1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2025, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/** @file TriangulateProcess.cpp
* @brief Implementation of the post processing step to split up
* all faces with more than three indices into triangles.
*
*
* The triangulation algorithm will handle concave or convex polygons.
* Self-intersecting or non-planar polygons are not rejected, but
* they're probably not triangulated correctly.
*
* DEBUG SWITCHES - do not enable any of them in release builds:
*
* AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING
* - generates vertex colors to represent the face winding order.
* the first vertex of a polygon becomes red, the last blue.
* AI_BUILD_TRIANGULATE_DEBUG_POLYS
* - dump all polygons and their triangulation sequences to
* a file
*/
#ifndef ASSIMP_BUILD_NO_TRIANGULATE_PROCESS
#include "PostProcessing/TriangulateProcess.h"
#include "PostProcessing/ProcessHelper.h"
#include "Common/PolyTools.h"
#include "contrib/earcut-hpp/earcut.hpp"
#include <memory>
#include <cstdint>
//#define AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING
//#define AI_BUILD_TRIANGULATE_DEBUG_POLYS
#define POLY_GRID_Y 40
#define POLY_GRID_X 70
#define POLY_GRID_XPAD 20
#define POLY_OUTPUT_FILE "assimp_polygons_debug.txt"
namespace mapbox::util {
template <>
struct nth<0, aiVector2D> {
inline static auto get(const aiVector2D& t) {
return t.x;
}
};
template <>
struct nth<1, aiVector2D> {
inline static auto get(const aiVector2D& t) {
return t.y;
}
};
} // namespace mapbox::util
using namespace Assimp;
namespace {
/**
* @brief Helper struct used to simplify NGON encoding functions.
*/
struct NGONEncoder {
NGONEncoder() : mLastNGONFirstIndex((unsigned int)-1) {}
/**
* @brief Encode the current triangle, and make sure it is recognized as a triangle.
*
* This method will rotate indices in tri if needed in order to avoid tri to be considered
* part of the previous ngon. This method is to be used whenever you want to emit a real triangle,
* and make sure it is seen as a triangle.
*
* @param tri Triangle to encode.
*/
void ngonEncodeTriangle(aiFace * tri) {
ai_assert(tri->mNumIndices == 3);
// Rotate indices in new triangle to avoid ngon encoding false ngons
// Otherwise, the new triangle would be considered part of the previous NGON.
if (isConsideredSameAsLastNgon(tri)) {
std::swap(tri->mIndices[0], tri->mIndices[2]);
std::swap(tri->mIndices[1], tri->mIndices[2]);
}
mLastNGONFirstIndex = tri->mIndices[0];
}
/**
* @brief Encode a quad (2 triangles) in ngon encoding, and make sure they are seen as a single ngon.
*
* @param tri1 First quad triangle
* @param tri2 Second quad triangle
*
* @pre Triangles must be properly fanned from the most appropriate vertex.
*/
void ngonEncodeQuad(aiFace *tri1, aiFace *tri2) {
ai_assert(tri1->mNumIndices == 3);
ai_assert(tri2->mNumIndices == 3);
ai_assert(tri1->mIndices[0] == tri2->mIndices[0]);
// If the selected fanning vertex is the same as the previously
// emitted ngon, we use the opposite vertex which also happens to work
// for tri-fanning a concave quad.
// ref: https://github.com/assimp/assimp/pull/3695#issuecomment-805999760
if (isConsideredSameAsLastNgon(tri1)) {
// Right-rotate indices for tri1 (index 2 becomes the new fanning vertex)
std::swap(tri1->mIndices[0], tri1->mIndices[2]);
std::swap(tri1->mIndices[1], tri1->mIndices[2]);
// Left-rotate indices for tri2 (index 2 becomes the new fanning vertex)
std::swap(tri2->mIndices[1], tri2->mIndices[2]);
std::swap(tri2->mIndices[0], tri2->mIndices[2]);
ai_assert(tri1->mIndices[0] == tri2->mIndices[0]);
}
mLastNGONFirstIndex = tri1->mIndices[0];
}
/**
* @brief Check whether this triangle would be considered part of the lastly emitted ngon or not.
