumVertices = src.vtx.size();
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
mesh->mNormals = new aiVector3D[mesh->mNumVertices];
mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices];
mesh->mNumUVComponents[0] = 2;
mesh->mMaterialIndex = n;
for (unsigned i=0;i<mesh->mNumVertices;i++)
{
mesh->mVertices[i] = src.vtx[i];
mesh->mNormals[i] = src.nrm[i];
mesh->mTextureCoords[0][i] = src.uv[i];
}
for (unsigned i=0;i<mesh->mNumFaces;i++)
{
mesh->mFaces[i] = src.faces[i];
}
sib->meshes.push_back(mesh);
}
obj.meshCount = sib->meshes.size() - obj.meshIdx;
sib->objs.push_back(obj);
}
// ------------------------------------------------------------------------------------------------
static void ReadMaterial(SIB* sib, StreamReaderLE* stream)
{
aiColor3D diff = ReadColor(stream);
aiColor3D ambi = ReadColor(stream);
aiColor3D spec = ReadColor(stream);
aiColor3D emis = ReadColor(stream);
float shiny = (float)stream->GetU4();
uint32_t nameLen = stream->GetU4();
aiString name = ReadString(stream, nameLen/2);
uint32_t texLen = stream->GetU4();
aiString tex = ReadString(stream, texLen/2);
aiMaterial* mtl = new aiMaterial();
mtl->AddProperty(&diff, 1, AI_MATKEY_COLOR_DIFFUSE);
mtl->AddProperty(&ambi, 1, AI_MATKEY_COLOR_AMBIENT);
mtl->AddProperty(&spec, 1, AI_MATKEY_COLOR_SPECULAR);
mtl->AddProperty(&emis, 1, AI_MATKEY_COLOR_EMISSIVE);
mtl->AddProperty(&shiny, 1, AI_MATKEY_SHININESS);
mtl->AddProperty(&name, AI_MATKEY_NAME);
if (tex.length > 0) {
mtl->AddProperty(&tex, AI_MATKEY_TEXTURE_DIFFUSE(0));
mtl->AddProperty(&tex, AI_MATKEY_TEXTURE_AMBIENT(0));
}
sib->mtls.push_back(mtl);
}
// ------------------------------------------------------------------------------------------------
static void ReadLightInfo(aiLight* light, StreamReaderLE* stream)
{
uint32_t type = stream->GetU4();
switch (type) {
case 0: light->mType = aiLightSource_POINT; break;
case 1: light->mType = aiLightSource_SPOT; break;
case 2: light->mType = aiLightSource_DIRECTIONAL; break;
default: light->mType = aiLightSource_UNDEFINED; break;
}
light->mPosition.x = stream->GetF4();
light->mPosition.y = stream->GetF4();
light->mPosition.z = stream->GetF4();
light->mDirection.x = stream->GetF4();
light->mDirection.y = stream->GetF4();
light->mDirection.z = stream->GetF4();
light->mColorDiffuse = ReadColor(stream);
light->mColorAmbient = ReadColor(stream);
light->mColorSpecular = ReadColor(stream);
float spotExponent = stream->GetF4();
float spotCutoff = stream->GetF4();
light->mAttenuationConstant = stream->GetF4();
light->mAttenuationLinear = stream->GetF4();
light->mAttenuationQuadratic = stream->GetF4();
// Silo uses the OpenGL default lighting model for it's
// spot cutoff/exponent. AssImp unfortunately, does not.
// Let's try and approximate it by solving for the
// 99% and 1% percentiles.
// OpenGL: I = cos(angle)^E
// Solving: angle = acos(I^(1/E))
float E = 1.0f / std::max(spotExponent, 0.00001f);
float inner = acosf(powf(0.99f, E));
float outer = acosf(powf(0.01f, E));
// Apply the cutoff.
outer = std::min(outer, AI_DEG_TO_RAD(spotCutoff));
light->mAngleInnerCone = std::min(inner, outer);
light->mAngleOuterCone = outer;
}
static void ReadLight(SIB* sib, StreamReaderLE* stream)
{
aiLight* light = new aiLight();
while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk))
{
SIBChunk chunk = ReadChunk(stream);
unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);
switch (chunk.Tag)
{
case TAG('L','N','F','O'): ReadLightInfo(light, stream); break;
case TAG('S','N','A','M'): light->mName = ReadString(stream, chunk.Size/2); break;
default: UnknownChunk(stream, chunk); break;
}
stream->SetCurrentPos(stream->GetReadLimit());
stream->SetReadLimit(oldLimit);
}
sib->lights.push_back(light);
}
// ------------------------------------------------------------------------------------------------
static void ReadScale(aiMatrix4x4& axis, StreamReaderLE* stream)
{
aiMatrix4x4 scale;
scale.a1 = stream->GetF4();
scale.b1 = stream->GetF4();
scale.c1 = stream->GetF4();
scale.d1 = stream->GetF4();
scale.a2 = stream->GetF4();
scale.b2 = stream->GetF4();
scale.c2 = stream->GetF4();
scale.d2 = stream->GetF4();
scale.a3 = stream->GetF4();
scale.b3 = stream->GetF4();
scale.c3 = stream->GetF4();
scale.d3 = stream->GetF4();
scale.a4 = stream->GetF4();
scale.b4 = stream->GetF4();
scale.c4 = stream->GetF4();
scale.d4 = stream->GetF4();
axis = axis * scale;
}
static void ReadInstance(SIB* sib, StreamReaderLE* stream)
{
SIBObject inst;
uint32_t shapeIndex = 0;
while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk))
{
SIBChunk chunk = ReadChunk(stream);
unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);
switch (chunk.Tag)
{
case TAG('D','I','N','F'): break; // display info, not needed
case TAG('P','I','N','F'): break; // ?
