File: unit_command_line_solving.pas

package info (click to toggle)
astap-cli 2025.10.08-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,224 kB
  • sloc: pascal: 7,668; sh: 292; makefile: 4
file content (2624 lines) | stat: -rw-r--r-- 125,872 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
unit unit_command_line_solving;
{Copyright (C) 2017, 2025 by Han Kleijn, www.hnsky.org
email: han.k.. at...hnsky.org

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.   }


{ASTAP is using a linear astrometric solution for both stacking and solving.  The method is based on what traditionally is called "reducing the plate measurements.
First step is to find star matches between a test image and a reference image. The reference image is either created from a star database or a reference image.
The star positions x, y are to be calculated in standard coordinates which is equivalent to the x,y pixel position. The x,y position are measured relative to the image center.

The test image center, size and orientation position will be different compared with the reference image. The required conversion from test image [x,y] star positions to the
same stars on the test images can be written as:

Xref : = a*xtest + b*ytest + c
Yref:=   d*xtest + e*ytest + f

The factors, a,b,c,d,e,f are called the six plate constants and will be slightly different different for each star. They describe the conversion of  the test image standard coordinates
to the reference image standard coordinates. Using a least square routine the best solution fit can calculated if at least three matching star positions are found since there are three unknowns.

With the solution and the equatorial center position of the reference image the test image center equatorial position, α and δ can be calculated.

Make from the test image center small one pixel steps in x, y and use the differences in α, δ to calculate the image scale and orientation.

For astrometric solving (plate solving), this "reducing the plate measurement" is done against star positions extracted from a database. The resulting absolute astrometric solution
will allow specification of the α, δ equatorial positions of each pixel. For star alignment this "reducing the plate measurement" is done against a reference image. The resulting
six plate constants are a relative astrometric solution. The position of the reference image is not required. Pixels of the solved image can be stacked with reference image using
the six plate constants only.

To automate this process rather then using reference stars the matching reference objects are the center positions of quads made of four close stars. Comparing the length ratios
of the sides of the quads allows automated matching.

Below a brief flowchart of the ASTAP astrometric solving process:
}

//                                                  =>ASTAP  astronomical plate solving method by Han Kleijn <=
//
//      => Image <=         	                                                 |	=> Star database <=
//1) 	Find background, noise and star level                                    |
//                                                                               |
//2) 	Find stars and their CCD x, y position (standard coordinates) 	         | Extract the same amount of stars (area corrected) from the area of interest
//                                                                               | Convert the α, δ equatorial coordinates into standard coordinates
//                                                                               | (CCD pixel x,y coordinates for optical projection), rigid method
//
//3) 	Use the extracted stars to construct the smallest irregular tetrahedrons | Use the extracted stars to construct the smallest irregular tetrahedrons
//      figures of four  star called quads. Calculate the six distance between   | figures of four  star called quads. Calculate the six distance between
//      the four stars and the mean x,y position of the quad                     | the four stars and the mean x,y position of the quad
//                                                                               |
//4) 	For each quad sort the six quad distances.                      	 | For each quad sort the six quad distances.
//      Label them all where d1 is the longest and d6 the shortest distance.     | Label them all where d1 is the longest and d6 the shortest distance.
//                                                                               |
//5) 	Scale the six quad star distances as (d1, d2/d1,d3/d1,d4/d1,d5/d1,d6/d1) | Scale the six quad star distances as (d1, d2/d1,d3/d1,d4/d1,d5/d1,d6/d1)
//      These are the image hash codes.                                          | These are the database hash codes.
//
//                           => matching process <=
//6)                         Find quad hash code matches where the five ratios d2/d1 to d6/d1 match within a small tolerance.
//
//7) 		             For matching quad hash codes, calculate the longest side ratios d1_found/d1_reference. Calculate the median ratio.
//                           Compare the quads longest side ratios with the median value and remove quads outside a small tolerance.
//
//8)                         From the remaining matching quads, prepare the "A" matrix/array containing the x,y center positions of the test image quads in standard coordinates
//                           and  the array X_ref, Y_ref containing the x, y center positions of the reference imagete trahedrons in standard coordinates.
//
//                           A:                  Sx:         X_ref:
//                           [x1 y1  1]          [a1]         [X1]
//                           [x2 y2  1]    *     [b1]    =    [X2]
//                           [x3 y3  1]          [c1]         [X3]
//                           [x4 y4  1]                       [X4]
//                           [.. .. ..]                       [..]
//                           [xn yn  1]                       [Xn]
//
//
//                           A:                  Sx:         Y_ref:
//                           [x1 y1  1]          [a2]         [Y1]
//                           [x2 y2  1]    *     [b2]    =    [Y2]
//                           [x3 y3  1]          [c2]         [Y3]
//                           [x4 y4  1]                       [Y4]
//                           [.. .. ..]                       [..]
//                           [xn yn  1]                       [Yn]
//
//                           Find the solution matrices Sx and Sy of this overdetermined system of linear equations. (LSQ_FIT)
//
//                           The solutions Sx and Sy describe the six parameter solution, X_ref:=a1*x + b1*y + c1 and Y_ref:=a2*x + b2*y +c2.
//
//
//                           With the solution calculate the test image center equatorial position α (crval1), δ (crval2).
//
//                           Calculate from the solution the pixel size in x (cdelt1) an y (cdelt2) and at the image center position the rotation of the x-axis (crota1)
//                           and y-axis (crota2) relative to the celestial north using goniometric formulas. Convert these to cd1_1,cd1_2,cd_2_1, cd2_2.
//
//                           This is the final solution. The solution vector (for position, scale, rotation) can be stored as the FITS keywords crval1, crval2, cd1_1,cd1_2,cd_2_1, cd2_2.
//
// Notes:
// For a low faint star count (<30) the star patterns can be slightly different between image and database due to small magnitude differences.
// For these cases it can be beneficial to extract triples (three stars patterns) from the found quads (four star patterns) but stricter tolerances are required to avoid false detections.

{$mode objfpc}{$H+}

interface

uses
  Classes, SysUtils,math, unit_command_line_calc_trans_cubic;

type
  Timage_array = array of array of array of Single;
  Tstar_list   = array of array of double;
  solution_vector   = array[0..2] of double;

var
   quad_star_distances1, quad_star_distances2: Tstar_list;
   A_XYpositions                          : Tstar_list;
   b_Xrefpositions,b_Yrefpositions        :  array of double;
//   quad_smallest                          : double;
   nr_references,nr_references2               : integer;
   solution_vectorX, solution_vectorY,solution_cblack   : solution_vector ;
   Savefile: file of solution_vector;{to save solution if required for second and third step stacking}

procedure find_stars(img :Timage_array;hfd_min:double; max_stars: integer; out starlist1: Tstar_list);{find stars and put them in a list}
procedure find_quads(starlist :Tstar_list; out quads :Tstar_list); //build quads using closest stars, revised 2025
function find_offset_and_rotation(minimum_quads: integer;tolerance:double) : boolean; {find difference between ref image and new image}
procedure reset_solution_vectors(factor: double); {reset the solution vectors}

function SMedian(list: array of double; leng: integer): double;{get median of an array of double. Taken from CCDciel code but slightly modified}

function solve_image(img :Timage_array ) : boolean;{find match between image and star database}
procedure bin_and_find_stars(img :Timage_array;binfactor:integer;cropping,hfd_min:double; max_stars: integer; out starlist3:Tstar_list; out short_warning : string);{bin, measure background, find stars}
function report_binning_astrometric(height,arcsec_per_px:double) : integer;{select the binning}
var
  star1   : array[0..2] of array of single;


implementation

uses
  unit_command_line_general,
  unit_command_line_star_database,unit_command_line_stars_wide_field;

var
  mag2  : double; {magnitude of star found}


procedure ang_sep(ra1,dec1,ra2,dec2 : double;out sep: double);{calculates angular separation. according formula 9.1 old Meeus or 16.1 new Meeus, version 2018-5-23}
var sin_dec1,cos_dec1,sin_dec2,cos_dec2,cos_sep:double;
begin
  sincos(dec1,sin_dec1,cos_dec1);{use sincos function for speed}
  sincos(dec2,sin_dec2,cos_dec2);

  cos_sep:=max(-1.0,min(1.0,sin_dec1*sin_dec2+ cos_dec1*cos_dec2*cos(ra1-ra2)));{min function to prevent run time errors for 1.000000000002.  For correct compiling use 1.0 instead of 1. See https://forum.lazarus.freepascal.org/index.php/topic,63511.0.html}
  sep:=arccos(cos_sep);
end;


procedure rotate(rot,x,y :double; out x2, y2: double);{rotate a vector point}
var
  sin_rot, cos_rot :double;
begin
  sincos(rot, sin_rot, cos_rot);
  x2:=x * + cos_rot + y*sin_rot;
  y2:=x * - sin_rot + y*cos_rot;{SEE PRISMA WIS VADEMECUM BLZ 68}
end;


procedure QuickSort(var A: array of double; iLo, iHi: Integer) ;{ Fast quick sort. Sorts elements in the array list with indices between lo and hi}
var
  Lo, Hi : integer;
  Pivot, T: double;{ pivot, T, T2 are the same type as the elements of array }
begin
  Lo := iLo;
  Hi := iHi;
  Pivot := A[(Lo + Hi) div 2];
  repeat
    while A[Lo] < Pivot do Inc(Lo) ;
    while A[Hi] > Pivot do Dec(Hi) ;
    if Lo <= Hi then
    begin {swap}
      T := A[Lo];
      A[Lo] := A[Hi];
      A[Hi] := T;
      Inc(Lo) ;
      Dec(Hi) ;
    end;
  until Lo > Hi;
  if Hi > iLo then QuickSort(A, iLo, Hi) ;  {executes itself recursively}
  if Lo < iHi then QuickSort(A, Lo, iHi) ;  {executes itself recursively}
end;


function SMedian(list: array of double; leng: integer): double;{get median of an array of double. Taken from CCDciel code but slightly modified}
var
  mid : integer;
begin
 if leng=0 then result:=nan
 else
   if leng=1 then result:=list[0]
   else
   begin
     quickSort(list,0,leng-1);
     mid := (leng-1) div 2; //(high(list) - low(list)) div 2;
     if Odd(leng) then
     begin
       if leng<=3 then  result:=list[mid]
       else
       begin
         result:=(list[mid-1]+list[mid]+list[mid+1])/3;
       end;
     end
     else
     result:=(list[mid]+list[mid+1])/2;
  end;
end;


{   lsq_fit:                                                                                                                                     }
{   Find the solution vector of an overdetermined system of linear equations according to the method of least squares using GIVENS rotations     }
{                                                                                                                                                }
{   Solve x of A x = b with the least-squares method                                                                                             }
{   In matrix calculations, b_matrix[0..nr_columns-1,0..nr_equations-1]:=solution_vector[0..2] * A_XYpositions[0..nr_columns-1,0..nr_equations-1]}
{                                                                                                                              }
{   see also Montenbruck & Pfleger, Astronomy on the personal computer}
function lsq_fit( A_matrix: Tstar_list; {[, 0..3,0..nr_equations-1]} b_matrix  : array of double;{equations result, b=A*s}  out x_matrix: solution_vector ): boolean;
  const tiny = 1E-10;  {accuracy}
  var i,j,k, nr_equations,nr_columns  : integer;
      p,q,h                           : double;
      temp_matrix                     : Tstar_list;

begin
  nr_equations:=length(A_matrix[0]);
  nr_columns:=length(A_matrix);{should be 3 for this application}

  temp_matrix:=A_matrix; {In dynamic arrays, the assignment statement duplicates only the reference to the array, while SetLength does the job of physically copying/duplicating it, leaving two separate, independent dynamic arrays.}
  setlength(temp_matrix,nr_columns,nr_equations);{duplicate A_matrix to protect data in A_matrix}

  for j:=0 to nr_columns-1 do {loop over columns of temp_matrix}
  {eliminate matrix elements A[i,j] with i>j from column j}
    for i:=j+1 to nr_equations-1 do
      if temp_matrix[j,i]<>0 then
      begin{calculate p, q and new temp_matrix[j,j]; set temp_matrix[j,i]=0}
        if abs(temp_matrix[j,j])<tiny*abs(temp_matrix[j,i]) then
        begin
          p:=0;
          q:=1;
          temp_matrix[j,j]:=-temp_matrix[j,i];
          temp_matrix[j,i]:=0;

        end
        else
        begin
          // Notes:
          // Zero the left bottom corner of the matrix
          // Residuals are r1..rn
          // The sum of the sqr(residuals) should be minimised.
          // Take two numbers where (p^2+q^2) = 1.
          // Then (r1^2+r2^2) = (p^2+q^2)*(r1^2+r2^2)
          // Choose p and h as follows:
          // p = +A11/h
          // q = -A21/h
          // where h= +-sqrt(A11^2+A21^2)
          // A21=q*A11+p*A21 = (-A21*A11 + A21*A11)/h=0
          h:=sqrt(temp_matrix[j,j]*temp_matrix[j,j]+temp_matrix[j,i]*temp_matrix[j,i]);
          if temp_matrix[j,j]<0 then h:=-h;
          p:=temp_matrix[j,j]/h;
          q:=-temp_matrix[j,i]/h;
          temp_matrix[j,j]:=h;
          temp_matrix[j,i]:=0;

        end;
        {calculate the rest of the line}
        for k:=j+1 to nr_columns-1 do
        begin
          h:= p*temp_matrix[k,j] - q*temp_matrix[k,i];
          temp_matrix[k,i] := q*temp_matrix[k,j] + p*temp_matrix[k,i];
          temp_matrix[k,j] := h;
        end;
        h:= p*b_matrix[j] - q*b_matrix[i];
        b_matrix[i] := q*b_matrix[j] + p*b_matrix[i];
        b_matrix[j] := h;
      end;

  for i:=0 to nr_columns-1 do x_matrix[i]:=0; //2022, extra precaution to zero x_matrix

  for i:= nr_columns-1 downto 0 do {back substitution}
  begin
    H:=b_matrix[i];
    for k:=i+1 to nr_columns-1 do
            h:=h-temp_matrix[k,i]*x_matrix[k];
    if abs(temp_matrix[i,i])>1E-30 then x_matrix[i] := h/temp_matrix[i,i]
    else
    exit(false);//Prevent runtime error dividing by zero. Should normally not happen. In case of zero due to wrong double star detection by using triples force a failure

    {solution vector x:=x_matrix[0]x+x_matrix[1]y+x_matrix[2]}
  end;
  result:=true;
end; {lsq_fit}


procedure QuickSort_starlist(var A: Tstar_list; iLo, iHi: Integer) ;{ Fast quick sort. Sorts elements in the array list with indices between lo and hi, sort in X only}
var
  Lo, Hi : integer;
  Pivot, Tx,Ty: double;{ pivot, T are the same type as the elements of array }
begin
  Lo := iLo;
  Hi := iHi;
  Pivot := A[0,(Lo + Hi) div 2];
  repeat
    while A[0,Lo] < Pivot do Inc(Lo) ; {sort in X only}
    while A[0,Hi] > Pivot do Dec(Hi) ;
    if Lo <= Hi then
    begin {swap}
      Tx := A[0,Lo];
      Ty := A[1,Lo];
      A[0,Lo] := A[0,Hi];
      A[1,Lo] := A[1,Hi];
      A[0,Hi] := Tx;
      A[1,Hi] := Ty;
      Inc(Lo) ;
      Dec(Hi) ;
    end;
  until Lo > Hi;
  if Hi > iLo then QuickSort_starlist(A, iLo, Hi) ;  {executes itself recursively}
  if Lo < iHi then QuickSort_starlist(A, Lo, iHi) ;  {executes itself recursively}
end;


procedure find_many_quads(starlist: Tstar_list;  out quads: Tstar_list;  mode: integer {use either 5 or 6 closest stars } );
var
  i, j, k, q, nrstars, nrquads, num_closest, num_quads_per_group           : integer;
  distance, temp, xt, yt, dist1, dist2, dist3, dist4, dist5, dist6: double;
  identical_quad: boolean;
  closest_indices: array of integer; // Dynamic array to hold closest star indices
  quad_indices: array[0..3] of integer; // Indices for the current quad
  x1, y1, x2, y2, x3, y3, x4, y4: double; // Star positions
begin
  nrstars:=Length(starlist[0]);