*
* @param tri Current triangle.
* @return true If used as is, this triangle will be part of last ngon.
* @return false If used as is, this triangle is not considered part of the last ngon.
*/
bool isConsideredSameAsLastNgon(const aiFace * tri) const {
ai_assert(tri->mNumIndices == 3);
return tri->mIndices[0] == mLastNGONFirstIndex;
}
private:
unsigned int mLastNGONFirstIndex;
};
}
// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool TriangulateProcess::IsActive( unsigned int pFlags) const {
return (pFlags & aiProcess_Triangulate) != 0;
}
// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void TriangulateProcess::Execute( aiScene* pScene) {
ASSIMP_LOG_DEBUG("TriangulateProcess begin");
bool bHas = false;
for( unsigned int a = 0; a < pScene->mNumMeshes; a++)
{
if (pScene->mMeshes[ a ]) {
if ( TriangulateMesh( pScene->mMeshes[ a ] ) ) {
bHas = true;
}
}
}
if ( bHas ) {
ASSIMP_LOG_INFO( "TriangulateProcess finished. All polygons have been triangulated." );
} else {
ASSIMP_LOG_DEBUG( "TriangulateProcess finished. There was nothing to be done." );
}
}
// ------------------------------------------------------------------------------------------------
// Triangulates the given mesh.
bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh) {
// Now we have aiMesh::mPrimitiveTypes, so this is only here for test cases
if (!pMesh->mPrimitiveTypes) {
bool bNeed = false;
for( unsigned int a = 0; a < pMesh->mNumFaces; a++) {
const aiFace& face = pMesh->mFaces[a];
if( face.mNumIndices != 3) {
bNeed = true;
}
}
if (!bNeed) {
return false;
}
}
else if (!(pMesh->mPrimitiveTypes & aiPrimitiveType_POLYGON)) {
return false;
}
// Find out how many output faces we'll get
uint32_t numOut = 0, max_out = 0;
bool get_normals = true;
for( unsigned int a = 0; a < pMesh->mNumFaces; a++) {
aiFace& face = pMesh->mFaces[a];
if (face.mNumIndices <= 4) {
get_normals = false;
}
if( face.mNumIndices <= 3) {
++numOut;
} else {
numOut += face.mNumIndices-2;
max_out = std::max(max_out,face.mNumIndices);
}
}
// Just another check whether aiMesh::mPrimitiveTypes is correct
if (numOut == pMesh->mNumFaces) {
ASSIMP_LOG_ERROR( "Invalidation detected in the number of indices: does not fit to the primitive type." );
return false;
}
aiVector3D *nor_out = nullptr;
// if we don't have normals yet, but expect them to be a cheap side
// product of triangulation anyway, allocate storage for them.
if (!pMesh->mNormals && get_normals) {
// XXX need a mechanism to inform the GenVertexNormals process to treat these normals as preprocessed per-face normals
// nor_out = pMesh->mNormals = new aiVector3D[pMesh->mNumVertices];
}
// the output mesh will contain triangles, but no polys anymore
pMesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
pMesh->mPrimitiveTypes &= ~aiPrimitiveType_POLYGON;
// The mesh becomes NGON encoded now, during the triangulation process.
pMesh->mPrimitiveTypes |= aiPrimitiveType_NGONEncodingFlag;
aiFace* out = new aiFace[numOut](), *curOut = out;
std::vector<aiVector3D> temp_verts3d(max_out+2); /* temporary storage for vertices */
std::vector<std::vector<aiVector2D>> temp_poly(1); /* temporary storage for earcut.hpp */
std::vector<aiVector2D>& temp_verts = temp_poly[0];
temp_verts.reserve(max_out + 2);
NGONEncoder ngonEncoder;
// Apply vertex colors to represent the face winding?
