1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
|
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2024, assimp team
Copyright (c) 2019 bzt
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
#ifndef ASSIMP_BUILD_NO_M3D_IMPORTER
#define M3D_IMPLEMENTATION
#define M3D_NONORMALS /* leave the post-processing to Assimp */
#define M3D_NOWEIGHTS
#define M3D_NOANIMATION
#include <assimp/DefaultIOSystem.h>
#include <assimp/IOStreamBuffer.h>
#include <assimp/ai_assert.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/Importer.hpp>
#include <memory>
#include "M3DImporter.h"
#include "M3DMaterials.h"
#include "M3DWrapper.h"
// RESOURCES:
// https://gitlab.com/bztsrc/model3d/blob/master/docs/m3d_format.md
// https://gitlab.com/bztsrc/model3d/blob/master/docs/a3d_format.md
/*
Unfortunately aiNode has bone structures and meshes too, yet we can't assign
the mesh to a bone aiNode as a skin may refer to several aiNodes. Therefore
I've decided to import into this structure:
aiScene->mRootNode
| |->mMeshes (all the meshes)
| \->children (empty if there's no skeleton imported, no meshes)
| \->skeleton root aiNode*
| |->bone aiNode
| | \->subbone aiNode
| |->bone aiNode
| | ...
| \->bone aiNode
\->mMeshes[]
\->aiBone, referencing mesh-less aiNodes from above
* - normally one, but if a model has several skeleton roots, then all of them
are listed in aiScene->mRootNode->children, but all without meshes
*/
static constexpr aiImporterDesc desc = {
"Model 3D Importer",
"",
"",
"",
aiImporterFlags_SupportTextFlavour | aiImporterFlags_SupportBinaryFlavour,
0,
0,
0,
0,
"m3d a3d"
};
namespace Assimp {
using namespace std;
// ------------------------------------------------------------------------------------------------
// Default constructor
M3DImporter::M3DImporter() :
mScene(nullptr) {
// empty
}
// ------------------------------------------------------------------------------------------------
// Returns true, if file is a binary or ASCII Model 3D file.
bool M3DImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const {
// don't use CheckMagicToken because that checks with swapped bytes too, leading to false
// positives. This magic is not uint32_t, but char[4], so memcmp is the best way
std::unique_ptr<IOStream> pStream(pIOHandler->Open(pFile, "rb"));
unsigned char data[4];
if (4 != pStream->Read(data, 1, 4)) {
return false;
}
return !memcmp(data, "3DMO", 4) /* bin */
#ifdef M3D_ASCII
|| !memcmp(data, "3dmo", 4) /* ASCII */
#endif
;
}
// ------------------------------------------------------------------------------------------------
const aiImporterDesc *M3DImporter::GetInfo() const {
return &desc;
}
// ------------------------------------------------------------------------------------------------
// Model 3D import implementation
void M3DImporter::InternReadFile(const std::string &file, aiScene *pScene, IOSystem *pIOHandler) {
// Read file into memory
std::unique_ptr<IOStream> pStream(pIOHandler->Open(file, "rb"));
if (!pStream.get()) {
throw DeadlyImportError("Failed to open file ", file, ".");
}
// Get the file-size and validate it, throwing an exception when fails
size_t fileSize = pStream->FileSize();
if (fileSize < 8) {
throw DeadlyImportError("M3D-file ", file, " is too small.");
}
std::vector<unsigned char> buffer(fileSize);
if (fileSize != pStream->Read(buffer.data(), 1, fileSize)) {
throw DeadlyImportError("Failed to read the file ", file, ".");
}
// extra check for binary format's first 8 bytes. Not done for the ASCII variant
if (!memcmp(buffer.data(), "3DMO", 4) && memcmp(buffer.data() + 4, &fileSize, 4)) {