  // Configure based on mode
  case mode of 5:
      begin
        num_closest:=5; //collect 5 closest stars
        num_quads_per_group:=5;// create 5 quads from the 5 stars
      end;
    6:
      begin
        num_closest:=6; //collect 6 closest stars
        num_quads_per_group:=15;// create 15 quads from the 6 stars
      end;
  end;

  if nrstars < num_closest then
  begin // Not enough stars
    SetLength(quads, 8, 0);
    exit;
  end;

  nrquads:=0;
  SetLength(quads, 8, nrstars * num_quads_per_group); // Pre-allocate space

  SetLength(closest_indices, num_closest); // Store closest star indices

  for i:=0 to nrstars - 1 do
  begin
    // Initialize closest distances to a very large value
    for j:=0 to num_closest - 1 do
      closest_indices[j]:=-1;

    x1:=starlist[0, i]; // Reference star
    y1:=starlist[1, i];

    // Find the 'num_closest' nearest stars
    for j:=0 to nrstars - 1 do
    begin
      if j <> i then // Skip the reference star
      begin
        distance:=sqr(starlist[0, j] - x1) + sqr(starlist[1, j] - y1);
        if distance > 1 then // Skip identical stars (distance=0)
        begin
          // Insert into the closest list if closer than current farthest
          for k:=num_closest - 1 downto 0 do
          begin
            if (closest_indices[k] = -1) or (distance < sqr(starlist[0, closest_indices[k]] - x1) + sqr(starlist[1, closest_indices[k]] - y1)) then
            begin
              if k < num_closest - 1 then
              begin
                closest_indices[k + 1]:=closest_indices[k];
              end;
              closest_indices[k]:=j;
            end
            else
              break;
          end;
        end;
      end;
    end;

    // Proceed only if we found enough stars
    if closest_indices[num_closest - 1] <> -1 then
    begin
      // Generate all quads for this group
      for q:=0 to num_quads_per_group - 1 do
      begin
        // Select quad indices based on mode
        case mode of
          5: //5 quads from 5 closest stars
            begin // Original behavior: Rotate which star is excluded
              if q = 0 then
              begin // Stars: i, closest[0], closest[1], closest[2]
                x2:=starlist[0, closest_indices[0]];
                y2:=starlist[1, closest_indices[0]];
                x3:=starlist[0, closest_indices[1]];
                y3:=starlist[1, closest_indices[1]];
                x4:=starlist[0, closest_indices[2]];
                y4:=starlist[1, closest_indices[2]];
              end
              else if q = 1 then
              begin // Stars: closest[3], closest[0], closest[1], closest[2]
                x1:=starlist[0, closest_indices[3]];
                y1:=starlist[1, closest_indices[3]];
              end
              else if q = 2 then
              begin // Stars: closest[3], i, closest[1], closest[2]
                x2:=starlist[0, i];
                y2:=starlist[1, i];
              end
              else if q = 3 then
              begin // Stars: closest[3], i, closest[0], closest[2]
                x3:=starlist[0, closest_indices[0]];
                y3:=starlist[1, closest_indices[0]];
              end
              else if q = 4 then
              begin // Stars: closest[3], i, closest[0], closest[1]
                x4:=starlist[0, closest_indices[1]];
                y4:=starlist[1, closest_indices[1]];
              end;
            end;

          6:  //15 quads from 6 closest stars
            begin // New behavior: All combinations of 4 from 6
              case q of // Maps q to 4 distinct indices (0..5)
                0: begin quad_indices[0]:=0; quad_indices[1]:=1; quad_indices[2]:=2; quad_indices[3]:=3; end;
                1: begin quad_indices[0]:=0; quad_indices[1]:=1; quad_indices[2]:=2; quad_indices[3]:=4; end;
                2: begin quad_indices[0]:=0; quad_indices[1]:=1; quad_indices[2]:=2; quad_indices[3]:=5; end;
                3: begin quad_indices[0]:=0; quad_indices[1]:=1; quad_indices[2]:=3; quad_indices[3]:=4; end;
                4: begin quad_indices[0]:=0; quad_indices[1]:=1; quad_indices[2]:=3; quad_indices[3]:=5; end;
                5: begin quad_indices[0]:=0; quad_indices[1]:=1; quad_indices[2]:=4; quad_indices[3]:=5; end;
                6: begin quad_indices[0]:=0; quad_indices[1]:=2; quad_indices[2]:=3; quad_indices[3]:=4; end;
                7: begin quad_indices[0]:=0; quad_indices[1]:=2; quad_indices[2]:=3; quad_indices[3]:=5; end;
                8: begin quad_indices[0]:=0; quad_indices[1]:=2; quad_indices[2]:=4; quad_indices[3]:=5; end;
                9: begin quad_indices[0]:=0; quad_indices[1]:=3; quad_indices[2]:=4; quad_indices[3]:=5; end;
                10: begin quad_indices[0]:=1; quad_indices[1]:=2; quad_indices[2]:=3; quad_indices[3]:=4; end;
                11: begin quad_indices[0]:=1; quad_indices[1]:=2; quad_indices[2]:=3; quad_indices[3]:=5; end;
                12: begin quad_indices[0]:=1; quad_indices[1]:=2; quad_indices[2]:=4; quad_indices[3]:=5; end;
                13: begin quad_indices[0]:=1; quad_indices[1]:=3; quad_indices[2]:=4; quad_indices[3]:=5; end;
                14: begin quad_indices[0]:=2; quad_indices[1]:=3; quad_indices[2]:=4; quad_indices[3]:=5; end;
              end;

              // Get star positions for the quad
              x1:=starlist[0, i]; // Reference star is always included
              y1:=starlist[1, i];
              x2:=starlist[0, closest_indices[quad_indices[0]]];
              y2:=starlist[1, closest_indices[quad_indices[0]]];
              x3:=starlist[0, closest_indices[quad_indices[1]]];
              y3:=starlist[1, closest_indices[quad_indices[1]]];
              x4:=starlist[0, closest_indices[quad_indices[2]]];
              y4:=starlist[1, closest_indices[quad_indices[2]]];
            end;
        end;

        // Calculate quad center
        xt:=(x1 + x2 + x3 + x4)*0.25;
        yt:=(y1 + y2 + y3 + y4)*0.25;

        // Check for duplicates
        identical_quad:=false;
        for k:=0 to nrquads - 1 do
        begin
          if (abs(xt - quads[6, k]) < 1) and (abs(yt - quads[7, k]) < 1) then
          begin
            identical_quad:=true;
            break;
          end;
        end;

        if not identical_quad then
        begin
          // Calculate pairwise distances
          dist1:=sqrt(sqr(x1 - x2) + sqr(y1 - y2));
          dist2:=sqrt(sqr(x1 - x3) + sqr(y1 - y3));
          dist3:=sqrt(sqr(x1 - x4) + sqr(y1 - y4));
          dist4:=sqrt(sqr(x2 - x3) + sqr(y2 - y3));
          dist5:=sqrt(sqr(x2 - x4) + sqr(y2 - y4));
          dist6:=sqrt(sqr(x3 - x4) + sqr(y3 - y4));

          // Optimized bubble sort for 6 elements (5 passes max)
          if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
          if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
          if dist4 > dist3 then begin temp:=dist3; dist3:=dist4; dist4:=temp; end;
          if dist5 > dist4 then begin temp:=dist4; dist4:=dist5; dist5:=temp; end;
          if dist6 > dist5 then begin temp:=dist5; dist5:=dist6; dist6:=temp; end;

          if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
          if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
          if dist4 > dist3 then begin temp:=dist3; dist3:=dist4; dist4:=temp; end;
          if dist5 > dist4 then begin temp:=dist4; dist4:=dist5; dist5:=temp; end;

          if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
          if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
          if dist4 > dist3 then begin temp:=dist3; dist3:=dist4; dist4:=temp; end;

          if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
          if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;

          if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
          //end optimized bubble sort

          // Store the quad
          quads[0, nrquads]:=dist1;  //largest distance
          quads[1, nrquads]:=dist2 / dist1; //scale to largest distance
          quads[2, nrquads]:=dist3 / dist1;
          quads[3, nrquads]:=dist4 / dist1;
          quads[4, nrquads]:=dist5 / dist1;
          quads[5, nrquads]:=dist6 / dist1;
          quads[6, nrquads]:=xt;
          quads[7, nrquads]:=yt;
          inc(nrquads);
        end;
      end; // End of quad generation loop
    end; // End of "found enough stars" check
  end; // End of star loop

  SetLength(quads, 8, nrquads); // Trim to actual number of quads
end;


procedure find_quads(starlist :Tstar_list; out quads :Tstar_list); //build quads using closest stars, revised 2025
const
  grid_size = 5.0; // Coarser grid for [-6000, 6000], adjust if needed (e.g., 5.0 for denser clustering)
  bucket_capacity = 10; // Max quads per bucket, increase to 20 if overflows occur
var
   i,j,k,nrstars,j_index1,j_index2,j_index3,nrquads,Sstart,Send,bandw,startp,
   hash_x, hash_y, idx                                                     : integer;
   distance,distance1,distance2,distance3,x1,x2,x3,x4,xt,y1,y2,y3,y4,yt,
   dist1,dist2,dist3,dist4,dist5,dist6,temp,disty                          : double;
   identical_quad : boolean;
   hash_table: array of array of integer; // Fixed-size buckets
   bucket_counts: array of integer; // Number of quads in each bucket
   max_bucket_size: integer; // Debug: track largest bucket
   overflow_count: integer; // Debug: count bucket overflows
begin
  nrstars:=Length(starlist[0]);{number of quads will lower}

 if nrstars<30 then
  begin
    find_many_quads(starlist, {out} quads,6 {group size});//Find five times more quads by using closest groups of five stars.
    exit;
  end
  else
  if nrstars<60 then
  begin
    find_many_quads(starlist, {out} quads,5 {group size});//Find five times more quads by using closest groups of five stars.
    exit;
  end;

  if nrstars<4 then
  begin {not enough stars for quads}
    SetLength(quads,8,0);
    exit;
  end;

  if nrstars>=150 then
  begin
    quickSort_starlist(starlist,0,nrstars-1); {sort in X only}
    bandw:=round(2*sqrt(nrstars));{resulting tolerance band will be about twice the average star distance assuming the stars are equally distributed}
  end
  else
  bandw:=nrstars;{switch off pre-filtering in X}

  // Initialize hash table and debug counters
  SetLength(hash_table, nrstars * 2,bucket_capacity); // 1000 buckets for ~500 stars. In hash table design, the number of buckets is often set to 1–2 times the expected number of entries to achieve a load factor (entries ÷ buckets) of 0.5–1.0, minimizing collisions. Here, with ~350–400 quads, nrstars * 2 = 1000 gives a load factor of ~0.4, which is ideal for performance.
  SetLength(bucket_counts, Length(hash_table));
  for i := 0 to Length(hash_table) - 1 do
    bucket_counts[i] := 0; // Initialize counts
  max_bucket_size := 0;
  overflow_count := 0;

  nrquads:=0;
  SetLength(quads,8,nrstars); {will contain the six distances and the central position}


  j_index1:=0;{set a default value}
  j_index2:=0;
  j_index3:=0;

  for i:=0 to nrstars-1 do
  begin
    distance1:=1E99;{distance closest star}
    distance2:=1E99;{distance second closest star}
    distance3:=1E99;{distance third closest star}

    Sstart:=max(0,i-bandw);
    Send:=min(nrstars-1,i+bandw); {search in a limited X band only. The stars list are sorted in X. Search speed increases with about 30%}

    x1:=starlist[0,i]; // first star position quad array}
    y1:=starlist[1,i];

    for j:=Sstart to Send do {find closest stars}
    begin
      if j<>i{not the first star} then
      begin
        disty:=sqr(starlist[1,j]- y1);
        if disty<distance3 then {pre-check to increase processing speed with a small amount}
        begin
          distance:=sqr(starlist[0,j]-x1)+distY ;{square distances are used}
          if distance>1 then {not an identical star. Mod 2021-6-25}
          begin
            if distance<distance1 then
            begin
              distance3:=distance2;{distance third closest star}
              j_index3:=j_index2;{remember the star position in the list}

              distance2:=distance1;{distance second closest star}
              j_index2:=j_index1;{remember the star position in the list}

              distance1:=distance;{distance closest star}
              j_index1:=j;{mark later as used}
            end
            else
            if distance<distance2 then
            begin
              distance3:=distance2;{distance third closest star}
              j_index3:=j_index2;{remember the star position in the list}

              distance2:=distance;{distance second closest star}
              j_index2:=j;
            end
            else
            if distance<distance3 then
            begin
              distance3:=distance;{third closest star}
              j_index3:=j;{remember the star position in the list}
            end;
          end;{not an identical star. Mod 2021-6-25}

        end; {pre-check}
      end;
    end;{j}

    if  distance3<1E99 then //found 4 stars in the restricted area
    begin
      x2:=starlist[0,j_index1]; // second star position quad array
      y2:=starlist[1,j_index1];

      x3:=starlist[0,j_index2];
      y3:=starlist[1,j_index2];

      x4:=starlist[0,j_index3];
      y4:=starlist[1,j_index3];


      xt:=(x1+x2+x3+x4)*0.25; {mean x position quad. Multiply should be a little faster thne divide but no practical difference}
      yt:=(y1+y2+y3+y4)*0.25; {mean y position quad}

      // Check for duplicate quad using hash table
      identical_quad := False;
      hash_x := Trunc(xt / grid_size);
      hash_y := Trunc(yt / grid_size);
      idx := Abs(hash_x * 31 + hash_y) mod Length(hash_table);
      for k := 0 to bucket_counts[idx] - 1 do //check only quad_distances which have the same idx
      begin
        if (abs(xt - quads[6, hash_table[idx,k]]) < 1) and
           (abs(yt - quads[7, hash_table[idx,k]]) < 1) then
        begin
          identical_quad := True;
          break;
        end;
      end;
      // end Check for duplicate quad using hash table


      if identical_quad=false then  {new quad found}
      begin
        dist1:=sqrt(distance1);{distance star1-star2, use previous value already calculated}
        dist2:=sqrt(distance2);{distance star1-star3}
        dist3:=sqrt(distance3);{distance star1-star4}
        dist4:=sqrt(sqr(x2-x3)+ sqr(y2-y3));{distance star2-star3}
        dist5:=sqrt(sqr(x2-x4)+ sqr(y2-y4));{distance star2-star4}
        dist6:=sqrt(sqr(x3-x4)+ sqr(y3-y4));{distance star3-star4}

        // Optimized bubble sort for 6 elements (5 passes max)
        if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
        if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
        if dist4 > dist3 then begin temp:=dist3; dist3:=dist4; dist4:=temp; end;
        if dist5 > dist4 then begin temp:=dist4; dist4:=dist5; dist5:=temp; end;
        if dist6 > dist5 then begin temp:=dist5; dist5:=dist6; dist6:=temp; end;

        if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
        if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
        if dist4 > dist3 then begin temp:=dist3; dist3:=dist4; dist4:=temp; end;
        if dist5 > dist4 then begin temp:=dist4; dist4:=dist5; dist5:=temp; end;

        if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
        if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
        if dist4 > dist3 then begin temp:=dist3; dist3:=dist4; dist4:=temp; end;

        if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
        if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;

        if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
        //end optimized bubble sort


        quads[0,nrquads]:=dist1;{largest distance}
        quads[1,nrquads]:=dist2/dist1;{scale relative to largest distance}
        quads[2,nrquads]:=dist3/dist1;
        quads[3,nrquads]:=dist4/dist1;
        quads[4,nrquads]:=dist5/dist1;
        quads[5,nrquads]:=dist6/dist1;
        quads[6,nrquads]:=xt;{store mean x position}
        quads[7,nrquads]:=yt;{store mean y position}