#ifdef AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING
if (!pMesh->mColors[0])
pMesh->mColors[0] = new aiColor4D[pMesh->mNumVertices];
else
new(pMesh->mColors[0]) aiColor4D[pMesh->mNumVertices];
aiColor4D* clr = pMesh->mColors[0];
#endif
#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS
FILE* fout = fopen(POLY_OUTPUT_FILE,"a");
#endif
const aiVector3D* verts = pMesh->mVertices;
for( unsigned int a = 0; a < pMesh->mNumFaces; a++) {
aiFace& face = pMesh->mFaces[a];
unsigned int* idx = face.mIndices;
unsigned int num = face.mNumIndices;
// Apply vertex colors to represent the face winding?
#ifdef AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING
for (unsigned int i = 0; i < face.mNumIndices; ++i) {
aiColor4D& c = clr[idx[i]];
c.r = (i+1) / (float)max;
c.b = 1.f - c.r;
}
#endif
aiFace* const last_face = curOut;
// if it's a simple point,line or triangle: just copy it
if( face.mNumIndices <= 3)
{
aiFace& nface = *curOut++;
nface.mNumIndices = face.mNumIndices;
nface.mIndices = face.mIndices;
face.mIndices = nullptr;
// points and lines don't require ngon encoding (and are not supported either!)
if (nface.mNumIndices == 3) ngonEncoder.ngonEncodeTriangle(&nface);
continue;
}
// optimized code for quadrilaterals
else if ( face.mNumIndices == 4) {
// quads can have at maximum one concave vertex. Determine
// this vertex (if it exists) and start tri-fanning from
// it.
unsigned int start_vertex = 0;
for (unsigned int i = 0; i < 4; ++i) {
const aiVector3D& v0 = verts[face.mIndices[(i+3) % 4]];
const aiVector3D& v1 = verts[face.mIndices[(i+2) % 4]];
const aiVector3D& v2 = verts[face.mIndices[(i+1) % 4]];
const aiVector3D& v = verts[face.mIndices[i]];
aiVector3D left = (v0-v);
aiVector3D diag = (v1-v);
aiVector3D right = (v2-v);
left.Normalize();
diag.Normalize();
right.Normalize();
const float angle = std::acos(left*diag) + std::acos(right*diag);
if (angle > AI_MATH_PI_F) {
// this is the concave point
start_vertex = i;
break;
}
}
const unsigned int temp[] = {face.mIndices[0], face.mIndices[1], face.mIndices[2], face.mIndices[3]};
aiFace& nface = *curOut++;
nface.mNumIndices = 3;
nface.mIndices = face.mIndices;
nface.mIndices[0] = temp[start_vertex];
nface.mIndices[1] = temp[(start_vertex + 1) % 4];
nface.mIndices[2] = temp[(start_vertex + 2) % 4];
aiFace& sface = *curOut++;
sface.mNumIndices = 3;
sface.mIndices = new unsigned int[3];
sface.mIndices[0] = temp[start_vertex];
sface.mIndices[1] = temp[(start_vertex + 2) % 4];
sface.mIndices[2] = temp[(start_vertex + 3) % 4];
// prevent double deletion of the indices field
face.mIndices = nullptr;
ngonEncoder.ngonEncodeQuad(&nface, &sface);
continue;
}
else
{
// A polygon with more than 3 vertices can be either concave or convex.
// Usually everything we're getting is convex and we could easily
// triangulate by tri-fanning. However, LightWave is probably the only
// modeling suite to make extensive use of highly concave, monster polygons ...
// so we need to apply the full 'ear cutting' algorithm to get it right.
// REQUIREMENT: polygon is expected to be simple and *nearly* planar.
// We project it onto a plane to get a 2d triangle.