throw DeadlyImportError("Bad binary header in file ", file, ".");
}
// make sure there's a terminator zero character, as input must be ASCIIZ
if (!memcmp(buffer.data(), "3dmo", 4)) {
buffer.push_back(0);
}
// Get the path for external assets
std::string folderName("./");
std::string::size_type pos = file.find_last_of("\\/");
if (pos != std::string::npos) {
folderName = file.substr(0, pos);
if (!folderName.empty()) {
pIOHandler->PushDirectory(folderName);
}
}
//DefaultLogger::create("/dev/stderr", Logger::VERBOSE);
ASSIMP_LOG_DEBUG("M3D: loading ", file);
// let the C SDK do the hard work for us
M3DWrapper m3d(pIOHandler, buffer);
if (!m3d) {
throw DeadlyImportError("Unable to parse ", file, " as M3D.");
}
// create the root node
pScene->mRootNode = new aiNode;
pScene->mRootNode->mName = aiString(m3d.Name());
pScene->mRootNode->mTransformation = aiMatrix4x4();
pScene->mRootNode->mNumChildren = 0;
mScene = pScene;
ASSIMP_LOG_DEBUG("M3D: root node ", m3d.Name());
// now we just have to fill up the Assimp structures in pScene
importMaterials(m3d);
importTextures(m3d);
importBones(m3d, M3D_NOTDEFINED, pScene->mRootNode);
importMeshes(m3d);
importAnimations(m3d);
// Pop directory stack
if (pIOHandler->StackSize() > 0) {
pIOHandler->PopDirectory();
}
}
// ------------------------------------------------------------------------------------------------
// convert materials. properties are converted using a static table in M3DMaterials.h
void M3DImporter::importMaterials(const M3DWrapper &m3d) {
unsigned int i, j, k, l, n;
m3dm_t *m;
aiString name = aiString(AI_DEFAULT_MATERIAL_NAME);
aiColor4D c;
ai_real f;
ai_assert(mScene != nullptr);
ai_assert(m3d);
mScene->mNumMaterials = m3d->nummaterial + 1;
mScene->mMaterials = new aiMaterial *[mScene->mNumMaterials];
ASSIMP_LOG_DEBUG("M3D: importMaterials ", mScene->mNumMaterials);
// add a default material as first
aiMaterial *defaultMat = new aiMaterial;
defaultMat->AddProperty(&name, AI_MATKEY_NAME);
c.a = 1.0f;
c.b = c.g = c.r = 0.6f;
defaultMat->AddProperty(&c, 1, AI_MATKEY_COLOR_DIFFUSE);
mScene->mMaterials[0] = defaultMat;
if (!m3d->nummaterial || !m3d->material) {
return;
}
for (i = 0; i < m3d->nummaterial; i++) {
m = &m3d->material[i];
aiMaterial *newMat = new aiMaterial;
name.Set(std::string(m->name));
newMat->AddProperty(&name, AI_MATKEY_NAME);
for (j = 0; j < m->numprop; j++) {
// look up property type
// 0 - 127 scalar values,
// 128 - 255 the same properties but for texture maps
k = 256;
for (l = 0; l < sizeof(m3d_propertytypes) / sizeof(m3d_propertytypes[0]); l++)
if (m->prop[j].type == m3d_propertytypes[l].id ||
m->prop[j].type == m3d_propertytypes[l].id + 128) {
k = l;
break;
}
// should never happen, but be safe than sorry
if (k == 256)
continue;
// scalar properties
if (m->prop[j].type < 128 && aiProps[k].pKey) {
switch (m3d_propertytypes[k].format) {
case m3dpf_color:
c = mkColor(m->prop[j].value.color);
newMat->AddProperty(&c, 1, aiProps[k].pKey, aiProps[k].type, aiProps[k].index);
break;
case m3dpf_float:
f = m->prop[j].value.fnum;
newMat->AddProperty(&f, 1, aiProps[k].pKey, aiProps[k].type, aiProps[k].index);
break;
default:
n = m->prop[j].value.num;
if (m->prop[j].type == m3dp_il) {
switch (n) {
case 0:
n = aiShadingMode_NoShading;
break;
case 2:
n = aiShadingMode_Phong;
break;
default:
n = aiShadingMode_Gouraud;
break;
}
}
newMat->AddProperty(&n, 1, aiProps[k].pKey, aiProps[k].type, aiProps[k].index);
break;
}
}
// texture map properties
if (m->prop[j].type >= 128 && aiTxProps[k].pKey &&
// extra check, should never happen, do we have the referred texture?