        //add_to_hash, Hash table makes the routine 25% faster
        hash_x := Trunc(xt / grid_size);
        hash_y := Trunc(yt / grid_size);
        idx := Abs(hash_x * 31 + hash_y) mod Length(hash_table);

        if bucket_counts[idx] >= bucket_capacity then //pre check to speed up
        if bucket_counts[idx] >= Length(hash_table[idx]) then //will overflow
        begin
          SetLength(hash_table[idx], Length(hash_table[idx]) + bucket_capacity);//increase size with bucket capacity. Should not happen. Different dimensions are implemented as arrays, and can each have their own size! https://wiki.freepascal.org/Dynamic_array
          Inc(overflow_count); // Track overflows for debugging
        end;
        hash_table[idx,bucket_counts[idx]] := nrquads;
        Inc(bucket_counts[idx]);
        if bucket_counts[idx] > max_bucket_size then  max_bucket_size := bucket_counts[idx];// record maximum bicket size
        //end of add to hash

        inc(nrquads); {new unique quad found}
      end;
    end;//found 4 stars
  end;{i}
  SetLength(quads,8,nrquads);{adapt to the number found}

  if solve_show_log then
  begin
    memo2_message('Find Quads, max bucket size: '+inttostr(max_bucket_size)+', bucket overflows: '+inttostr(overflow_count) );
  end;
  if overflow_count>0 then
    memo2_message('Warning, bucket size increased!');
end;


function find_fit( minimum_count: integer; quad_tolerance: double) : boolean;
var
   nrquads1,nrquads2, i,j,k: integer;
   median_ratio : double;
   matchList1, matchlist2  : array of array of integer;
   ratios                  : array of double;
begin
  result:=false; {assume failure}
  nrquads1:=Length(quad_star_distances1[0]);
  nrquads2:=Length(quad_star_distances2[0]);

  {minimum_count required, 6 for stacking, 3 for plate solving}
  if ((nrquads1<minimum_count) or (nrquads2< minimum_count)) then begin nr_references:=0; exit; end;{no solution abort before run time errors}

  {Find a tolerance resulting in 6 or more of the best matching quads}
  setlength(matchlist2,2,1000);

  nr_references2:=0;
  i:=0;
  repeat
    j:=0;
    repeat //       ==database==                ==image==
      if abs(quad_star_distances1[1,i] - quad_star_distances2[1,j])<=quad_tolerance then //all length are scaled to the longest length so scale independent
      if abs(quad_star_distances1[2,i] - quad_star_distances2[2,j])<=quad_tolerance then
      if abs(quad_star_distances1[3,i] - quad_star_distances2[3,j])<=quad_tolerance then
      if abs(quad_star_distances1[4,i] - quad_star_distances2[4,j])<=quad_tolerance then
      if abs(quad_star_distances1[5,i] - quad_star_distances2[5,j])<=quad_tolerance then
      begin
        matchlist2[0,nr_references2]:=i;//store match position
        matchlist2[1,nr_references2]:=j;
        inc(nr_references2);
        if nr_references2>=length(matchlist2[0]) then setlength(matchlist2,2,nr_references2+1000);//get more space
      end;
      inc(j);
    until j>=nrquads2;//j loop
    inc(i);
  until i>=nrquads1;//i loop

  if solve_show_log then memo2_message('Found '+inttostr( nr_references2)+ ' references');

  if nr_references2< minimum_count then begin nr_references:=0; exit; end;{no solution abort before run time errors}


  setlength(ratios,nr_references2);
  {calculate median of the longest lenght ratio for matching quads}
  for k:=0 to nr_references2-1 do
    ratios[k]:=quad_star_distances1[0,matchlist2[0,k]]/quad_star_distances2[0,matchlist2[1,k]]; {ratio between largest length of found and reference quad}
  median_ratio:=smedian(ratios,nr_references2);

  {calculate median absolute deviation of the longest length ratio for matching quads}
//  for k:=0 to nr_references2-1 do {find standard deviation orientation quads}
//    deviations[k]:=abs(median_ratio1-ratios[k]);
//  mad:=smedian(deviations);{mad is about 0.67499 *sigma for a normal distribution}
//  memo2_message('mad :'+floattostr6(mad));

  nr_references:=0;
  setlength(matchlist1,2,nr_references2);
  for k:=0 to nr_references2-1 do {throw outliers out}
  begin
    if  abs(median_ratio-ratios[k])<=quad_tolerance*median_ratio then
    begin
      matchlist1[0,nr_references]:=matchlist2[0,k];{copy match position within tolerance}
      matchlist1[1,nr_references]:=matchlist2[1,k];
      inc(nr_references);
    end
    else
    if solve_show_log then memo2_message('quad outlier removed due to abnormal size: '+floattostr6(100*ratios[k]/median_ratio)+'%');
  end;

  {outliers in largest length removed}

  if (nr_references>=3) then {use 3 quads center position}
  begin
    {fill equations}
    setlength(A_XYpositions,3,nr_references);
    setlength(b_Xrefpositions,nr_references);
    setlength(b_Yrefpositions,nr_references);

    for k:=0 to nr_references-1 do
    begin
      A_XYpositions[0,k]:=quad_star_distances2[6,matchlist1[1,k]]; {average x position of quad}
      A_XYpositions[1,k]:=quad_star_distances2[7,matchlist1[1,k]]; {average y position of quad}
      A_XYpositions[2,k]:=1;

      b_Xrefpositions[k]:=quad_star_distances1[6,matchlist1[0,k]]; {x position of ref quad/database}
      b_Yrefpositions[k]:=quad_star_distances1[7,matchlist1[0,k]]; {Y position of ref quad}

      {in matrix calculations, b_refpositionX[0..2,0..nr_equations-1]:=solution_vectorX[0..2] * A_XYpositions[0..2,0..nr_equations-1]}
      {                        b_refpositionY[0..2,0..nr_equations-1]:=solution_matrixY[0..2] * A_XYpositions[0..2,0..nr_equations-1]}
    end;
    result:=true;{3 or more references}
  end;
//  else
//  if solve_show_log then {global variable set in find stars}
//     memo2_message('Found matches: '+inttostr(nr_references));
end;



function find_fit_using_hash(minimum_count: integer; quad_tolerance: double): boolean;
const
  NEIGHBOR_BINS = 1; // Check ±1 bin to cover quad_tolerance
  MAX_QUADS_PER_BIN = 15; // Preallocate bins for max_hash_count ≈ 13–15
var
  nrquads1, nrquads2, i, j, k, bin, delta_bin, adjusted_bin, hash_bins: integer;
  median_ratio: double;
  matchlist1, matchlist2: array of array of integer;
  ratios: array of double;
  hash_table1, hash_table2: array of array of integer; // Hash tables for quads
  hash_counts1, hash_counts2: array of integer; // Counts per bin
  max_hash_count: integer; // Debug: track largest bin size

begin
  result := false; {assume failure}
  nrquads1 := Length(quad_star_distances1[0]);
  nrquads2 := Length(quad_star_distances2[0]);

  if (nrquads1 < minimum_count) or (nrquads2 < minimum_count) then
  begin
    nr_references := 0;
    exit;
  end;

  {Set HASH_BINS to twice the maximum number of quads}
  hash_bins := 2 * Max(nrquads1, nrquads2);

  {Initialize hash tables with preallocated bins}
  SetLength(hash_table1, hash_bins,MAX_QUADS_PER_BIN);//rectangle array for the moment but could be adapted for each has bin individually
  SetLength(hash_table2, hash_bins,MAX_QUADS_PER_BIN);
  SetLength(hash_counts1, hash_bins);
  SetLength(hash_counts2, hash_bins);
  for bin := 0 to hash_bins - 1 do
  begin
    hash_counts1[bin] := 0;
    hash_counts2[bin] := 0;
  end;
  max_hash_count := 0;

  {Populate hash tables}
  for i := 0 to nrquads1 - 1 do
  begin
    bin := Trunc(quad_star_distances1[1, i] / quad_tolerance) mod hash_bins;
    if hash_counts1[bin] >= MAX_QUADS_PER_BIN then //pre check to speedup.
    if hash_counts1[bin] >= Length(hash_table1[bin]) then //Should normally not happen
      SetLength(hash_table1[bin], Length(hash_table1[bin]) + MAX_QUADS_PER_BIN); {Fallback resize.  Different dimensions are implemented as arrays, and can each have their own size! https://wiki.freepascal.org/Dynamic_array}
    hash_table1[bin,hash_counts1[bin]] := i;
    Inc(hash_counts1[bin]);
    if hash_counts1[bin] > max_hash_count then
      max_hash_count := hash_counts1[bin];
  end;

  for j := 0 to nrquads2 - 1 do
  begin
    bin := Trunc(quad_star_distances2[1, j] / quad_tolerance) mod hash_bins;

    if hash_counts2[bin] >= MAX_QUADS_PER_BIN then //pre check to speedup
    if hash_counts2[bin] >= Length(hash_table2[bin]) then //Should normally not happen
      SetLength(hash_table2[bin], Length(hash_table2[bin]) + MAX_QUADS_PER_BIN); {Fallback resize.  Different dimensions are implemented as arrays, and can each have their own size! https://wiki.freepascal.org/Dynamic_array}
    hash_table2[bin,hash_counts2[bin]] := j;
    Inc(hash_counts2[bin]);
    if hash_counts2[bin] > max_hash_count then
      max_hash_count := hash_counts2[bin];
  end;

  {Find matches using hash tables, checking neighboring bins}
  SetLength(matchlist2, 2, nrquads1); {Preallocate for max possible matches}
  nr_references2 := 0;

  for bin := 0 to hash_bins - 1 do
  begin
    if (hash_counts1[bin] = 0) then continue; {Skip empty bins}
    for delta_bin := -NEIGHBOR_BINS to NEIGHBOR_BINS do
    begin
      adjusted_bin := (bin + delta_bin) mod hash_bins;
      if adjusted_bin < 0 then adjusted_bin := adjusted_bin + hash_bins;
      if (hash_counts2[adjusted_bin] = 0) then continue; {Skip empty bins}
      for i := 0 to hash_counts1[bin] - 1 do
      begin
        for j := 0 to hash_counts2[adjusted_bin] - 1 do
        begin
          if abs(quad_star_distances1[1, hash_table1[bin,i]] - quad_star_distances2[1, hash_table2[adjusted_bin,j]]) <= quad_tolerance then
          if abs(quad_star_distances1[2, hash_table1[bin,i]] - quad_star_distances2[2, hash_table2[adjusted_bin,j]]) <= quad_tolerance then
          if abs(quad_star_distances1[3, hash_table1[bin,i]] - quad_star_distances2[3, hash_table2[adjusted_bin,j]]) <= quad_tolerance then
          if abs(quad_star_distances1[4, hash_table1[bin,i]] - quad_star_distances2[4, hash_table2[adjusted_bin,j]]) <= quad_tolerance then
          if abs(quad_star_distances1[5, hash_table1[bin,i]] - quad_star_distances2[5, hash_table2[adjusted_bin,j]]) <= quad_tolerance then
          begin
            matchlist2[0, nr_references2] := hash_table1[bin,i];
            matchlist2[1, nr_references2] := hash_table2[adjusted_bin,j];
            Inc(nr_references2);
            if nr_references2 >= Length(matchlist2[0]) then
              SetLength(matchlist2, 2, nr_references2 + 1000); {Fallback resizing}
          end;
        end;
      end;
    end;
  end;

  if solve_show_log then
    memo2_message('Found ' + IntToStr(nr_references2) + ' references, max hash bin size: ' + IntToStr(max_hash_count));

  if nr_references2 < minimum_count then
  begin
    nr_references := 0;
    exit;
  end;

  {Calculate median of the longest length ratio for matching quads}
  SetLength(ratios, nr_references2);
  for k := 0 to nr_references2 - 1 do
    ratios[k] := quad_star_distances1[0, matchlist2[0, k]] / quad_star_distances2[0, matchlist2[1, k]];

  median_ratio := smedian(ratios, nr_references2);

  {Calculate median absolute deviation and filter matches}
  nr_references := 0;
  SetLength(matchlist1, 2, nr_references2);
  for k := 0 to nr_references2 - 1 do
  begin
    if abs(median_ratio - ratios[k]) <= quad_tolerance * median_ratio then
    begin
      matchlist1[0, nr_references] := matchlist2[0, k];
      matchlist1[1, nr_references] := matchlist2[1, k];
      Inc(nr_references);
    end
    else if solve_show_log then
      memo2_message('Quad outlier removed due to abnormal size: ' + FloatToStrF(100 * ratios[k] / median_ratio, ffFixed, 6, 2) + '%');
  end;

  {Outliers in largest length removed}
  if nr_references >= 3 then
  begin
    SetLength(A_XYpositions, 3, nr_references);
    SetLength(b_Xrefpositions, nr_references);
    SetLength(b_Yrefpositions, nr_references);

    for k := 0 to nr_references - 1 do
    begin
      A_XYpositions[0, k] := quad_star_distances2[6, matchlist1[1, k]];
      A_XYpositions[1, k] := quad_star_distances2[7, matchlist1[1, k]];
      A_XYpositions[2, k] := 1;

      b_Xrefpositions[k] := quad_star_distances1[6, matchlist1[0, k]];
      b_Yrefpositions[k] := quad_star_distances1[7, matchlist1[0, k]];
    end;
    result := true;
  end;
end;


procedure get_brightest_stars(nr_stars_required: integer;{500} highest_snr: double;snr_list : array of double; var starlist1 : Tstar_list);{ get the brightest star from a star list}
const
   range=200;
var
  snr_histogram : array [0..range] of integer;
  i,count,nrstars, snr_scaled: integer;
  snr_required : double;

begin
  for i:=0 to length(snr_histogram)-1 do snr_histogram[i]:=0; {clear snr histogram}
  for i:=0 to length(snr_list)-1 do
  begin
  //  memo2_message(#9+inttostr(i)+#9+floattostr6(snr_list[i])) ;
    snr_scaled:=trunc(snr_list[i]*range/highest_snr);
    snr_histogram[snr_scaled]:=snr_histogram[snr_scaled]+1;{count how often this snr value is measured}
  end;
  count:=0;
  i:=range+1;
  repeat
    dec(i);
    count:=count+snr_histogram[i];
  //  memo2_message(#9+inttostr(snr_histogram[i])+ #9 +inttostr(i));
  until ((i<=0) or (count>=nr_stars_required));

  snr_required:=highest_snr*i/range;

  count:=0;
  nrstars:=length(starlist1[0]);
  for i:=0 to nrstars-1 do
    if snr_list[i]>=snr_required then {preserve brightest stars}
    begin
      starlist1[0,count]:=starlist1[0,i];{overwrite in the same array}
      starlist1[1,count]:=starlist1[1,i];
   //   memo2_message(#9+floattostr(snr_list[i])+#9+floattostr(starlist2[0,count])+ #9 +floattostr(starlist2[1,count]));
      inc(count);
     //  For testing:
     //  mainwindow.image1.Canvas.Pen.Mode := pmMerge;
     //  mainwindow.image1.Canvas.Pen.width := round(1+height2/mainwindow.image1.height);{thickness lines}
     //  mainwindow.image1.Canvas.brush.Style:=bsClear;
     //  mainwindow.image1.Canvas.Pen.Color := clred;
     //  mainwindow.image1.Canvas.Rectangle(round(starlist1[0,i])-15,height2-round(starlist1[1,i])-15, round(starlist1[0,i])+15, height2-round(starlist1[1,i])+15);{indicate hfd with rectangle}
     end;
  setlength(starlist1,2,count);{reduce length to used length}
end;

procedure get_hist2(img :Timage_array; startx,stopx,starty,stopy,upperlimit : integer; out histogram : Tarray_integer);
var
  i,j,col        : integer;
  total_value    : double;
begin
  setlength(histogram,upperlimit+1);
  for i:=0 to upperlimit do
    histogram[i] := 0;{clear histogram}