case TAG('A','X','I','S'): ReadAxis(inst.axis, stream); break;
case TAG('I','N','S','I'): shapeIndex = stream->GetU4(); break;
case TAG('S','M','T','X'): ReadScale(inst.axis, stream); break;
case TAG('S','N','A','M'): inst.name = ReadString(stream, chunk.Size/2); break;
default: UnknownChunk(stream, chunk); break;
}
stream->SetCurrentPos(stream->GetReadLimit());
stream->SetReadLimit(oldLimit);
}
if (shapeIndex >= sib->objs.size())
throw DeadlyImportError("SIB: Invalid shape index.");
const SIBObject& src = sib->objs[shapeIndex];
inst.meshIdx = src.meshIdx;
inst.meshCount = src.meshCount;
sib->insts.push_back(inst);
}
// ------------------------------------------------------------------------------------------------
static void CheckVersion(StreamReaderLE* stream)
{
uint32_t version = stream->GetU4();
if (version != 1)
throw DeadlyImportError("SIB: Unsupported file version.");
}
static void ReadScene(SIB* sib, StreamReaderLE* stream)
{
// Parse each chunk in turn.
while (stream->GetRemainingSizeToLimit() >= sizeof(SIBChunk))
{
SIBChunk chunk = ReadChunk(stream);
unsigned oldLimit = stream->SetReadLimit(stream->GetCurrentPos() + chunk.Size);
switch (chunk.Tag)
{
case TAG('H','E','A','D'): CheckVersion(stream); break;
case TAG('S','H','A','P'): ReadShape(sib, stream); break;
case TAG('G','R','P','S'): break; // group assignment, we don't import this
case TAG('T','E','X','P'): break; // ?
case TAG('I','N','S','T'): ReadInstance(sib, stream); break;
case TAG('M','A','T','R'): ReadMaterial(sib, stream); break;
case TAG('L','G','H','T'): ReadLight(sib, stream); break;
default: UnknownChunk(stream, chunk); break;
}
stream->SetCurrentPos(stream->GetReadLimit());
stream->SetReadLimit(oldLimit);
}
}
// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void SIBImporter::InternReadFile(const std::string& pFile,
aiScene* pScene, IOSystem* pIOHandler)
{
StreamReaderLE stream(pIOHandler->Open(pFile, "rb"));
// We should have at least one chunk
if (stream.GetRemainingSize() < 16)
throw DeadlyImportError("SIB file is either empty or corrupt: " + pFile);
SIB sib;
// Default material.
aiMaterial* defmtl = new aiMaterial;
aiString defname = aiString(AI_DEFAULT_MATERIAL_NAME);
defmtl->AddProperty(&defname, AI_MATKEY_NAME);
sib.mtls.push_back(defmtl);
// Read it all.
ReadScene(&sib, &stream);
// Join the instances and objects together.
size_t firstInst = sib.objs.size();
sib.objs.insert(sib.objs.end(), sib.insts.begin(), sib.insts.end());
sib.insts.clear();
// Transfer to the aiScene.
pScene->mNumMaterials = sib.mtls.size();
pScene->mNumMeshes = sib.meshes.size();
pScene->mNumLights = sib.lights.size();
pScene->mMaterials = pScene->mNumMaterials ? new aiMaterial*[pScene->mNumMaterials] : NULL;
pScene->mMeshes = pScene->mNumMeshes ? new aiMesh*[pScene->mNumMeshes] : NULL;
pScene->mLights = pScene->mNumLights ? new aiLight*[pScene->mNumLights] : NULL;
if (pScene->mNumMaterials)
memcpy(pScene->mMaterials, &sib.mtls[0], sizeof(aiMaterial*) * pScene->mNumMaterials);
if (pScene->mNumMeshes)
memcpy(pScene->mMeshes, &sib.meshes[0], sizeof(aiMesh*) * pScene->mNumMeshes);
if (pScene->mNumLights)
memcpy(pScene->mLights, &sib.lights[0], sizeof(aiLight*) * pScene->mNumLights);
// Construct the root node.
size_t childIdx = 0;
aiNode *root = new aiNode();
root->mName.Set("<SIBRoot>");
root->mNumChildren = sib.objs.size() + sib.lights.size();
root->mChildren = root->mNumChildren ? new aiNode*[root->mNumChildren] : NULL;
pScene->mRootNode = root;
// Add nodes for each object.
for (size_t n=0;n<sib.objs.size();n++)
{
SIBObject& obj = sib.objs[n];
aiNode* node = new aiNode;
root->mChildren[childIdx++] = node;
node->mName = obj.name;
node->mParent = root;
node->mTransformation = obj.axis;
node->mNumMeshes = obj.meshCount;
node->mMeshes = node->mNumMeshes ? new unsigned[node->mNumMeshes] : NULL;
for (unsigned i=0;i<node->mNumMeshes;i++)
node->mMeshes[i] = obj.meshIdx + i;
// Mark instanced objects as being so.
if (n >= firstInst)
{
node->mMetaData = new aiMetadata;
node->mMetaData->mNumProperties = 1;
node->mMetaData->mKeys = new aiString[1];
node->mMetaData->mValues = new aiMetadataEntry[1];
node->mMetaData->Set(0, "IsInstance", true);
}
}
// Add nodes for each light.
// (no transformation as the light is already in world space)
for (size_t n=0;n<sib.lights.size();n++)
{
aiLight* light = sib.lights[n];
if ( nullptr != light ) {
aiNode* node = new aiNode;
root->mChildren[ childIdx++ ] = node;
node->mName = light->mName;
node->mParent = root;
}
}
}
#endif // !! ASSIMP_BUILD_NO_SIB_IMPORTER
|