m->prop[j].value.textureid < m3d->numtexture &&
m3d->texture[m->prop[j].value.textureid].name) {
name.Set(std::string(std::string(m3d->texture[m->prop[j].value.textureid].name) + ".png"));
newMat->AddProperty(&name, aiTxProps[k].pKey, aiTxProps[k].type, aiTxProps[k].index);
n = 0;
newMat->AddProperty(&n, 1, _AI_MATKEY_UVWSRC_BASE, aiProps[k].type, aiProps[k].index);
}
}
mScene->mMaterials[i + 1] = newMat;
}
}
// ------------------------------------------------------------------------------------------------
// import textures, this is the simplest of all
void M3DImporter::importTextures(const M3DWrapper &m3d) {
unsigned int i;
const char *formatHint[] = {
"rgba0800",
"rgba0808",
"rgba8880",
"rgba8888"
};
m3dtx_t *t;
ai_assert(mScene != nullptr);
ai_assert(m3d);
mScene->mNumTextures = m3d->numtexture;
ASSIMP_LOG_DEBUG("M3D: importTextures ", mScene->mNumTextures);
if (!m3d->numtexture || !m3d->texture) {
return;
}
mScene->mTextures = new aiTexture *[m3d->numtexture];
for (i = 0; i < m3d->numtexture; i++) {
unsigned int j, k;
t = &m3d->texture[i];
aiTexture *tx = new aiTexture;
tx->mFilename = aiString(std::string(t->name) + ".png");
if (!t->w || !t->h || !t->f || !t->d) {
/* without ASSIMP_USE_M3D_READFILECB, we only have the filename, but no texture data ever */
tx->mWidth = 0;
tx->mHeight = 0;
memcpy(tx->achFormatHint, "png\000", 4);
tx->pcData = nullptr;
} else {
/* if we have the texture loaded, set format hint and pcData too */
tx->mWidth = t->w;
tx->mHeight = t->h;
strcpy(tx->achFormatHint, formatHint[t->f - 1]);
tx->pcData = new aiTexel[tx->mWidth * tx->mHeight];
for (j = k = 0; j < tx->mWidth * tx->mHeight; j++) {
switch (t->f) {
case 1: tx->pcData[j].g = t->d[k++]; break;
case 2:
tx->pcData[j].g = t->d[k++];
tx->pcData[j].a = t->d[k++];
break;
case 3:
tx->pcData[j].r = t->d[k++];
tx->pcData[j].g = t->d[k++];
tx->pcData[j].b = t->d[k++];
tx->pcData[j].a = 255;
break;
case 4:
tx->pcData[j].r = t->d[k++];
tx->pcData[j].g = t->d[k++];
tx->pcData[j].b = t->d[k++];
tx->pcData[j].a = t->d[k++];
break;
}
}
}
mScene->mTextures[i] = tx;
}
}
// ------------------------------------------------------------------------------------------------
// this is tricky. M3D has a global vertex and UV list, and faces are indexing them
// individually. In assimp there're per mesh vertex and UV lists, and they must be
// indexed simultaneously.