  For i:=startY to stopY do
  begin
    for j:=startX to stopX do
    begin
      col:=round(img[0,i,j]);{pixel value for this colour}
      if ((col>=1) and (col<upperlimit)) then {ignore black overlap areas and bright stars}
         inc(histogram[col],1);{calculate histogram}
    end;{j}
  end; {i}
end;


procedure SigmaClippedMeanFromHistogram(img :Timage_array; startx,stopx,starty,stopy, upperlimit, maxIterations: integer; convergenceThreshold : double; out meanv,stdev : double);
var
  i, totalCount, iteration, binvalue, val: Integer;
  sum, sumSquares, variance: Double;
  previousMean, previousStdDev: Double;
  converged: Boolean;
  currentLowerLimit, currentUpperLimit: Integer;  // Added for clipping range
  sigmaLow, sigmaHigh: Double;  // Sigma clipping parameters
  histogram         : Tarray_integer;
begin
  sigmaLow := 3.0;   // Standard values for astronomy
  sigmaHigh := 2.0;
  iteration := 0;
  converged := False;
  meanv := 0;
  stdev := 0;

  // Initial range is full histogram
  currentLowerLimit := 0;
  currentUpperLimit := upperlimit;


  get_hist2(img,startx,stopx,starty,stopy,upperlimit,{out} histogram);

  while (not converged) and (iteration < maxIterations) do
  begin
    previousMean := meanv;
    previousStdDev := stdev;

    // Reset accumulation variables each iteration
    sum := 0.0;
    sumSquares := 0.0;
    totalCount := 0;

    // Calculate statistics for current clipping range
    for i := currentLowerLimit to currentUpperLimit do
    begin
      if (i >= 0) and (i < Length(histogram)) then  // Bounds check
      begin
        val := histogram[i];
        if val > 0 then
        begin
          binValue := i;  // Bin index represents pixel value
          sum := sum + (binValue * val);
          sumSquares := sumSquares + (binValue * binValue * val);
          totalCount := totalCount + val;
        end;
      end;
    end;

    // Calculate mean and standard deviation
    if totalCount > 0 then
    begin
      meanv := sum / totalCount;
      if totalCount > 1 then
      begin
        variance := (sumSquares - (sum * sum) / totalCount) / (totalCount - 1);
        if variance > 0 then
          stdev := Sqrt(variance)
        else
          stdev := 0.0;
      end
      else
        stdev := 0.0;
    end
    else
    begin
      meanv := 0.0;
      stdev := 0.0;
      Break; // No data left
    end;

    //memo2_message('Iteration '+ inttostr(iteration)+'  Mean:'+floattostr(meanv)+'  Stdev:'+floattostr(stdev));

    Inc(iteration);

    //Update clipping range for next iteration
    if stdev > 0 then
    begin
      currentLowerLimit := Max(0, Round(meanv - sigmaLow * stdev));
      currentLowerLimit := 0;
      currentUpperLimit := Min(upperlimit, Round(meanv + sigmaHigh * stdev));
    end;

    // Check for convergence
    if (iteration > 1) and  // Don't check convergence on first iteration
       (Abs(meanv - previousMean) < convergenceThreshold) and
       (Abs(stdev - previousStdDev) < convergenceThreshold) then
      converged := True;

  end; // while
end;


procedure find_stars(img :Timage_array; hfd_min:double; max_stars :integer;out starlist1: Tstar_list);{find stars and put them in a list}
var
   fitsX, fitsY,nrstars,radius,i,j,retries,m,n,xci,yci,sqr_radius,width2,height2,starpixels,xx,yy,startX,endX,startY,endY,stepsX,stepsY : integer;
   hfd1,star_fwhm,snr,xc,yc,highest_snr,flux, detection_level,backgr,backgr_org, noise_lev : double;
   img_sa     : Timage_array;
   snr_list   :  array of double;//array of double;
   startTick2  : qword;{for timing/speed purposes}
// flip_vertical,flip_horizontal  : boolean;
// starX,starY :integer;
const
    buffersize=5000;{5000}
    rastersteps=12;

          procedure find_stars_routine(startx,endx,starty,endy : integer);
          var
             fitsX, fitsY,m,n : integer;
          begin
            for fitsY:=startY to endY do  //Search through the image. Stay one pixel away from the borders.
            begin
              for fitsX:=startX to endX  do
              begin
                if ((img_sa[0,fitsY,fitsX]<=0){star free area} and (img[0,fitsY,fitsX]- backgr>detection_level){star}) then {new star above noise level}
                begin
                  starpixels:=0;
                  if img[0,fitsY,fitsX-1]- backgr>4*noise_lev then inc(starpixels);//inspect in a cross around it.
                  if img[0,fitsY,fitsX+1]- backgr>4*noise_lev then inc(starpixels);
                  if img[0,fitsY-1,fitsX]- backgr>4*noise_lev then inc(starpixels);
                  if img[0,fitsY+1,fitsX]- backgr>4*noise_lev then inc(starpixels);
                  if starpixels>=2 then //At least 3 illuminated pixels. Not a hot pixel
                  begin
                    HFD(img,fitsX,fitsY,14{annulus radius}, hfd1,star_fwhm,snr,flux,xc,yc);{star HFD and FWHM}

                    if ((hfd1<=10) and (snr>10) and (hfd1>hfd_min) {0.8 is two pixels minimum} and (img_sa[0,round(yc),round(xc)]<=0){prevent rare double detection due to star spikes} ) then
                    begin
                      {for testing}
                    //  if flip_vertical=false  then  starY:=round(height2-yc) else starY:=round(yc);
                    //  if flip_horizontal=true then starX:=round(width2-xc)  else starX:=round(xc);
                    //  size:=round(5*hfd1);
                    //  mainform1.image1.Canvas.Rectangle(starX-size,starY-size, starX+size, starY+size);{indicate hfd with rectangle}
                    //  mainform1.image1.Canvas.textout(starX+size,starY+size,floattostrf(hfd1, ffgeneral, 2,1));{add hfd as text}
                    //  mainform1.image1.Canvas.textout(starX+size,starY+size,floattostrf(snr, ffgeneral, 2,1));{add hfd as text}

                      radius:=round(3.0*hfd1);{for marking star area. A value between 2.5*hfd and 3.5*hfd gives same performance. Note in practice a star PSF has larger wings then predicted by a Gaussian function}
                      sqr_radius:=sqr(radius);
                      xci:=round(xc);{star center as integer}
                      yci:=round(yc);
                      for n:=-radius to +radius do {mark the whole circular star area as occupied to prevent double detection's}
                        for m:=-radius to +radius do
                        begin
                          j:=n+yci;
                          i:=m+xci;
                          if ((j>=0) and (i>=0) and (j<height2) and (i<width2) and (sqr(m)+sqr(n)<=sqr_radius)) then
                            img_sa[0,j,i]:=1;
                        end;

                      {store values}
                      inc(nrstars);
                      if nrstars>=length(starlist1[0]) then
                      begin
                        SetLength(starlist1,2,nrstars+buffersize);{adapt array size if required}
                        setlength(snr_list,nrstars+buffersize);{adapt array size if required}
                       end;
                      starlist1[0,nrstars-1]:=xc; {store star position}
                      starlist1[1,nrstars-1]:=yc;
                      snr_list[nrstars-1]:=snr;{store SNR}

                      if  snr>highest_snr then highest_snr:=snr;{find to highest snr value}
                    end;
                  end;
                end;
              end;
            end;
          end;


begin
  {for testing}
//   mainform1.image1.Canvas.Pen.Mode := pmMerge;
//   mainform1.image1.Canvas.Pen.width := round(1+hd.height/mainform1.image1.height);{thickness lines}
//   mainform1.image1.Canvas.brush.Style:=bsClear;
//   mainform1.image1.Canvas.font.color:=$FF;
//   mainform1.image1.Canvas.font.size:=10;
//   mainform1.image1.Canvas.Pen.Color := $FF;
//   flip_vertical:=mainform1.flip_vertical1.Checked;
//   flip_horizontal:=mainform1.Flip_horizontal1.Checked;

  width2:=length(img[0,0]);{width}
  height2:=length(img[0]);{height}

  if solve_show_log then begin memo2_message('Start finding stars');   startTick2 := gettickcount64;end;

  SetLength(starlist1,2,buffersize);{set array length}
  setlength(snr_list,buffersize);{set array length}

  setlength(img_sa,1,height2,width2);{set length of image array}
  noise_lev:=noise_level[0]; //get_background is called in bin_and_find_star. Background is stored in cblack
  retries:=3; {try up to four times to get enough stars from the image}


  repeat
    highest_snr:=0;
    nrstars:=0;{set counters at zero}

    for fitsY:=0 to height2-1 do
      for fitsX:=0 to width2-1  do
        img_sa[0,fitsY,fitsX]:=-1;{mark as star free area}


    if retries=3 then
    begin
      if star_level >30*noise_lev then
      begin
        detection_level:=star_level;
        find_stars_routine(1,width2-1-1,1,height2-1-1);
      end
      else
        retries:=2;{skip}
    end;//stars are dominant
    if retries=2 then
    begin
      if star_level2>30*noise_lev then
      begin
        detection_level:=star_level2;
        find_stars_routine(1,width2-1-1,1,height2-1-1);
      end
      else
        retries:=1;{skip}
    end;//stars are dominant
    if retries=1 then
    begin
      detection_level:=30*noise_lev;
      find_stars_routine(1,width2-1-1,1,height2-1-1);
    end;
    if retries=0 then  //last try to find faint stars, divide image in sections and for each section find background and noise level
    begin
       if height2<width2 then //calculate steps in x, y
       begin
         stepsx:=rastersteps;
         stepsY:=round(rastersteps*height2/width2);
       end
       else
       begin
         stepsY:=rastersteps;
         stepsX:=round(rastersteps*width2/height2);
       end;
       backgr_org:=backgr;

       for yy:=0 to stepsY do //find stars in stepsX x stepsY sections
       for xx:=0 to stepsX do
       begin
         startX:=1+round(width2*xx/(stepsX+1));
         endX:=min(width2-1-1,round(width2*(xx+1)/(stepsX+1)));
         startY:=1+round(height2*yy/(stepsY+1));
         endY:=min(height2-1-1,round(height2*(yy+1)/(stepsY+1)));

         SigmaClippedMeanFromHistogram(img,startX,endX,startY,endY,max(65500,trunc(backgr_org*2)), 6,0.1,backgr,noise_lev);//mean and noise of this sub section
         detection_level:= 7*noise_lev;
         find_stars_routine(startX,endX,startY,endY);
       end;
    end;

    if solve_show_log then memo2_message(inttostr(nrstars)+' stars found of the requested '+inttostr(max_stars)+'. Background value is '+inttostr(round(backgr))+ '. Detection level used '+inttostr( round(detection_level))
                                                          +' above background. Star level is '+inttostr(round(star_level))+' above background. Noise level is '+floattostrF(noise_lev,ffFixed,0,0));
    dec(retries);{Try again with lower detection level}
  until ((nrstars>=max_stars) or (retries<0));{reduce dection level till enough stars are found. Note that faint stars have less positional accuracy}

  img_sa:=nil;{free mem}


  SetLength(starlist1,2,nrstars);{set length correct}
  setlength(snr_list,nrstars);{set length correct}

  if nrstars>max_stars then {reduce number of stars if too high}
  begin
    if solve_show_log then memo2_message('Selecting the '+ inttostr(max_stars)+' brightest stars only.');
    get_brightest_stars(max_stars, highest_snr, snr_list, starlist1);
  end;
  if solve_show_log then memo2_message('Finding stars done in '+ inttostr(gettickcount64 - startTick2)+ ' ms');
end;


procedure find_starsOLD(img :Timage_array;hfd_min:double; max_stars : integer; out starlist1: Tstar_list);{find stars and put them in a list}
var
   fitsX, fitsY,nrstars,radius,i,j,retries,m,n,xci,yci,sqr_radius,width2,height2,starpixels  : integer;
   hfd1,star_fwhm,snr,xc,yc,highest_snr,flux, detection_level,noise_lev                      : double;
   img_sa     : Timage_array;
   snr_list        : array of double;
   startTick2  : qword;{for timing/speed purposes}
const
    buffersize=5000;{5000}
begin
  width2:=length(img[0,0]);{width}
  height2:=length(img[0]);{height}

  if solve_show_log then begin memo2_message('Start finding stars');   startTick2 := gettickcount64;end;
  SetLength(starlist1,2,buffersize);{set array length}
  setlength(snr_list,buffersize);{set array length}

  setlength(img_sa,1,height2,width2);{set length of image array}
  noise_lev:=noise_level[0]; //get_background is called in bin_and_find_star. Background is stored in cblack
  retries:=3; {try up to four times to get enough stars from the image}
  repeat
    if retries=3 then
      begin if star_level >30*noise_lev then detection_level:=star_level  else retries:=2;{skip} end;//stars are dominant
    if retries=2 then
      begin if star_level2>30*noise_lev then detection_level:=star_level2 else retries:=1;{skip} end;//stars are dominant
    if retries=1 then
      begin detection_level:=30*noise_lev; end;
    if retries=0 then
      begin detection_level:= 7*noise_lev; end;

    highest_snr:=0;
    nrstars:=0;{set counters at zero}

    for fitsY:=0 to height2-1 do
      for fitsX:=0 to width2-1  do
        img_sa[0,fitsY,fitsX]:=-1;{mark as star free area}

    for fitsY:=1 to height2-1-1 do  //Search through the image. Stay one pixel away from the borders.
    begin
      for fitsX:=1 to width2-1-1  do
      begin
        if (( img_sa[0,fitsY,fitsX]<=0){star free area} and (img[0,fitsY,fitsX]-backgr>detection_level){star}) then {new star, at least 3.5 * sigma above noise level}
          begin
          starpixels:=0;
          if img[0,fitsY,fitsX-1]- backgr>4*noise_lev then inc(starpixels);//inspect in a cross around it.
          if img[0,fitsY,fitsX+1]- backgr>4*noise_lev then inc(starpixels);
          if img[0,fitsY-1,fitsX]- backgr>4*noise_lev then inc(starpixels);
          if img[0,fitsY+1,fitsX]- backgr>4*noise_lev then inc(starpixels);
          if starpixels>=2 then //At least 3 illuminated pixels. Not a hot pixel
          begin
            HFD(img,fitsX,fitsY,14{annulus radius}, hfd1,star_fwhm,snr,flux,xc,yc);{star HFD and FWHM}
            if ((hfd1<=10) and (snr>10) and (hfd1>hfd_min) {0.8 is two pixels minimum} and (img_sa[0,round(yc),round(xc)]<=0){prevent rare double detection due to star spikes}) then
            begin
              radius:=round(3.0*hfd1);{for marking star area. A value between 2.5*hfd and 3.5*hfd gives same performance. Note in practice a star PSF has larger wings then predicted by a Gaussian function}
              sqr_radius:=sqr(radius);
              xci:=round(xc);{star center as integer}
              yci:=round(yc);
              for n:=-radius to +radius do {mark the whole circular star area as occupied to prevent double detection's}
                for m:=-radius to +radius do
                begin
                  j:=n+yci;
                  i:=m+xci;
                  if ((j>=0) and (i>=0) and (j<height2) and (i<width2) and (sqr(m)+sqr(n)<=sqr_radius)) then
                    img_sa[0,j,i]:=1;
                end;