// Collect all vertices of of the polygon.
for (unsigned int tmp = 0; tmp < num; ++tmp) {
temp_verts3d[tmp] = verts[idx[tmp]];
}
// Get newell normal of the polygon. Store it for future use if it's a polygon-only mesh
aiVector3D n;
NewellNormal<3, 3, 3>(n, num, &temp_verts3d.front().x, &temp_verts3d.front().y, &temp_verts3d.front().z);
if (nor_out) {
for (unsigned int tmp = 0; tmp < num; ++tmp)
nor_out[idx[tmp]] = n;
}
// Select largest normal coordinate to ignore for projection
const float ax = (n.x>0 ? n.x : -n.x);
const float ay = (n.y>0 ? n.y : -n.y);
const float az = (n.z>0 ? n.z : -n.z);
unsigned int ac = 0, bc = 1; /* no z coord. projection to xy */
float inv = n.z;
if (ax > ay) {
if (ax > az) { /* no x coord. projection to yz */
ac = 1; bc = 2;
inv = n.x;
}
}
else if (ay > az) { /* no y coord. projection to zy */
ac = 2; bc = 0;
inv = n.y;
}
// Swap projection axes to take the negated projection vector into account
if (inv < 0.f) {
std::swap(ac,bc);
}
temp_verts.resize(num);
for (unsigned int tmp = 0; tmp < num; ++tmp) {
temp_verts[tmp].x = verts[idx[tmp]][ac];
temp_verts[tmp].y = verts[idx[tmp]][bc];
}
auto indices = mapbox::earcut(temp_poly);
for (size_t i = 0; i < indices.size(); i += 3) {
aiFace& nface = *curOut++;
nface.mIndices = new unsigned int[3];
nface.mNumIndices = 3;
nface.mIndices[0] = indices[i];
nface.mIndices[1] = indices[i + 1];
nface.mIndices[2] = indices[i + 2];
}
#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS
// plot the plane onto which we mapped the polygon to a 2D ASCII pic
aiVector2D bmin,bmax;
ArrayBounds(&temp_verts[0],max,bmin,bmax);
char grid[POLY_GRID_Y][POLY_GRID_X+POLY_GRID_XPAD];
std::fill_n((char*)grid,POLY_GRID_Y*(POLY_GRID_X+POLY_GRID_XPAD),' ');
for (int i =0; i < max; ++i) {
const aiVector2D& v = (temp_verts[i] - bmin) / (bmax-bmin);
const size_t x = static_cast<size_t>(v.x*(POLY_GRID_X-1)), y = static_cast<size_t>(v.y*(POLY_GRID_Y-1));
char* loc = grid[y]+x;
if (grid[y][x] != ' ') {
for(;*loc != ' '; ++loc);
*loc++ = '_';
}
*(loc+::ai_snprintf(loc, POLY_GRID_XPAD,"%i",i)) = ' ';
}
for(size_t y = 0; y < POLY_GRID_Y; ++y) {
grid[y][POLY_GRID_X+POLY_GRID_XPAD-1] = '\0';
fprintf(fout,"%s\n",grid[y]);
}
fprintf(fout,"\ntriangulation sequence: ");
#endif
}
#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS
for(aiFace* f = last_face; f != curOut; ++f) {
unsigned int* i = f->mIndices;
fprintf(fout," (%i %i %i)",i[0],i[1],i[2]);
}
fprintf(fout,"\n*********************************************************************\n");
fflush(fout);
#endif
for(aiFace* f = last_face; f != curOut; ) {
unsigned int* i = f->mIndices;
i[0] = idx[i[0]];
i[1] = idx[i[1]];
i[2] = idx[i[2]];
// IMPROVEMENT: Polygons are not supported yet by this ngon encoding + triangulation step.
// So we encode polygons as regular triangles. No way to reconstruct the original
// polygon in this case.
ngonEncoder.ngonEncodeTriangle(f);
++f;
}
delete[] face.mIndices;
face.mIndices = nullptr;
}
#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS
fclose(fout);
#endif
// kill the old faces
delete [] pMesh->mFaces;
// ... and store the new ones
pMesh->mFaces = out;
pMesh->mNumFaces = (unsigned int)(curOut-out); /* not necessarily equal to numOut */
return true;
}
#endif // !! ASSIMP_BUILD_NO_TRIANGULATE_PROCESS
|