void M3DImporter::importMeshes(const M3DWrapper &m3d) {
ASSIMP_LOG_DEBUG("M3D: importMeshes ", m3d->numface);
if (!m3d->numface || !m3d->face || !m3d->numvertex || !m3d->vertex) {
return;
}
unsigned int i, j, k, l, numpoly = 3, lastMat = M3D_INDEXMAX;
std::vector<aiMesh *> *meshes = new std::vector<aiMesh *>();
std::vector<aiFace> *faces = nullptr;
std::vector<aiVector3D> *vertices = nullptr;
std::vector<aiVector3D> *normals = nullptr;
std::vector<aiVector3D> *texcoords = nullptr;
std::vector<aiColor4D> *colors = nullptr;
std::vector<unsigned int> *vertexids = nullptr;
aiMesh *pMesh = nullptr;
ai_assert(mScene != nullptr);
ai_assert(m3d);
ai_assert(mScene->mRootNode != nullptr);
for (i = 0; i < m3d->numface; i++) {
// we must switch mesh if material changes
if (lastMat != m3d->face[i].materialid) {
lastMat = m3d->face[i].materialid;
if (pMesh && vertices && vertices->size() && faces && faces->size()) {
populateMesh(m3d, pMesh, faces, vertices, normals, texcoords, colors, vertexids);
meshes->push_back(pMesh);
delete faces;
delete vertices;
delete normals;
delete texcoords;
delete colors;
delete vertexids; // this is not stored in pMesh, just to collect bone vertices
}
pMesh = new aiMesh;
pMesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;
pMesh->mMaterialIndex = lastMat + 1;
faces = new std::vector<aiFace>();
vertices = new std::vector<aiVector3D>();
normals = new std::vector<aiVector3D>();
texcoords = new std::vector<aiVector3D>();
colors = new std::vector<aiColor4D>();
vertexids = new std::vector<unsigned int>();
}
// add a face to temporary vector
aiFace *pFace = new aiFace;
pFace->mNumIndices = numpoly;
pFace->mIndices = new unsigned int[numpoly];
for (j = 0; j < numpoly; j++) {
aiVector3D pos, uv, norm;
k = static_cast<unsigned int>(vertices->size());
pFace->mIndices[j] = k;
l = m3d->face[i].vertex[j];
if (l >= m3d->numvertex) continue;
pos.x = m3d->vertex[l].x;
pos.y = m3d->vertex[l].y;
pos.z = m3d->vertex[l].z;
vertices->push_back(pos);
colors->push_back(mkColor(m3d->vertex[l].color));
// add a bone to temporary vector
if (m3d->vertex[l].skinid != M3D_UNDEF && m3d->vertex[l].skinid != M3D_INDEXMAX && m3d->skin && m3d->bone) {
// this is complicated, because M3D stores a list of bone id / weight pairs per
// vertex but assimp uses lists of local vertex id/weight pairs per local bone list
vertexids->push_back(l);
}
l = m3d->face[i].texcoord[j];
if (l != M3D_UNDEF && l < m3d->numtmap) {
uv.x = m3d->tmap[l].u;
uv.y = m3d->tmap[l].v;
uv.z = 0.0;
texcoords->push_back(uv);
}
l = m3d->face[i].normal[j];
if (l != M3D_UNDEF && l < m3d->numvertex) {
norm.x = m3d->vertex[l].x;
norm.y = m3d->vertex[l].y;
norm.z = m3d->vertex[l].z;
normals->push_back(norm);
}
}
faces->push_back(*pFace);
delete pFace;
}
// if there's data left in the temporary vectors, flush them
if (pMesh && vertices->size() && faces->size()) {
populateMesh(m3d, pMesh, faces, vertices, normals, texcoords, colors, vertexids);
meshes->push_back(pMesh);
}
// create global mesh list in scene