              {store values}
              inc(nrstars);
              if nrstars>=length(starlist1[0]) then
              begin
                SetLength(starlist1,2,nrstars+buffersize);{adapt array size if required}
                setlength(snr_list,nrstars+buffersize);{adapt array size if required}
              end;
              starlist1[0,nrstars-1]:=xc; {store star position}
              starlist1[1,nrstars-1]:=yc;
              snr_list[nrstars-1]:=snr;{store SNR}

              if  snr>highest_snr then highest_snr:=snr;{find to highest snr value}
            end;
          end;
        end;
      end;
    end;

    if solve_show_log then memo2_message(inttostr(nrstars)+' stars found of the requested '+inttostr(max_stars)+'. Background value is '+inttostr(round(backgr))+ '. Detection level used '+inttostr( round(detection_level))
                                                          +' above background. Star level is '+inttostr(round(star_level))+' above background. Noise level is '+floattostrF(noise_level[0],ffFixed,0,0));

    dec(retries);{Try again with lower detection level}
  until ((nrstars>=max_stars) or (retries<0));{reduce dection level till enough stars are found. Note that faint stars have less positional accuracy}

  img_sa:=nil;{free mem}

  SetLength(starlist1,2,nrstars);{set length correct}
  setlength(snr_list,nrstars);{set length correct}

  if nrstars>max_stars then {reduce number of stars if too high}
  begin
    if solve_show_log then memo2_message('Selecting the '+ inttostr(max_stars)+' brightest stars only.');
    get_brightest_stars(max_stars, highest_snr, snr_list, starlist1);
  end;
  if solve_show_log then memo2_message('Finding stars done in '+ inttostr(gettickcount64 - startTick2)+ ' ms');
end;

procedure reset_solution_vectors(factor: double); {reset the solution vectors}
begin
  solution_vectorX[0]:=factor;{should be one} // x:=s[1]x+s[2]y+s[3] }
  solution_vectorX[1]:=0;
  solution_vectorX[2]:=0;

  solution_vectorY[0]:=0; // y:=s[1]x+s[2]y+s[3]
  solution_vectorY[1]:=factor;{should be one}
  solution_vectorY[2]:=0;
end;


function find_offset_and_rotation(minimum_quads: integer;tolerance:double) : boolean; {find difference between ref image and new image}
var
  xy_sqr_ratio   : double;
  nrquads      : integer;
begin
  result:=false; //assume failure

  nrquads := Length(quad_star_distances1[0]);
   {3 quads required giving 3 center quad references}
   if nrquads<180 then//use brute forsh method
   begin
     if find_fit(minimum_quads, tolerance)=false then
     begin
       reset_solution_vectors(0.001);{nullify}
       exit;
     end;
   end
   else
   begin //use hash based routine
     if find_fit_using_hash(minimum_quads, tolerance)=false then
     begin
       reset_solution_vectors(0.001);{nullify}
       exit;
     end;
   end;

  {in matrix calculations, b_refpositionX[0..2,0..nr_equations-1]:=solution_vectorX[0..2] * A_XYpositions[0..2,0..nr_equations-1]}
  {                        b_refpositionY[0..2,0..nr_equations-1]:=solution_matrixY[0..2] * A_XYpositions[0..2,0..nr_equations-1]}

  {find solution vector for X:=ax+by+c  / b_Xref:=solution[0]x+solution[1]y+solution[2]}
  if (lsq_fit( A_XYpositions {[0..2,0..nr_equations-1]},b_Xrefpositions, solution_vectorX {[0..2]}))=false then begin reset_solution_vectors(0.001);exit; end;

  {find solution vector for Y:=ax+by+c  / b_Yref:=solution[0]x+solution[1]y+solution[2]}
  if (lsq_fit( A_XYpositions {0..2,[0..nr_equations-1]},b_Yrefpositions, solution_vectorY {[0..2]}))=false then begin reset_solution_vectors(0.001);exit; end;

  xy_sqr_ratio:=(sqr(solution_vectorX[0])+sqr(solution_vectorX[1]) ) / (0.00000001+ sqr(solution_vectorY[0])+sqr(solution_vectorY[1]) );
  if ((xy_sqr_ratio<0.9) or (xy_sqr_ratio>1.1)) then {dimensions x, y are not the same, something wrong.}
  begin
    result:=false;
    reset_solution_vectors(0.001);{nullify}
    if solve_show_log then {global variable set in find stars} memo2_message('Solution skipped on XY ratio: '+ floattostr(xy_sqr_ratio));
  end
  else
  result:=true;
end;


function floattostrF2(const x:double; width1,decimals1 :word): string;
begin
  str(x:width1:decimals1,result);
  if formatSettings.decimalseparator<>'.' then result:=StringReplace(result,'.',formatSettings.decimalseparator,[]); {replaces dot by komma}
end;


function fnmodulo (x,range: double):double;
begin
  {range should be 2*pi or 24 hours or 0 .. 360}
  x:=range *frac(X /range); {quick method for big numbers}
  if x<0 then x:=x+range;   {do not like negative numbers}
  fnmodulo:=x;
end;


function distance_to_string(dist, inp:double):string; {angular distance to string intended for RA and DEC. Unit is based on dist}
begin
  if abs(dist)<pi/(180*60) then {unit seconds}
      result:= floattostrF2(inp*3600*180/pi,0,1)+'"'
  else
  if abs(dist)<pi/180 then {unit minutes}
      result:= floattostrF2(inp*60*180/pi,0,1)+#39
  else
  result:= floattostrF2(inp*180/pi,0,1)+'d';
end;


function position_angle(ra1,dec1,ra0,dec0 : double): double;//Position angle between a line from ra0,dec0 to ra1,dec1 and a line from ra0, dec0 to the celestial north . Rigorous method
//See book Meeus, Astronomical Algorithms, formula 46.5 edition 1991 or 48.5 edition 1998, angle of moon limb or page 116 edition 1998.
//See also https://astronomy.stackexchange.com/questions/25306/measuring-misalignment-between-two-positions-on-sky
//   PA=arctan2(cos(δ0)sin(α1−α0), sin(δ1)cos(δ0)−sin(δ0)cos(δ1)cos(α1−α0))      In lazarus the function is arctan2(y/x)
//   is seen at point α0,δ0. This means you are calculating the angle at point α0,δ0 (the reference point) towards point α1,δ1 (the target point).
//   To clarify:
//     Point α0,δ0 (Reference Point): This is where the observation is made from, or the point of reference.
//     Point α1,δ1 (Target Point): This is the point towards which the position angle is being measured.
//     Position Angle (PA): This is the angle measured at the reference point α0,δ0, going from the direction of the North Celestial Pole towards the target point α1,δ1, measured eastward (or counter-clockwise).
//     So in your observational scenario, if you were at point α0,δ0 and wanted to determine the direction to point α1,δ1, the PA would tell you the angle to rotate from the north, moving eastward, to align with the target point.

var
  sinDeltaRa,cosDeltaRa,
  sinDec0,cosDec0,
  sinDec1,cosDec1 : double;
begin
  sincos(ra1-ra0,sinDeltaRa,cosDeltaRa);
  sincos(dec0,sinDec0,cosDec0);
  sincos(dec1,sinDec1,cosDec1);
  result:=arctan2(cosDec1*sinDeltaRa,sinDec1*cosDec0 - cosDec1*sinDec0*cosDeltaRa);
end;


{transformation of equatorial coordinates into CCD pixel coordinates for optical projection, rigid method}
{ra0,dec0: right ascension and declination of the optical axis}
{ra,dec:   right ascension and declination}
{xx,yy :   CCD coordinates}
{cdelt:    CCD scale in arcsec per pixel}
{$INLINE ON}
procedure equatorial_standard(ra0,dec0,ra,dec, cdelt : double; out xx,yy: double); inline;
var dv,sin_dec0,cos_dec0,sin_dec ,cos_dec,sin_deltaRA,cos_deltaRA: double;
begin
  sincos(dec0  ,sin_dec0 ,cos_dec0);
  sincos(dec   ,sin_dec  ,cos_dec );
  sincos(ra-ra0, sin_deltaRA,cos_deltaRA);
  dv  := (cos_dec0 * cos_dec * cos_deltaRA + sin_dec0 * sin_dec) * cdelt/(3600*180/pi); {cdelt/(3600*180/pi), factor for onversion standard coordinates to CCD pixels}
  xx := - cos_dec *sin_deltaRA / dv;{tangent of the angle in RA}
  yy := -(sin_dec0 * cos_dec * cos_deltaRA - cos_dec0 * sin_dec) / dv;  {tangent of the angle in DEC}
end;


{transformation from CCD coordinates into equatorial coordinates}
{ra0,dec0: right ascension and declination of the optical axis       }
{x,y     : CCD coordinates                                           }
{cdelt:  : scale of CCD pixel in arc seconds                         }
{ra,dec  : right ascension and declination                           }
procedure standard_equatorial(ra0,dec0,x,y,cdelt: double; out ra,dec : double); {transformation from CCD coordinates into equatorial coordinates}
var sin_dec0 ,cos_dec0 : double;
begin
  sincos(dec0  ,sin_dec0 ,cos_dec0);
  x:=x *cdelt/ (3600*180/pi);{scale CCD pixels to standard coordinates (tang angle)}
  y:=y *cdelt/ (3600*180/pi);

  ra  := ra0 + arctan2 (-x, cos_DEC0- y*sin_DEC0);{atan2 is required for images containing celestial pole}
  if ra>pi*2 then ra:=ra-pi*2; {prevent values above 2*pi which confuses the direction detection later}
  if ra<0 then ra:=ra+pi*2;
  dec := arcsin ( (sin_dec0+y*cos_dec0)/sqrt(1.0+x*x+y*y) );
end;


//procedure give_spiral_position(position : integer; var x,y : integer); {give x,y position of square spiral as function of input value}
//var i,dx,dy,t,count: integer;
//begin
//  x :=0;{star position}
//  y :=0;
//  dx := 0;{first step size x}
//  dy := -1;{first step size y}
//  count:=0;

//  for i:=0 to 10000*10000  {maximum width*height} do
//  begin
//    if  count>=position then exit; {exit and give x and y position}
//    inc(count);
//    if ( (x = y) or ((x < 0) and (x = -y)) or ((x > 0) and (x = 1-y))) then {turning point}
//    begin {swap dx by negative dy and dy by negative dx}
//       t:=dx;
//      dx := -dy;
//      dy := t;
//    end;
//     x :=x+ dx;{walk through square}
//     y :=y+ dy;{walk through square}
//  end;{for loop}
//end;


function read_stars(telescope_ra,telescope_dec,search_field : double; nrstars_required: integer; out starlist: Tstar_list): boolean;{read star from star database}
var
   Bp_Rp, ra2,dec2,
   frac1,frac2,frac3,frac4,sep                      : double;
   nrstars,area1,area2,area3,area4,nrstars_required2,count  : integer;
//   correctionX,correctionY : double;
begin
  result:=false;{assume failure}
  nrstars:=0;{set counters at zero}
  ra2:=0; {define ra2 value. Prevent ra2 = -nan(0xffffffffffde9) run time failure when first header record is read}

  SetLength(starlist,2,nrstars_required);{set array length}

  if database_type<>001 then {1476 or 290 files}
  begin
    {Assume the search field is at a crossing of four tiles. The search field area, by definition 100% is split in 8%, 15%, 20%, 57% area for each tile.
     There are 500 stars required. It will then retrieve 8% x 500, 15% x 500, 20% x 500, 57% x 500 stars from each tile under the condition these stars are within the green area.
     This will work assuming the star density within the green area is reasonable homogene.}
    find_areas( telescope_ra,telescope_dec, search_field,{var} area1,area2,area3,area4, frac1,frac2,frac3,frac4);{find up to four star database areas for the square image}

    {read 1th area}
    if area1<>0 then {read 1th area}
    begin
      if open_database(telescope_dec,area1)=false then
        exit;{open database file or reset buffer}
      nrstars_required2:=min(nrstars_required,trunc(nrstars_required * frac1));
      while ((nrstars<nrstars_required2) and (readdatabase290(telescope_ra,telescope_dec, search_field, {var} ra2,dec2, mag2,Bp_Rp)) ) do {star 290 file database read. Read up to nrstars_required}
      begin {add star}
        equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
        inc(nrstars);
      end;
    end;

    if area2<>0 then {read 2th area}
    begin
      if open_database(telescope_dec,area2)=false then
        exit; {open database file or reset buffer}
      nrstars_required2:=min(nrstars_required,trunc(nrstars_required * (frac1+frac2)));{prevent round up errors resulting in error starlist}
      while ((nrstars<nrstars_required2) and (readdatabase290(telescope_ra,telescope_dec, search_field, {var} ra2,dec2, mag2,Bp_Rp)) ) do {star 290 file database read. Read up to nrstars_required}
      begin {add star}
        equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
        inc(nrstars);
      end;
    end;

    if area3<>0 then {read 3th area}
    begin
      if open_database(telescope_dec,area3)=false then
        exit; {open database file or reset buffer}
      nrstars_required2:=min(nrstars_required,trunc(nrstars_required * (frac1+frac2+frac3)));
      while ((nrstars<nrstars_required2) and (readdatabase290(telescope_ra,telescope_dec, search_field, {var} ra2,dec2, mag2,Bp_Rp)) ) do {star 290 file database read. Read up to nrstars_required}
      begin {add star}
        equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
        inc(nrstars);
      end;
    end;

    if area4<>0 then {read 4th area}
    begin
      if open_database(telescope_dec,area4)=false then
       exit; {open database file}
      nrstars_required2:=min(nrstars_required,trunc(nrstars_required * (frac1+frac2+frac3+frac4)));
      while ((nrstars<nrstars_required2) and (readdatabase290(telescope_ra,telescope_dec, search_field, {var} ra2,dec2, mag2,Bp_Rp)) ) do{star 290 file database read. Read up to nrstars_required}
      begin {add star}
        equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
        inc(nrstars);
      end;
    end;
  end
  else
  begin {wide field database}
    if wide_database<>name_database then read_stars_wide_field;{load wide field stars array}
    count:=0;
    cos_telescope_dec:=cos(telescope_dec);
    while ((nrstars<nrstars_required) and  (count<length(wide_field_stars) div 3) ) do{star 290 file database read. Read up to nrstars_required}
    begin
      ra2:=wide_field_stars[count*3+1];{contains: mag1, ra1,dec1, mag2,ra2,dec2,mag3........}
      dec2:=wide_field_stars[count*3+2];
      ang_sep(ra2,dec2,telescope_ra,telescope_dec, sep);{angular seperation. Required for large field of view around the pole. Can not use simple formulas anymore}
      if ((sep<search_field*0.5*0.9*(2/sqrt(pi))) and  (sep<pi/2)) then  {factor 2/sqrt(pi) is to adapt circle search field to surface square. Factor 0.9 is a fiddle factor for trees, house and dark corners. Factor <pi/2 is the limit for procedure equatorial_standard}
      begin
        equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
        inc(nrstars);
      end;
      inc(count);
    end;
    mag2:=wide_field_stars[(count-1)*3];{for reporting of highest magnitude used for solving}
  end;

//  memo2_message('testareas'+#9+floattostr4(telescope_ra*12/pi)+#9+floattostr4(telescope_dec*180/pi)+#9+inttostr(maga)+#9+inttostr(magb)+#9+inttostr(magc)+#9+inttostr(magd)+#9+floattostr4(frac1)+#9+floattostr4(frac2)+#9+floattostr4(frac3)+#9+floattostr4(frac4)+#9+inttostr(area1)+#9+inttostr(area2)+#9+inttostr(area3)+#9+inttostr(area4));

  if nrstars<nrstars_required then
       SetLength(starlist,2,nrstars); {fix array length on data for case less stars are found}
  result:=true;{no errors}

  //for testing
//  equatorial_standard(telescope_ra,telescope_dec,ra0,dec0,1,correctionX,correctionY);{calculate correction for x,y position of database center and image center}
//  plot_stars_used_for_solving(correctionX,correctionY); {plot image stars and database stars used for the solution}
end;


procedure check_pattern_filter(var img: Timage_array); {normalize bayer pattern. Colour shifts due to not using a white light source for the flat frames are avoided.}
var
  fitsX,fitsY,col,h,w,counter1,counter2, counter3,counter4 : integer;
  value1,value2,value3,value4,maxval : double;
  oddx, oddy :boolean;
begin
  col:=length(img);{the real number of colours}
  h:=length(img[0]);{height}
  w:=length(img[0,0]);{width}

  if col>1 then
  begin
    memo2_message('Skipping check pattern filter. This filter works only for raw OSC images!');
    exit;
  end
  else
    memo2_message('Applying check pattern filter.');

  value1:=0; value2:=0; value3:=0; value4:=0;
  counter1:=0; counter2:=0; counter3:=0; counter4:=0;

  for fitsY:=(h div 4) to (h*3) div 4 do {use one quarter of the image to find factors. Works also a little better if no dark-flat is subtracted. It also works better if boarder is black}
    for fitsX:=(w div 4) to (w*3) div 4 do
    begin
      oddX:=odd(fitsX);
      oddY:=odd(fitsY);
      if ((oddX=false) and (oddY=false)) then begin value1:=value1+img[0,fitsY,fitsX]; inc(counter1) end else {separate counters for case odd() dimensions are used}
      if ((oddX=true)  and (oddY=false)) then begin value2:=value2+img[0,fitsY,fitsX]; inc(counter2) end else
      if ((oddX=false) and (oddY=true))  then begin value3:=value3+img[0,fitsY,fitsX]; inc(counter3) end else
      if ((oddX=true)  and (oddY=true))  then begin value4:=value4+img[0,fitsY,fitsX]; inc(counter4) end;
    end;