mScene->mNumMeshes = static_cast<unsigned int>(meshes->size());
mScene->mMeshes = new aiMesh *[mScene->mNumMeshes];
std::copy(meshes->begin(), meshes->end(), mScene->mMeshes);
// create mesh indices in root node
mScene->mRootNode->mNumMeshes = static_cast<unsigned int>(meshes->size());
mScene->mRootNode->mMeshes = new unsigned int[meshes->size()];
for (i = 0; i < meshes->size(); i++) {
mScene->mRootNode->mMeshes[i] = i;
}
delete meshes;
if (faces) delete faces;
if (vertices) delete vertices;
if (normals) delete normals;
if (texcoords) delete texcoords;
if (colors) delete colors;
if (vertexids) delete vertexids;
}
// ------------------------------------------------------------------------------------------------
// a reentrant node parser. Otherwise this is simple
void M3DImporter::importBones(const M3DWrapper &m3d, unsigned int parentid, aiNode *pParent) {
unsigned int i, n;
ai_assert(pParent != nullptr);
ai_assert(mScene != nullptr);
ai_assert(m3d);
ASSIMP_LOG_DEBUG("M3D: importBones ", m3d->numbone, " parentid ", (int)parentid);
if (!m3d->numbone || !m3d->bone) {
return;
}
for (n = 0, i = parentid + 1; i < m3d->numbone; i++) {
if (m3d->bone[i].parent == parentid) {
n++;
}
}
pParent->mChildren = new aiNode *[n];
for (i = parentid + 1; i < m3d->numbone; i++) {
if (m3d->bone[i].parent == parentid) {
aiNode *pChild = new aiNode;
pChild->mParent = pParent;
pChild->mName = aiString(std::string(m3d->bone[i].name));
convertPose(m3d, &pChild->mTransformation, m3d->bone[i].pos, m3d->bone[i].ori);
pChild->mNumChildren = 0;
pParent->mChildren[pParent->mNumChildren] = pChild;
pParent->mNumChildren++;
importBones(m3d, i, pChild);
}
}
}
// ------------------------------------------------------------------------------------------------
// this is another headache. M3D stores list of changed bone id/position/orientation triplets and
// a timestamp per frame, but assimp needs timestamp and lists of position, orientation lists per
// bone, so we have to convert between the two conceptually different representation forms
void M3DImporter::importAnimations(const M3DWrapper &m3d) {
unsigned int i, j, k, l, pos, ori;
double t;
m3da_t *a;
ai_assert(mScene != nullptr);
ai_assert(m3d);
mScene->mNumAnimations = m3d->numaction;
ASSIMP_LOG_DEBUG("M3D: importAnimations ", mScene->mNumAnimations);
if (!m3d->numaction || !m3d->action || !m3d->numbone || !m3d->bone || !m3d->vertex) {
return;
}
mScene->mAnimations = new aiAnimation *[m3d->numaction];
for (i = 0; i < m3d->numaction; i++) {
a = &m3d->action[i];
aiAnimation *pAnim = new aiAnimation;
pAnim->mName = aiString(std::string(a->name));
pAnim->mDuration = ((double)a->durationmsec) / 10;
pAnim->mTicksPerSecond = 100;
// now we know how many bones are referenced in this animation
pAnim->mNumChannels = m3d->numbone;
pAnim->mChannels = new aiNodeAnim *[pAnim->mNumChannels];
for (l = 0; l < m3d->numbone; l++) {
unsigned int n;
pAnim->mChannels[l] = new aiNodeAnim;
pAnim->mChannels[l]->mNodeName = aiString(std::string(m3d->bone[l].name));