  {now normalise the bayer pattern pixels}
  value1:=value1/counter1;
  value2:=value2/counter2;
  value3:=value3/counter3;
  value4:=value4/counter4;
  maxval:=max(max(value1,value2),max(value3,value4));
  value1:=maxval/value1;
  value2:=maxval/value2;
  value3:=maxval/value3;
  value4:=maxval/value4;

  for fitsY:=0 to h-1 do
    for fitsX:=0 to w-1 do
    begin
      oddX:=odd(fitsX);
      oddY:=odd(fitsY);
      if ((value1<>1) and (oddX=false) and (oddY=false)) then img[0,fitsY,fitsX]:=round(img[0,fitsY,fitsX]*value1) else
      if ((value2<>1) and (oddX=true)  and (oddY=false)) then img[0,fitsY,fitsX]:=round(img[0,fitsY,fitsX]*value2) else
      if ((value3<>1) and (oddX=false) and (oddY=true))  then img[0,fitsY,fitsX]:=round(img[0,fitsY,fitsX]*value3) else
      if ((value4<>1) and (oddX=true)  and (oddY=true))  then img[0,fitsY,fitsX]:=round(img[0,fitsY,fitsX]*value4);
    end;
end;


procedure bin_mono_and_crop(binning: integer; crop {0..1}:double;img : Timage_array; out img2: Timage_array);// Make mono, bin and crop
var
  fitsX,fitsY,k, w,h, shiftX,shiftY,nrcolors,width5,height5,i,j,x,y: integer;
  val       : single;
begin
  nrcolors:=Length(img);
  width5:=Length(img[0,0]);{width}
  height5:=Length(img[0]); {height}

  w:=trunc(crop*width5/binning);  {dimensions after binning and crop}
  h:=trunc(crop*height5/binning);

  setlength(img2,1,h,w); {set length of image array}

  shiftX:=round(width5*(1-crop)/2); {crop is 0.9, shift is 0.05*head.width}
  shiftY:=round(height5*(1-crop)/2); {crop is 0.9, start at 0.05*head.height}

  if binning=1 then
  begin
    for fitsY:=0 to h-1 do
      for fitsX:=0 to w-1  do
      begin
        val:=0;
        for k:=0 to nrcolors-1 do {all colors and make mono}
           val:=val + img[k ,shiftY+fitsY,shiftX+fitsx];
        img2[0,fitsY,fitsX]:=val/nrcolors;
      end;
  end
  else
  if binning=2 then
  begin
    for fitsY:=0 to h-1 do
       for fitsX:=0 to w-1  do
      begin
        val:=0;
        for k:=0 to nrcolors-1 do {all colors}
          val:=val+(img[k,shiftY+fitsY*2   ,shiftX+fitsX*2]+
                    img[k,shiftY+fitsY*2 +1,shiftX+fitsX*2]+
                    img[k,shiftY+fitsY*2   ,shiftX+fitsX*2+1]+
                    img[k,shiftY+fitsY*2 +1,shiftX+fitsX*2+1])/4;
        img2[0,fitsY,fitsX]:=val/nrcolors;
      end;
  end
  else
  if binning=3 then
  begin
    for fitsY:=0 to h-1 do {bin & mono image}
      for fitsX:=0 to w-1  do
      begin
        val:=0;
        for k:=0 to nrcolors-1 do {all colors}
          val:=val+(img[k,shiftY+fitsY*3   ,shiftX+fitsX*3  ]+
                    img[k,shiftY+fitsY*3   ,shiftX+fitsX*3+1]+
                    img[k,shiftY+fitsY*3   ,shiftX+fitsX*3+2]+
                    img[k,shiftY+fitsY*3 +1,shiftX+fitsX*3  ]+
                    img[k,shiftY+fitsY*3 +1,shiftX+fitsX*3+1]+
                    img[k,shiftY+fitsY*3 +1,shiftX+fitsX*3+2]+
                    img[k,shiftY+fitsY*3 +2,shiftX+fitsX*3  ]+
                    img[k,shiftY+fitsY*3 +2,shiftX+fitsX*3+1]+
                    img[k,shiftY+fitsY*3 +2,shiftX+fitsX*3+2])/9;
        img2[0,fitsY,fitsX]:=val/nrcolors;
      end;
  end
  else
  if binning=4 then
  begin
    for fitsY:=0 to h-1 do //bin & mono image
      for fitsX:=0 to w-1  do
      begin
        val:=0;
        for k:=0 to nrcolors-1 do //all colors to mono. Test shows this loop doesn't introduce much delay for mono images
          val:=val+(img[k,shiftY+fitsY*4   ,shiftX+fitsX*4  ]+
                    img[k,shiftY+fitsY*4   ,shiftX+fitsX*4+1]+
                    img[k,shiftY+fitsY*4   ,shiftX+fitsX*4+2]+
                    img[k,shiftY+fitsY*4   ,shiftX+fitsX*4+3]+
                    img[k,shiftY+fitsY*4 +1,shiftX+fitsX*4  ]+
                    img[k,shiftY+fitsY*4 +1,shiftX+fitsX*4+1]+
                    img[k,shiftY+fitsY*4 +1,shiftX+fitsX*4+2]+
                    img[k,shiftY+fitsY*4 +1,shiftX+fitsX*4+3]+
                    img[k,shiftY+fitsY*4 +2,shiftX+fitsX*4  ]+
                    img[k,shiftY+fitsY*4 +2,shiftX+fitsX*4+1]+
                    img[k,shiftY+fitsY*4 +2,shiftX+fitsX*4+2]+
                    img[k,shiftY+fitsY*4 +2,shiftX+fitsX*4+3]+
                    img[k,shiftY+fitsY*4 +3,shiftX+fitsX*4  ]+
                    img[k,shiftY+fitsY*4 +3,shiftX+fitsX*4+1]+
                    img[k,shiftY+fitsY*4 +3,shiftX+fitsX*4+2]+
                    img[k,shiftY+fitsY*4 +3,shiftX+fitsX*4+3])/16;
        img2[0,fitsY,fitsX]:=val/nrcolors; //mono result
      end;

  end
  else
  begin //any bin factor. This routine is at bin 4x4 about twice slower then the above routine
    for fitsY:=0 to h-1 do
      for fitsX:=0 to w-1  do
      begin
        val:=0;
        x:=shiftX+fitsX*binning;
        y:=shiftY+fitsY*binning;
        for k:=0 to nrcolors-1 do {all colors to mono. Test shows this loop doesn't introduce much delay for mono images}
        begin
          for i:=0 to binning-1 do
          for j:=0 to binning-1 do
             val:=val + img[k,y+i   ,x+j];
        end;
        img2[0,fitsY,fitsX]:=val/(nrcolors*sqr(binning)); //mono result
      end;
  end;
end;


procedure convert_mono(var img: Timage_array);
var
   fitsX,fitsY,width2,height2: integer;
   img_temp : Timage_array;
begin
  memo2_message('Converting to mono.');
  height2:=Length(img[0]); {height}
  width2:=Length(img[0,0]); {width}

  setlength(img_temp,1,height2,width2);{set length of image array mono}

  for fitsY:=0 to height2-1 do
    for fitsX:=0 to width2-1 do
      img_temp[0,fitsY,fitsX]:=(img[0,fitsY,fitsX]+img[1,fitsY,fitsX]+img[2,fitsY,fitsX])/3;

  img:=nil;
  img:=img_temp;
end;


procedure bin_and_find_stars(img :Timage_array;binfactor:integer;cropping,hfd_min:double;max_stars: integer;out starlist3:Tstar_list; out short_warning : string);{bin, measure background, find stars}
var
  width2,height2,nrstars,i : integer;
  img_binned : Timage_array;
begin
  short_warning:='';{clear string}

  width2:=length(img[0,0]);{width}
  height2:=length(img[0]);{height}

  if ((binfactor>1) or (cropping<1)) then
  begin
    if binfactor>1 then memo2_message('Creating grayscale x '+inttostr(binfactor)+' binning image for solving/star alignment.');
    if cropping<>1 then memo2_message('Cropping image x '+floattostrF2(cropping,0,2));

    bin_mono_and_crop(binfactor, cropping,img,img_binned); // Make mono, bin and crop

    get_background(0,img_binned,true {load hist},true {calculate also standard deviation background},{var}backgr,star_level,star_level2 );{get back ground}
    find_stars(img_binned,hfd_min,max_stars, starlist3); {find stars of the image and put them in a list}
    nrstars:=Length(starlist3[0]);

    if height2<960 then
    begin
      short_warning:='Warning, remaining image dimensions too low! ';  {for FITS header and solution. Dimensions should be equal or better the about 1280x960}
      memo2_message('Warning, remaining image dimensions too low! Try to REDUCE OR REMOVE DOWNSAMPLING.');
    end;

    for i:=0 to nrstars-1 do {correct star positions for binning and cropping. Simplest method}
    begin
      starlist3[0,i]:=(binfactor-1)*0.5+starlist3[0,i]*binfactor +(width2*(1-cropping)/2);//correct star positions for binfactor/ cropping. Position [3.5,3,5] becomes after 2x2 binfactor [1,1] after x2 [3,3]. So correct for 0.5 pixel
      starlist3[1,i]:=(binfactor-1)*0.5+starlist3[1,i]*binfactor +(height2*(1-cropping)/2);
      // For zero based indexing:
      // A star of 2x2 pixels at position [2.5,2.5] is after 2x2 binfactor at position [1,1]. If doubled to [2,2] then the position has 0.5 pixel shifted.
      // A star of 3x3 pixels at position [4,4] is after 3x3 binfactor at position [1,1]. If tripled to [3,3] then the position has 1.0 pixel shifted.
      // A star of 4x4 pixels at position [5.5,5.5] is after 4x4 binfactor at position [1,1]. If quadruped to [4,4] then the position has 1.5 pixel shifted.
      // So positions measured in a binned image should be corrected as x:=(binfactor-1)*0.5+binfactor*x and y:=(binfactor-1)*0.5+binfactor*y
    end;
  end
  else
  begin
    if height2>2500 then
    begin
      short_warning:='Warning, increase downsampling!! '; {for FITS header and solution}
      memo2_message('Info: DOWNSAMPLING IS RECOMMENDED FOR LARGE IMAGES. Set this option in stack menu, tab alignment.');
    end
    else
    if height2<960 then
    begin
     short_warning:='Warning, small image dimensions!! ';  {for FITS header and solution. Dimensions should be equal or better the about 1280x960}
     memo2_message('█ █ █ █ █ █ Warning, small image dimensions!!');
    end;

    if length(img)>=3 then //colour image
      convert_mono(img);

    get_background(0,img,true {calc hist},true {calculate also standard deviation background}, {var} backgr,star_level,star_level2);{get back ground}
    find_stars(img,hfd_min, max_stars,starlist3); {find stars of the image and put them in a list}
  end;
end;


function report_binning_astrometric(height,arcsec_per_px:double) : integer;{select the binning}
begin
  result:=downsample_for_solving1;
  if result<=0 then  {zero gives -1, Auto is 0}
  begin //auto
    if height>2500 then result:=2 else result:=1;
    result:=max(result, round(1.5/arcsec_per_px));//pixelscale should be larger then 1"/px
  end;
  result:=min(16,result);//16 max. Too much anyhow
end;


function apply_arctan(fov : double): double; //assume the optical system can be modeled by a simple arctan function like a standard rectilinear (pinhole) lens
begin
  result:=2*arctan((fov/2)*pi/180)*180/pi;
end;


function add_sip(ra_database,dec_database:double) : boolean;
var
  stars_measured,stars_reference         : TStarArray;
  trans_sky_to_pixel,trans_pixel_to_sky  : Ttrans;
  len,i                                  : integer;
  succ: boolean;
  err_mess: string;
  ra_t,dec_t,  SIN_dec_t,COS_dec_t, SIN_dec_ref,COS_dec_ref,det, delta_ra,SIN_delta_ra,COS_delta_ra, H, dRa,dDec : double;

begin
  result:=true;// assume success

  {1) Solve the image with the 1th order solver.
   2) Get the x,y coordinates of the detected stars= "stars_measured"
   3) Get the x,y coordinates of the reference stars= "stars_reference"
   4) Shift the x,y coordinates of "stars_measured" to the center of the image. so position [0,0] is at CRPIX1, CRPIX2.
   5) Convert reference stars coordinates to the same coordinate system as the measured stars.
      In my case I had to convert the quad x,y coordinates to ra, dec and then convert these to image position using the original first order solution
   6) Now both the "stars_measured" and "stars_reference" positions match with stars in the image except for distortion. Position [0,0] is at CRPIX1, CRPIX2.
   7) For pixel_to_sky  call:  Calc_Trans_Cubic(stars_measured,  stars_reference,...).   The trans array will work for pixel to sky.
   8) For sky_to_pixel  call:  Calc_Trans_Cubic(stars_reference,  stars_measured,...)    The trans array will work for sky to pixel.
   }

  len:=length(b_Xrefpositions);
  if len<20 then
  begin
    memo2_message('Not enough quads for calculating SIP.');
    exit(false);
  end;
  setlength(stars_measured,len);
  setlength(stars_reference,len);


  sincos(dec0,SIN_dec_ref,COS_dec_ref);;{ For 5. Conversion (RA,DEC) -> x,y image in fits range 1..max}

  for i:=0 to len-1 do
  begin
    stars_measured[i].x:=1+A_XYpositions[0,i]-crpix1;//position as seen from center at crpix1, crpix2, in fits range 1..width
    stars_measured[i].y:=1+A_XYpositions[1,i]-crpix2;

    standard_equatorial( ra_database,dec_database,
                         b_Xrefpositions[i], {x reference star}
                         b_Yrefpositions[i], {y reference star}
                         1, {CCD scale}
                         ra_t,dec_t) ; //calculate back to the reference star positions


    {5. Conversion (RA,DEC) -> x,y image in fits range 1..max}
    sincos(dec_t,SIN_dec_t,COS_dec_t);
    delta_ra:=ra_t-ra0;
    sincos(delta_ra,SIN_delta_ra,COS_delta_ra);

    H := SIN_dec_t*sin_dec_ref + COS_dec_t*COS_dec_ref*COS_delta_ra;
    dRA := (COS_dec_t*SIN_delta_ra / H)*180/pi;
    dDEC:= ((SIN_dec_t*COS_dec_ref - COS_dec_t*SIN_dec_ref*COS_delta_ra ) / H)*180/pi;

    det:=cd2_2*cd1_1 - cd1_2*cd2_1;
    stars_reference[i].x:= - (cd1_2*dDEC - cd2_2*dRA) / det;
    stars_reference[i].y:= + (cd1_1*dDEC - cd2_1*dRA) / det;

  end;

  succ:=Calc_Trans_Cubic(stars_reference,     // First array of s_star structure we match the output trans_sky_to_pixel takes their coords into those of array B
                         stars_measured,      // Second array of s_star structure we match
                         trans_sky_to_pixel,  // Transfer coefficients for stars_measured positions to stars_reference positions. Fits range 1..max
                         err_mess             // any error message
                            );
  if succ=false then
  begin
    memo2_message(err_mess);
    exit(false);
  end;