// now n is the size of positions / orientations arrays
pAnim->mChannels[l]->mNumPositionKeys = pAnim->mChannels[l]->mNumRotationKeys = a->numframe;
pAnim->mChannels[l]->mPositionKeys = new aiVectorKey[a->numframe];
pAnim->mChannels[l]->mRotationKeys = new aiQuatKey[a->numframe];
pos = m3d->bone[l].pos;
ori = m3d->bone[l].ori;
for (j = n = 0; j < a->numframe; j++) {
t = ((double)a->frame[j].msec) / 10;
for (k = 0; k < a->frame[j].numtransform; k++) {
if (a->frame[j].transform[k].boneid == l) {
pos = a->frame[j].transform[k].pos;
ori = a->frame[j].transform[k].ori;
}
}
if (pos >= m3d->numvertex || ori >= m3d->numvertex) continue;
m3dv_t *v = &m3d->vertex[pos];
m3dv_t *q = &m3d->vertex[ori];
pAnim->mChannels[l]->mPositionKeys[j].mTime = t;
pAnim->mChannels[l]->mPositionKeys[j].mValue.x = v->x;
pAnim->mChannels[l]->mPositionKeys[j].mValue.y = v->y;
pAnim->mChannels[l]->mPositionKeys[j].mValue.z = v->z;
pAnim->mChannels[l]->mRotationKeys[j].mTime = t;
pAnim->mChannels[l]->mRotationKeys[j].mValue.w = q->w;
pAnim->mChannels[l]->mRotationKeys[j].mValue.x = q->x;
pAnim->mChannels[l]->mRotationKeys[j].mValue.y = q->y;
pAnim->mChannels[l]->mRotationKeys[j].mValue.z = q->z;
} // foreach frame
} // foreach bones
mScene->mAnimations[i] = pAnim;
}
}
// ------------------------------------------------------------------------------------------------
// convert uint32_t into aiColor4D
aiColor4D M3DImporter::mkColor(uint32_t c) {
aiColor4D color;
color.a = ((float)((c >> 24) & 0xff)) / 255;
color.b = ((float)((c >> 16) & 0xff)) / 255;
color.g = ((float)((c >> 8) & 0xff)) / 255;
color.r = ((float)((c >> 0) & 0xff)) / 255;
return color;
}
// ------------------------------------------------------------------------------------------------
// convert a position id and orientation id into a 4 x 4 transformation matrix
void M3DImporter::convertPose(const M3DWrapper &m3d, aiMatrix4x4 *m, unsigned int posid, unsigned int orientid) {
ai_assert(m != nullptr);
ai_assert(m3d);
ai_assert(posid != M3D_UNDEF);
ai_assert(posid < m3d->numvertex);
ai_assert(orientid != M3D_UNDEF);
ai_assert(orientid < m3d->numvertex);
if (!m3d->numvertex || !m3d->vertex)
return;
m3dv_t *p = &m3d->vertex[posid];
m3dv_t *q = &m3d->vertex[orientid];
/* quaternion to matrix. Do NOT use aiQuaternion to aiMatrix3x3, gives bad results */
if (q->x == 0.0 && q->y == 0.0 && q->z >= 0.7071065 && q->z <= 0.7071075 && q->w == 0.0) {
m->a2 = m->a3 = m->b1 = m->b3 = m->c1 = m->c2 = 0.0;
m->a1 = m->b2 = m->c3 = -1.0;
} else {
m->a1 = 1 - 2 * (q->y * q->y + q->z * q->z);
if (m->a1 > -M3D_EPSILON && m->a1 < M3D_EPSILON) m->a1 = 0.0;
m->a2 = 2 * (q->x * q->y - q->z * q->w);
if (m->a2 > -M3D_EPSILON && m->a2 < M3D_EPSILON) m->a2 = 0.0;
m->a3 = 2 * (q->x * q->z + q->y * q->w);
if (m->a3 > -M3D_EPSILON && m->a3 < M3D_EPSILON) m->a3 = 0.0;
m->b1 = 2 * (q->x * q->y + q->z * q->w);
if (m->b1 > -M3D_EPSILON && m->b1 < M3D_EPSILON) m->b1 = 0.0;
m->b2 = 1 - 2 * (q->x * q->x + q->z * q->z);
if (m->b2 > -M3D_EPSILON && m->b2 < M3D_EPSILON) m->b2 = 0.0;
m->b3 = 2 * (q->y * q->z - q->x * q->w);
if (m->b3 > -M3D_EPSILON && m->b3 < M3D_EPSILON) m->b3 = 0.0;
m->c1 = 2 * (q->x * q->z - q->y * q->w);
if (m->c1 > -M3D_EPSILON && m->c1 < M3D_EPSILON) m->c1 = 0.0;
m->c2 = 2 * (q->y * q->z + q->x * q->w);
if (m->c2 > -M3D_EPSILON && m->c2 < M3D_EPSILON) m->c2 = 0.0;
m->c3 = 1 - 2 * (q->x * q->x + q->y * q->y);
if (m->c3 > -M3D_EPSILON && m->c3 < M3D_EPSILON) m->c3 = 0.0;
}
/* set translation */
m->a4 = p->x;
m->b4 = p->y;
m->c4 = p->z;
m->d1 = 0;
m->d2 = 0;
m->d3 = 0;
m->d4 = 1;
}
// ------------------------------------------------------------------------------------------------
// find a node by name
aiNode *M3DImporter::findNode(aiNode *pNode, const aiString &name) {
ai_assert(pNode != nullptr);
ai_assert(mScene != nullptr);
if (pNode->mName == name) {
return pNode;
}
for (unsigned int i = 0; i < pNode->mNumChildren; i++) {
aiNode *pChild = findNode(pNode->mChildren[i], name);
if (pChild) {
return pChild;
}
}
return nullptr;
}
// ------------------------------------------------------------------------------------------------
// fills up offsetmatrix in mBones
void M3DImporter::calculateOffsetMatrix(aiNode *pNode, aiMatrix4x4 *m) {
ai_assert(pNode != nullptr);
ai_assert(mScene != nullptr);
if (pNode->mParent) {
calculateOffsetMatrix(pNode->mParent, m);
*m *= pNode->mTransformation;
} else {
*m = pNode->mTransformation;
}
}
// ------------------------------------------------------------------------------------------------
// because M3D has a global mesh, global vertex ids and stores materialid on the face, we need
// temporary lists to collect data for an aiMesh, which requires local arrays and local indices
// this function fills up an aiMesh with those temporary lists
void M3DImporter::populateMesh(const M3DWrapper &m3d, aiMesh *pMesh, std::vector<aiFace> *faces, std::vector<aiVector3D> *vertices,
std::vector<aiVector3D> *normals, std::vector<aiVector3D> *texcoords, std::vector<aiColor4D> *colors,
std::vector<unsigned int> *vertexids) {
ai_assert(pMesh != nullptr);
ai_assert(faces != nullptr);
ai_assert(vertices != nullptr);
ai_assert(normals != nullptr);
ai_assert(texcoords != nullptr);
ai_assert(colors != nullptr);
ai_assert(vertexids != nullptr);
ai_assert(m3d);
ASSIMP_LOG_DEBUG("M3D: populateMesh numvertices ", vertices->size(), " numfaces ", faces->size(),
" numnormals ", normals->size(), " numtexcoord ", texcoords->size(), " numbones ", m3d->numbone);
if (vertices->size() && faces->size()) {
pMesh->mNumFaces = static_cast<unsigned int>(faces->size());
pMesh->mFaces = new aiFace[pMesh->mNumFaces];
std::copy(faces->begin(), faces->end(), pMesh->mFaces);
pMesh->mNumVertices = static_cast<unsigned int>(vertices->size());
pMesh->mVertices = new aiVector3D[pMesh->mNumVertices];
std::copy(vertices->begin(), vertices->end(), pMesh->mVertices);
if (normals->size() == vertices->size()) {
pMesh->mNormals = new aiVector3D[pMesh->mNumVertices];