  {sky to pixel coefficients}
  AP_order:=3; //third order
  AP_0_0:=trans_sky_to_pixel.x00;
  AP_0_1:=trans_sky_to_pixel.x01;
  AP_0_2:=trans_sky_to_pixel.x02;
  AP_0_3:=trans_sky_to_pixel.x03;
  AP_1_0:=-1+trans_sky_to_pixel.x10;
  AP_1_1:=trans_sky_to_pixel.x11;
  AP_1_2:=trans_sky_to_pixel.x12;
  AP_2_0:=trans_sky_to_pixel.x20;
  AP_2_1:=trans_sky_to_pixel.x21;
  AP_3_0:=trans_sky_to_pixel.x30;

  BP_0_0:=trans_sky_to_pixel.y00;
  BP_0_1:=-1+trans_sky_to_pixel.y01;
  BP_0_2:=trans_sky_to_pixel.y02;
  BP_0_3:=trans_sky_to_pixel.y03;
  BP_1_0:=trans_sky_to_pixel.y10;
  BP_1_1:=trans_sky_to_pixel.y11;
  BP_1_2:=trans_sky_to_pixel.y12;
  BP_2_0:=trans_sky_to_pixel.y20;
  BP_2_1:=trans_sky_to_pixel.y21;
  BP_3_0:=trans_sky_to_pixel.y30;


  //inverse transformation calculation
  //swap the arrays for inverse factors. This works as long the offset is small like in this situation
  succ:=Calc_Trans_Cubic(stars_measured,      // reference
                         stars_reference,      // distorted
                         trans_pixel_to_sky,  // Transfer coefficients for stars_measured positions to stars_reference positions
                         err_mess             // any error message
                         );

  if succ=false then
  begin
    memo2_message(err_mess);
    exit(false);
  end;

  // SIP definitions https://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/shupeADASS.pdf

  //Pixel to sky coefficients
  A_order:=3;
  A_0_0:=trans_pixel_to_sky.x00;
  A_0_1:=trans_pixel_to_sky.x01;
  A_0_2:=trans_pixel_to_sky.x02;
  A_0_3:=trans_pixel_to_sky.x03;
  A_1_0:=-1+ trans_pixel_to_sky.x10;
  A_1_1:=trans_pixel_to_sky.x11;
  A_1_2:=trans_pixel_to_sky.x12;
  A_2_0:=trans_pixel_to_sky.x20;
  A_2_1:=trans_pixel_to_sky.x21;
  A_3_0:=trans_pixel_to_sky.x30;

  B_0_0:=trans_pixel_to_sky.y00;
  B_0_1:=-1+trans_pixel_to_sky.y01;
  B_0_2:=trans_pixel_to_sky.y02;
  B_0_3:=trans_pixel_to_sky.y03;
  B_1_0:=trans_pixel_to_sky.y10;
  B_1_1:=trans_pixel_to_sky.y11;
  B_1_2:=trans_pixel_to_sky.y12;
  B_2_0:=trans_pixel_to_sky.y20;
  B_2_1:=trans_pixel_to_sky.y21;
  B_3_0:=trans_pixel_to_sky.y30;


  update_integer('A_ORDER =',' / Polynomial order, axis 1. Pixel to Sky         ',3);
  update_float('A_0_0   =',' / SIP coefficient                                ',A_0_0);
  update_float('A_1_0   =',' / SIP coefficient                                ',A_1_0);
  update_float('A_0_1   =',' / SIP coefficient                                ',A_0_1);
  update_float('A_2_0   =',' / SIP coefficient                                ',A_2_0);
  update_float('A_1_1   =',' / SIP coefficient                                ',A_1_1);
  update_float('A_0_2   =',' / SIP coefficient                                ',A_0_2);
  update_float('A_3_0   =',' / SIP coefficient                                ',A_3_0);
  update_float('A_2_1   =',' / SIP coefficient                                ',A_2_1);
  update_float('A_1_2   =',' / SIP coefficient                                ',A_1_2);
  update_float('A_0_3   =',' / SIP coefficient                                ',A_0_3);


  update_integer('B_ORDER =',' / Polynomial order, axis 2. Pixel to sky.        ',3);
  update_float('B_0_0   =',' / SIP coefficient                                ' ,B_0_0);
  update_float('B_0_1   =',' / SIP coefficient                                ' ,B_0_1);
  update_float('B_1_0   =',' / SIP coefficient                                ' ,B_1_0);
  update_float('B_2_0   =',' / SIP coefficient                                ' ,B_2_0);
  update_float('B_1_1   =',' / SIP coefficient                                ' ,B_1_1);
  update_float('B_0_2   =',' / SIP coefficient                                ' ,B_0_2);
  update_float('B_3_0   =',' / SIP coefficient                                ' ,B_3_0);
  update_float('B_2_1   =',' / SIP coefficient                                ' ,B_2_1);
  update_float('B_1_2   =',' / SIP coefficient                                ' ,B_1_2);
  update_float('B_0_3   =',' / SIP coefficient                                ' ,B_0_3);

  update_integer('AP_ORDER=',' / Inv polynomial order, axis 1. Sky to pixel.      ',3);
  update_float('AP_0_0  =',' / SIP coefficient                                ',AP_0_0);
  update_float('AP_1_0  =',' / SIP coefficient                                ',AP_1_0);
  update_float('AP_0_1  =',' / SIP coefficient                                ',AP_0_1);
  update_float('AP_2_0  =',' / SIP coefficient                                ',AP_2_0);
  update_float('AP_1_1  =',' / SIP coefficient                                ',AP_1_1);
  update_float('AP_0_2  =',' / SIP coefficient                                ',AP_0_2);
  update_float('AP_3_0  =',' / SIP coefficient                                ',AP_3_0);
  update_float('AP_2_1  =',' / SIP coefficient                                ',AP_2_1);
  update_float('AP_1_2  =',' / SIP coefficient                                ',AP_1_2);
  update_float('AP_0_3  =',' / SIP coefficient                                ',AP_0_3);

  update_integer('BP_ORDER=',' / Inv polynomial order, axis 2. Sky to pixel.    ',3);
  update_float('BP_0_0  =',' / SIP coefficient                                ',BP_0_0);
  update_float('BP_1_0  =',' / SIP coefficient                                ',BP_1_0);
  update_float('BP_0_1  =',' / SIP coefficient                                ',BP_0_1);
  update_float('BP_2_0  =',' / SIP coefficient                                ',BP_2_0);
  update_float('BP_1_1  =',' / SIP coefficient                                ',BP_1_1);
  update_float('BP_0_2  =',' / SIP coefficient                                ',BP_0_2);
  update_float('BP_3_0  =',' / SIP coefficient                                ',BP_3_0);
  update_float('BP_2_1  =',' / SIP coefficient                                ',BP_2_1);
  update_float('BP_1_2  =',' / SIP coefficient                                ',BP_1_2);
  update_float('BP_0_3  =',' / SIP coefficient                                ',BP_0_3);
end;


function solve_image(img :Timage_array) : boolean;{find match between image and star database}
var
  nrstars,nrstars_required,nrstars_required2,count,max_distance,nr_quads, minimum_quads,binning,match_nr,
  spiral_x, spiral_y, spiral_dx, spiral_dy,spiral_t,database_density,limit,err, width2, height2,i                    : integer;
  search_field,step_size,ra_database,dec_database,telescope_ra_offset,radius,fov2,fov_org, max_fov,fov_min,
  oversize,oversize2,sep_search,seperation,ra7,dec7,centerX,centerY,cropping, min_star_size_arcsec,hfd_min,
  quad_tolerance,flip,extra,distance,flipped_image,xi,yi,arcsec_per_px,crota1_rad,crota2_rad,cdelt1_arcsec,cdelt2_arcsec,vfov  : double;
  solution, go_ahead ,autoFOV                                                                                              : boolean;
  startTick  : qword;{for timing/speed purposes}
  distancestr,mess,suggest_str, warning_downsample, solved_in, offset_found,ra_offset,dec_offset,mount_info,mount_offset : string;
  starlist1,starlist2 : Tstar_list;

begin
  result:=false;
  esc_pressed:=false;
  warning_str:='';{for header}
  startTick := GetTickCount64;
  quad_tolerance:=strtofloat2(quad_tolerance1);
  //quad_tolerance:=min(quad_tolerance,0.008);//prevent too high tolerances set by command line

  width2:=length(img[0,0]); {width}
  height2:=length(img[0]);  {height}

  if ((fov_specified=false) and (cdelt2<>0)) then {no FOV in native command line and cdelt2 in header}
    fov_org:=apply_arctan(height2*abs(cdelt2)){calculate FOV. PI can give negative CDELT2}
  else
   fov_org:=min(180,strtofloat2(search_fov1));{use specfied FOV in stackmenu. 180 max to prevent runtime errors later}

  if select_star_database(star_database1,fov_org)=false then {select database prior to cropping selection}
  begin
    result:=false;
    memo2_message('Error, no star database found at '+database_path+' ! Download and install a star database.');
    errorlevel:=32;{no star database}
    exit;
  end
  else
  begin
    //stackmenu1.star_database1.text:=name_database;
    memo2_message('Using star database '+uppercase(name_database));

    if ((fov_org>30) and (database_type<>001)) then
      warning_str:=warning_str+'Wide field image, use W08 database! '
    else
    if ((fov_org>6) and (database_type=1476)) then
      warning_str:=warning_str+'Large FOV, use G05 database! ';

    if warning_str<>'' then memo2_message(warning_str);
  end;

  if check_pattern_filter1 then {for OSC images with low dimensions only}
    check_pattern_filter(img);


  if  database_type=1476  then {.1476 database}
    max_fov:=5.142857143 {warning FOV should be less the database tiles dimensions, so <=5.142857143 degrees. Otherwise a tile beyond next tile could be selected}
  else  {.1476 database}
  if  database_type=290  then {.290 database}
    max_fov:=9.53 {warning FOV should be less the database tiles dimensions, so <=9.53 degrees. Otherwise a tile beyond next tile could be selected}
  else
    max_fov:=180;

  dec_radians:=dec0; {store temporary}
  ra_radians:=ra0;

  min_star_size_arcsec:=strtofloat2(min_star_size1); {arc sec};
  autoFOV:=(fov_org=0);{specified auto FOV}

  val(copy(name_database,2,2),database_density,err);
  if ((err<>0) or
      (database_density=17) or (database_density=18)) then //old databases V17, G17, G18, H17, H18
    database_density:=9999
  else
    database_density:=database_density*100;

  repeat {autoFOV loop}
    if autoFOV then
    begin
      if fov_org=0 then
      begin
        if database_type<>001 then
        begin
          fov_org:=9.5;
          fov_min:=0.38;
        end
        else
        begin
          fov_org:=90;
          fov_min:=12;
        end
      end
      else fov_org:=fov_org/1.5;
      memo2_message('Trying FOV: '+floattostrF(fov_org,ffFixed,0,1));
    end;
    if fov_org>max_fov then
    begin
      cropping:=max_fov/fov_org;
      fov2:=max_fov; {temporary cropped image, adjust FOV to adapt}
    end
    else
    begin
      cropping:=1;
      fov2:=fov_org;
    end;

    limit:=round(database_density*sqr(fov2)*width2/height2);//limit in stars per square degree. limit=density*surface_full_image
    if limit<max_stars then
    begin
       max_stars:=limit;//reduce the number of stars to use.
       memo2_message('Database limit for this FOV is '+inttostr(max_stars)+' stars.');
    end;

    arcsec_per_px:=fov_org*3600/height2;//arc sec per pixel unbinned
    binning:=report_binning_astrometric(height2*cropping,arcsec_per_px); {select binning on dimensions of cropped image only}

    hfd_min:=max(0.8,min_star_size_arcsec/(binning*fov_org*3600/height2) );{to ignore hot pixels which are too small}
    bin_and_find_stars(img,binning,cropping,hfd_min, max_stars,starlist2, warning_downsample);{bin, measure background, find stars. Do this every repeat since hfd_min is adapted}
    nrstars:=Length(starlist2[0]);

    {prepare popupnotifier1 text}
    if force_oversize1=false then mess:=' normal' else mess:=' slow';
    memo2_message('ASTAP solver version CLI-'+astap_version+#10+
                  'Search radius: '+ radius_search1+' degrees, '+#10+
                  'Start position: '+prepare_ra(ra0,': ')+', '+prepare_dec(dec0,'d ')+#10+
                  'Image height: '+floattostrf2(fov_org,0,2)+' degrees'+#10+
                  'Binning: '+inttostr(binning)+'x'+inttostr(binning)+#10+
                  'Image dimensions: '+inttostr(width2)+'x'+inttostr(height2)+#10+
                  'Quad tolerance: '+quad_tolerance1+#10+
                  'Minimum star size: '+min_star_size1+'"' +#10+
                  'Speed:'+mess);

    nrstars_required:=round(nrstars*(height2/width2));{square search field based on height.}

    solution:=false; {assume no match is found}
    go_ahead:=(nrstars>=5); {bare minimum. Should be more but let's try}

    if go_ahead then {enough stars, lets find quads}
    begin
      find_quads(starlist2,quad_star_distances2);{find star quads for new image. Quads and quad_smallest are binning independend}
      nr_quads:=Length(quad_star_distances2[0]);
      go_ahead:=nr_quads>=3; {enough quads?}

      {The step size is fixed. If a low amount of stars are detected, the search window (so the database read area) is increased up to 200% guaranteeing that all quads of the image are compared with the database quads while stepping through the sky}
      if nrstars<35  then oversize:=2 {make dimensions of square search window twice then the image height}
      else
      if nrstars>140 {at least 100 quads} then oversize:=1 {make dimensions of square search window equal to the image height}
      else
      oversize:=2*sqrt(35/nrstars);{calculate between 35 th=2 and 140 th=1, stars/quads are area related so take sqrt to get oversize}


      if force_oversize1 then oversize:=2;
      oversize:=min(oversize,max_fov/fov2);//limit request to database to 1 tile so 5.142857143 degrees for 1476 database or 9.53 degrees for type 290 database. Otherwise a tile beyond next tile could be selected}


      radius:=strtofloat2(radius_search1);{radius search field}
    //  memo2_message(inttostr(nrstars)+' stars, '+inttostr(nr_quads)+' quads selected in the image. '+inttostr(nrstars_required)+' database stars, '+inttostr(round(nr_quads*nrstars_required/nrstars))+' database quads required for the square search field of '+floattostrF2(fov2,0,1)+'d. '+oversize_mess );

      minimum_quads:=3 + nrstars div 140 {prevent false detections for star rich images, 3 quads give the 3 center quad references and is the bare minimum. It possible to use one quad and four star positions but it in not reliable}
    end
    else
    begin
      memo2_message('Only '+inttostr(nrstars)+' stars found in image. Abort');
      errorlevel:=2;
    end;

    if go_ahead then
    begin
      search_field:=fov2*(pi/180);
      STEP_SIZE:=search_field;{fixed step size search spiral. Prior to version 0.9.211 this was reduced for small star counts}
      if database_type=1 then
      begin {make smal steps for wide field images. Much more reliable}
        step_size:=step_size*0.1;
        max_distance:=round(radius/(0.1*fov2+0.00001)); {expressed in steps}
        memo2_message('Wide field, making small steps for reliable solving.');
      end
      else
      max_distance:=round(radius/(fov2+0.00001));{expressed in steps}

      memo2_message(inttostr(nrstars)+' stars, '+inttostr(nr_quads)+' quads selected in the image. '+inttostr(round(nrstars_required*sqr(oversize)))+' database stars, '
                             +inttostr(round(nr_quads*nrstars_required*sqr(oversize)/nrstars))+' database quads required for the '+floattostrF(oversize*fov2,ffFixed,0,2)+'d square search window. '
                             +'Step size '+floattostrF(fov2,FFfixed,0,2) +'d. Oversize '+floattostrF(oversize,FFfixed,0,2));

      match_nr:=0;
      repeat {Maximum accuracy loop. In case math is found on a corner, do a second solve. Result will be more accurate using all stars of the image}
        count:=0;{search field counter}
        distance:=0; {required for reporting no too often}
        {spiral variables}
        spiral_x :=0;
        spiral_y :=0;
        spiral_dx := 0;{first step size x}
        spiral_dy := -1;{first step size y}

        repeat {search in squared spiral}
          {begin spiral routine, find a new squared spiral position position}
          if count<>0 then {first do nothing, start with [0 0] then start with [1 0],[1 1],[0 1],[-1 1],[-1 0],[-1 -1],[0 -1],[1 -1],[2 -1].[2 0] ..............}
          begin {start spiral around [0 0]}
            if ( (spiral_x = spiral_y) or ((spiral_x < 0) and (spiral_x = -spiral_y)) or ((spiral_x > 0) and (spiral_x = 1-spiral_y))) then {turning point}
            begin {swap dx by negative dy and dy by negative dx}
              spiral_t:=spiral_dx;
              spiral_dx := -spiral_dy;
              spiral_dy := spiral_t;
            end;
            spiral_x :=spiral_x+ spiral_dx;{walk through square}
            spiral_y :=spiral_y+ spiral_dy;{walk through square}
          end;{end spiral around [0 0]}