std::copy(normals->begin(), normals->end(), pMesh->mNormals);
}
if (texcoords->size() == vertices->size()) {
pMesh->mTextureCoords[0] = new aiVector3D[pMesh->mNumVertices];
std::copy(texcoords->begin(), texcoords->end(), pMesh->mTextureCoords[0]);
pMesh->mNumUVComponents[0] = 2;
}
if (colors->size() == vertices->size()) {
pMesh->mColors[0] = new aiColor4D[pMesh->mNumVertices];
std::copy(colors->begin(), colors->end(), pMesh->mColors[0]);
}
// this is complicated, because M3D stores a list of bone id / weight pairs per
// vertex but assimp uses lists of local vertex id/weight pairs per local bone list
pMesh->mNumBones = m3d->numbone;
// we need aiBone with mOffsetMatrix for bones without weights as well
if (pMesh->mNumBones && m3d->numbone && m3d->bone) {
pMesh->mBones = new aiBone *[pMesh->mNumBones];
for (unsigned int i = 0; i < m3d->numbone; i++) {
aiNode *pNode;
pMesh->mBones[i] = new aiBone;
pMesh->mBones[i]->mName = aiString(std::string(m3d->bone[i].name));
pMesh->mBones[i]->mNumWeights = 0;
pNode = findNode(mScene->mRootNode, pMesh->mBones[i]->mName);
if (pNode) {
calculateOffsetMatrix(pNode, &pMesh->mBones[i]->mOffsetMatrix);
pMesh->mBones[i]->mOffsetMatrix.Inverse();
} else
pMesh->mBones[i]->mOffsetMatrix = aiMatrix4x4();
}
if (vertexids->size() && m3d->numvertex && m3d->vertex && m3d->numskin && m3d->skin) {
unsigned int i, j;
// first count how many vertices we have per bone
for (i = 0; i < vertexids->size(); i++) {
if (vertexids->at(i) >= m3d->numvertex) {
continue;
}
unsigned int s = m3d->vertex[vertexids->at(i)].skinid;
if (s != M3D_UNDEF && s != M3D_INDEXMAX) {
for (unsigned int k = 0; k < M3D_NUMBONE && m3d->skin[s].weight[k] > 0.0; k++) {
aiString name = aiString(std::string(m3d->bone[m3d->skin[s].boneid[k]].name));
for (j = 0; j < pMesh->mNumBones; j++) {
if (pMesh->mBones[j]->mName == name) {
pMesh->mBones[j]->mNumWeights++;
break;
}
}
}
}
}
// allocate mWeights
for (j = 0; j < pMesh->mNumBones; j++) {
aiBone *pBone = pMesh->mBones[j];
if (pBone->mNumWeights) {
pBone->mWeights = new aiVertexWeight[pBone->mNumWeights];
pBone->mNumWeights = 0;
}
}
// fill up with data
for (i = 0; i < vertexids->size(); i++) {
if (vertexids->at(i) >= m3d->numvertex) continue;
unsigned int s = m3d->vertex[vertexids->at(i)].skinid;
if (s != M3D_UNDEF && s != M3D_INDEXMAX && s < m3d->numskin) {
for (unsigned int k = 0; k < M3D_NUMBONE && m3d->skin[s].weight[k] > 0.0; k++) {
if (m3d->skin[s].boneid[k] >= m3d->numbone) continue;
aiString name = aiString(std::string(m3d->bone[m3d->skin[s].boneid[k]].name));
for (j = 0; j < pMesh->mNumBones; j++) {
if (pMesh->mBones[j]->mName == name) {
aiBone *pBone = pMesh->mBones[j];
pBone->mWeights[pBone->mNumWeights].mVertexId = i;
pBone->mWeights[pBone->mNumWeights].mWeight = m3d->skin[s].weight[k];
pBone->mNumWeights++;
break;
}
}
} // foreach skin
}
} // foreach vertexids
}
}
}
}
// ------------------------------------------------------------------------------------------------
} // Namespace Assimp
#endif // !! ASSIMP_BUILD_NO_M3D_IMPORTER
|