          {adapt search field to matrix position, +0+0/+1+0,+1+1,+0+1,-1+1,-1+0,-1-1,+0-1,+1-1..}
          dec_database:=STEP_SIZE*spiral_y+dec_radians;
          flip:=0;
          if dec_database>+pi/2 then  begin dec_database:=pi-dec_database; flip:=pi; end {crossed the pole}
          else
          if dec_database<-pi/2 then  begin dec_database:=-pi-dec_database; flip:=pi; end;

          if dec_database>0 then extra:=step_size/2 else extra:=-step_size/2;{use the distance furthest away from the pole}

          telescope_ra_offset:= (STEP_SIZE*spiral_x/cos(dec_database-extra));{step larger near pole. This ra_database is an offsett from zero}
          if ((telescope_ra_offset<=+pi/2+step_size/2) and (telescope_ra_offset>=-pi/2)) then  {step_size for overlap}
          begin
            ra_database:=fnmodulo(flip+ra_radians+telescope_ra_offset,2*pi);{add offset to ra after the if statement! Otherwise no symmetrical search}

            ang_sep(ra_database,dec_database,ra_radians,dec_radians, {out}seperation);{calculates angular separation. according formula 9.1 old Meeus or 16.1 new Meeus, version 2018-5-23}
            if seperation<=radius*pi/180+step_size/2 then {Use only the circular area withing the square area}
            begin

              {info reporting}
              //stackmenu1.field1.caption:= '['+inttostr(spiral_x)+','+inttostr(spiral_y)+']';{show on stackmenu what's happening}
              if seperation*180/pi>distance+fov_org then {new distance reached. Update once in the square spiral, so not too often since it cost CPU time}
              begin
                distance:=seperation*180/pi;
                distancestr:=inttostr(round(seperation*180/pi))+'d,';{show on stackmenu what's happening}
                write(distancestr);
              end; {info reporting}

              {read nrstars_required stars from database. If search field is oversized, number of required stars increases with the power of the oversize factor. So the star density will be the same as in the image to solve}
              if match_nr=0  then
                oversize2:=oversize
              else
                oversize2:=min(max_fov/fov2, max(oversize, sqrt(sqr(width2/height2)+sqr(1)))); //Use full image for solution for second solve but limit to one tile max to prevent tile selection problems.

              nrstars_required2:=round(nrstars_required*oversize2*oversize2); //nr of stars requested request from database

              if read_stars(ra_database,dec_database,search_field*oversize2,nrstars_required2,{out} starlist1)= false then
              begin
                memo2_message('Error, no star database found at '+database_path+' ! Download and install a star database.');
                errorlevel:=33;{read error star database}
                exit; {no stars}
              end;

              //mod 2025 ###################################################
              if match_nr=1 then //2025 first solution found, filter out stars for the second match. Avoid that stars outside the image boundaries are used to create database quads
              begin //keep only stars which are visible in the image according the first solution
                count:=0;
                for i:=0 to Length(starlist1[0])-1  do
                begin
                   rotate(crota2_rad,starlist1[0,i]/cdelt1_arcsec,starlist1[1,i]/cdelt2_arcsec,xi,yi);{rotate to screen orientation}
                   xi:=centerX-xi;
                   yi:=centerY-yi;

                  if ((xi>0) and (xi<width2) and (yi>0) and (yi<height2)) then //within image boundaries
                  begin
                    starlist1[0,count]:=starlist1[0,i];
                    starlist1[1,count]:=starlist1[1,i];
                    inc(count);
                  end;
                end;
                setlength(starlist1,2,count);
              end; //keep only stars visible in image
              //mod 2025 ###################################################

              find_quads(starlist1,quad_star_distances1);{find quads for reference image/database. Filter out too small quads for Earth based telescopes}

              if solve_show_log then {global variable set in find stars}
                memo2_message('Search '+ inttostr(count)+', ['+inttostr(spiral_x)+','+inttostr(spiral_y)+'], position: '+ prepare_ra(ra_database,': ')+prepare_dec(dec_database,'d ')+#9+' Down to magn '+ floattostrF2(mag2/10,0,1) +#9+' '+inttostr(length(starlist1[0]))+' database stars' +#9+' '+inttostr(length(quad_star_distances1[0]))+' database quads to compare.');

              // for testing purposes
              // create supplement lines for sky coverage testing and write to log using -log
              // memo2.add(floattostr(ra_database*12/pi)+',,,'+floattostr(dec_database*180/pi)+',,,,'+inttostr(count)+',,-99'); {create hnsky supplement to test sky coverage}

               solution:=find_offset_and_rotation(minimum_quads {>=3},quad_tolerance);{find an solution}
            end; {within search circle. Otherwise the search is within a kind of square}
          end;{ra in range}
          inc(count);{step further in spiral}
        until ((solution) or (spiral_x>max_distance));{squared spiral search}

        if solution then
        begin
          centerX:=(width2-1)/2 ;{center image in 0..width2-1 range}
          centerY:=(height2-1)/2;{center image in 0..height2-1 range}

          standard_equatorial( ra_database,dec_database,
              (solution_vectorX[0]*(centerX) + solution_vectorX[1]*(centerY) +solution_vectorX[2]), {x}
              (solution_vectorY[0]*(centerX) + solution_vectorY[1]*(centerY) +solution_vectorY[2]), {y}
              1, {CCD scale}
              ra_radians ,dec_radians {center equatorial position});
          //current_dist:=sqrt(sqr(solution_vectorX[0]*(centerX) + solution_vectorX[1]*(centerY) +solution_vectorX[2]) + sqr(solution_vectorY[0]*(centerX) + solution_vectorY[1]*(centerY) +solution_vectorY[2]))/3600; {current distance telescope and image center in degrees}

          //mod 2025 ############################################################
          if solution_vectorX[0]*solution_vectorY[1] - solution_vectorX[1]*solution_vectorY[0] >0 then // flipped?
          flipped_image:=-1 //change rotation for flipped image, {Flipped image. Either flipped vertical or horizontal but not both. Flipped both horizontal and vertical is equal to 180 degrees rotation and is not seen as flipped}
          else
          flipped_image:=+1;//not flipped

          // position +1 pixels in direction hd.crpix2
          standard_equatorial( ra_database,dec_database, (solution_vectorX[0]*(centerX) + solution_vectorX[1]*(centerY+1) +solution_vectorX[2]), {x}
                                                         (solution_vectorY[0]*(centerX) + solution_vectorY[1]*(centerY+1) +solution_vectorY[2]), {y}
                                                          1, {CCD scale}  ra7 ,dec7{equatorial position}); // the position 1 pixel away

          crota2_rad:=-position_angle(ra7,dec7,ra_radians,dec_radians);//Position angle between a line from ra0,dec0 to ra1,dec1 and a line from ra0, dec0 to the celestial north . Rigorous method
          cdelt1_arcsec:=flipped_image*sqrt(sqr(solution_vectorX[0])+sqr(solution_vectorX[1])); // unit arcsec
          cdelt2_arcsec:=sqrt(sqr(solution_vectorY[0])+sqr(solution_vectorY[1])); //unit arcsec
          //mod 2025 ############################################################

          inc(match_nr);
        end
        else
        match_nr:=0;//This should not happen for the second solve but just in case

      until ((solution=false) or  (match_nr>=2));{Maximum accurcy loop. After match possible on a corner do a second solve using the found ra0,dec0 for maximum accuracy USING ALL STARS}


    end; {enough quads in image}
  until ((autoFOV=false) or (solution) or (fov2<=fov_min)); {loop for autoFOV from 9.5 to 0.37 degrees. Will lock between 9.5*1.25 downto  0.37/1.25  or 11.9 downto 0.3 degrees}


  if solution then
  begin
    ang_sep(ra_radians,dec_radians,ra0,dec0, sep_search);{calculate search offset}
    ra0:=ra_radians;//store solution
    dec0:=dec_radians;
    crpix1:=centerX+1;{center image in fits coordinate range 1..width2}
    crpix2:=centery+1;

    memo2_message(#10+inttostr(nr_references)+ ' of '+ inttostr(nr_references2)+' quads selected matching within '+quad_tolerance1+' tolerance.'  {2 quads are required giving 8 star references or 3 quads giving 3 center quad references}
                 +#10+'Solution["] x:='+floattostr6(solution_vectorX[0])+'*x+ '+floattostr6(solution_vectorX[1])+'*y+ '+floattostr6(solution_vectorX[2])
                   +',  y:='+floattostr6(solution_vectorY[0])+'*x+ '+floattostr6(solution_vectorY[1])+'*y+ '+floattostr6(solution_vectorY[2]) );
    //  following doesn't give maximum angle accuracy, so is not used.
    //    cd1_1:= - solution_vectorX[0]/3600;{/3600, arcsec to degrees conversion}
    //    cd1_2:= - solution_vectorX[1]/3600;
    //    cd2_1:= + solution_vectorY[0]/3600;
    //    cd2_2:= + solution_vectorY[1]/3600;

    // position 1*flipped_image  pixels in direction crpix1
    standard_equatorial( ra_database,dec_database,(solution_vectorX[0]*(centerX+flipped_image) + solution_vectorX[1]*(centerY) +solution_vectorX[2]), {x} //A pixel_aspect_ratio unequal of 1 is very rare, none square pixels
                                                  (solution_vectorY[0]*(centerX+flipped_image) + solution_vectorY[1]*(centerY) +solution_vectorY[2]), {y}
                                                  1, {CCD scale} ra7 ,dec7{equatorial position});

    crota1_rad:=pi/2-position_angle(ra7,dec7,ra_radians,dec_radians);//Position angle between a line from ra0,dec0 to ra1,dec1 and a line from ra0, dec0 to the celestial north . Rigorous method
    if crota1_rad>pi then crota1_rad:=crota1_rad-2*pi;//keep within range -pi to +pi

    cdelt1:=cdelt1_arcsec/3600;//convert from arc seconds to degrees
    cdelt2:=cdelt2_arcsec/3600;


    cd1_1:=+cdelt1*cos(crota1_rad);
    cd1_2:=-cdelt1*sin(crota1_rad)*flipped_image;
    cd2_1:=+cdelt2*sin(crota2_rad)*flipped_image;
    cd2_2:=+cdelt2*cos(crota2_rad);

    crota2:=crota2_rad*180/pi;//convert to degrees
    crota1:=crota1_rad*180/pi;


    solved_in:='Solved in '+ floattostr(round((GetTickCount64 - startTick)/100)/10)+' sec.';{make string to report in FITS header.}

    offset_found:=distance_to_string(sep_search ,sep_search)+'.';
    if ra_mount<99 then {mount position known and specified}
    begin
      ra_offset:=distance_to_string(sep_search, pi*frac((ra_mount-ra0)/pi) * cos((dec0+dec_mount)*0.5 {average dec}));
      dec_offset:=distance_to_string(sep_search,dec_mount-dec0);

      mount_offset:=' Mount offset RA='+ra_offset+', DEC='+dec_offset;{ascii}
      mount_info:=' Mount Δα='+ra_offset+ ',  Δδ='+dec_offset+'. ';
    end
    else
    begin
      mount_offset:='';
      mount_info:='';
    end;

    memo2_message('Solution found: '+  prepare_ra(ra0,': ')+' '+prepare_dec(dec0,'d ') +#10+solved_in+' Δ was '+offset_found+' '+ mount_info+' Used stars down to magnitude: '+floattostrF2(mag2/10,0,1) );
    result:=true;

    if ((add_sip1) and
      (add_sip(ra_database,dec_database))) then //takes about 50 ms sec due to the header update. Calculations are very fast
    begin
      update_text ('CTYPE1  =',#39+'RA---TAN-SIP'+#39+'       / TAN (gnomic) projection + SIP distortions      ');
      update_text ('CTYPE2  =',#39+'DEC--TAN-SIP'+#39+'       / TAN (gnomic) projection + SIP distortions      ');
    end
    else
    begin
      update_text ('CTYPE1  =',#39+'RA---TAN'+#39+'           / first parameter RA,    projection TANgential   ');
      update_text ('CTYPE2  =',#39+'DEC--TAN'+#39+'           / second parameter DEC,  projection TANgential   ');
    end;
    update_text ('CUNIT1  =',#39+'deg     '+#39+'           / Unit of coordinates                            ');

    update_float  ('CRPIX1  =',' / X of reference pixel                           ' ,crpix1);
    update_float  ('CRPIX2  =',' / Y of reference pixel                           ' ,crpix2);

    update_float  ('CRVAL1  =',' / RA of reference pixel (deg)                    ' ,ra0*180/pi);
    update_float  ('CRVAL2  =',' / DEC of reference pixel (deg)                   ' ,dec0*180/pi);

    update_float  ('CDELT1  =',' / X pixel size (deg)                             ' ,cdelt1);
    update_float  ('CDELT2  =',' / Y pixel size (deg)                             ' ,cdelt2);

    update_float  ('CROTA1  =',' / Image twist of X axis        (deg)             ' ,crota1);
    update_float  ('CROTA2  =',' / Image twist of Y axis        (deg)             ' ,crota2);

    update_float  ('CD1_1   =',' / CD matrix to convert (x,y) to (Ra, Dec)        ' ,cd1_1);
    update_float  ('CD1_2   =',' / CD matrix to convert (x,y) to (Ra, Dec)        ' ,cd1_2);
    update_float  ('CD2_1   =',' / CD matrix to convert (x,y) to (Ra, Dec)        ' ,cd2_1);
    update_float  ('CD2_2   =',' / CD matrix to convert (x,y) to (Ra, Dec)        ' ,cd2_2);
    update_text   ('PLTSOLVD=','                   T / Astrometric solved by ASTAP_CLI v'+astap_version+'.   ');
    update_text   ('COMMENT 7', solved_in+' Offset was '+offset_found+mount_offset);


    vfov:=apply_arctan(height2*cdelt2);
    if ((fov_org > 1.05 * (vfov)) or (fov_org < 0.95 * (vfov)))  then    //in astap hd.cdelt2 is always positive. No need for absolute function
    begin
      if xpixsz<>0 then suggest_str:='Warning scale was inaccurate! Set FOV='+floattostrF2(height2*cdelt2,0,2)+'d, scale='+floattostrF2(cdelt2*3600,0,1)+'", FL='+inttostr(round((180/(pi*1000)*xpixsz/cdelt2)) )+'mm'
                   else suggest_str:='Warning scale was inaccurate! Set FOV='+floattostrF2(height2*cdelt2,0,2)+'d, scale='+floattostrF2(cdelt2*3600,0,1)+'"';
      memo2_message(suggest_str);
      warning_str:=suggest_str+warning_str;
    end;
  end
  else
  begin
    memo2_message('No solution found!  :(');
    update_text   ('PLTSOLVD=','                   F / No plate solution found.   ');
    remove_key('COMMENT 7',false{all});
  end;

  warning_str:=warning_str + warning_downsample; {add the last warning from loop autoFOV}

//No longer required for the new D50.. databases
//  if nrstars_required>database_stars+4 then
//  begin
//    memo2_message('Warning, reached the limit of the star database!');
//    warning_str:=warning_str+' Star database limit was reached!';
//  end;

  if warning_str<>'' then
  begin
    update_longstr('WARNING =',warning_str);{update or insert long str including single quotes}
  end;

  if database_type=1 then wide_field_stars:=nil; {free wide_field_database}
end;

end.