1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
|
unit unit_command_line_solving;
{Copyright (C) 2017, 2025 by Han Kleijn, www.hnsky.org
email: han.k.. at...hnsky.org
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/. }
{ASTAP is using a linear astrometric solution for both stacking and solving. The method is based on what traditionally is called "reducing the plate measurements.
First step is to find star matches between a test image and a reference image. The reference image is either created from a star database or a reference image.
The star positions x, y are to be calculated in standard coordinates which is equivalent to the x,y pixel position. The x,y position are measured relative to the image center.
The test image center, size and orientation position will be different compared with the reference image. The required conversion from test image [x,y] star positions to the
same stars on the test images can be written as:
Xref : = a*xtest + b*ytest + c
Yref:= d*xtest + e*ytest + f
The factors, a,b,c,d,e,f are called the six plate constants and will be slightly different different for each star. They describe the conversion of the test image standard coordinates
to the reference image standard coordinates. Using a least square routine the best solution fit can calculated if at least three matching star positions are found since there are three unknowns.
With the solution and the equatorial center position of the reference image the test image center equatorial position, α and δ can be calculated.
Make from the test image center small one pixel steps in x, y and use the differences in α, δ to calculate the image scale and orientation.
For astrometric solving (plate solving), this "reducing the plate measurement" is done against star positions extracted from a database. The resulting absolute astrometric solution
will allow specification of the α, δ equatorial positions of each pixel. For star alignment this "reducing the plate measurement" is done against a reference image. The resulting
six plate constants are a relative astrometric solution. The position of the reference image is not required. Pixels of the solved image can be stacked with reference image using
the six plate constants only.
To automate this process rather then using reference stars the matching reference objects are the center positions of quads made of four close stars. Comparing the length ratios
of the sides of the quads allows automated matching.
Below a brief flowchart of the ASTAP astrometric solving process:
}
// =>ASTAP astronomical plate solving method by Han Kleijn <=
//
// => Image <= | => Star database <=
//1) Find background, noise and star level |
// |
//2) Find stars and their CCD x, y position (standard coordinates) | Extract the same amount of stars (area corrected) from the area of interest
// | Convert the α, δ equatorial coordinates into standard coordinates
// | (CCD pixel x,y coordinates for optical projection), rigid method
//
//3) Use the extracted stars to construct the smallest irregular tetrahedrons | Use the extracted stars to construct the smallest irregular tetrahedrons
// figures of four star called quads. Calculate the six distance between | figures of four star called quads. Calculate the six distance between
// the four stars and the mean x,y position of the quad | the four stars and the mean x,y position of the quad
// |
//4) For each quad sort the six quad distances. | For each quad sort the six quad distances.
// Label them all where d1 is the longest and d6 the shortest distance. | Label them all where d1 is the longest and d6 the shortest distance.
// |
//5) Scale the six quad star distances as (d1, d2/d1,d3/d1,d4/d1,d5/d1,d6/d1) | Scale the six quad star distances as (d1, d2/d1,d3/d1,d4/d1,d5/d1,d6/d1)
// These are the image hash codes. | These are the database hash codes.
//
// => matching process <=
//6) Find quad hash code matches where the five ratios d2/d1 to d6/d1 match within a small tolerance.
//
//7) For matching quad hash codes, calculate the longest side ratios d1_found/d1_reference. Calculate the median ratio.
// Compare the quads longest side ratios with the median value and remove quads outside a small tolerance.
//
//8) From the remaining matching quads, prepare the "A" matrix/array containing the x,y center positions of the test image quads in standard coordinates
// and the array X_ref, Y_ref containing the x, y center positions of the reference imagete trahedrons in standard coordinates.
//
// A: Sx: X_ref:
// [x1 y1 1] [a1] [X1]
// [x2 y2 1] * [b1] = [X2]
// [x3 y3 1] [c1] [X3]
// [x4 y4 1] [X4]
// [.. .. ..] [..]
// [xn yn 1] [Xn]
//
//
// A: Sx: Y_ref:
// [x1 y1 1] [a2] [Y1]
// [x2 y2 1] * [b2] = [Y2]
// [x3 y3 1] [c2] [Y3]
// [x4 y4 1] [Y4]
// [.. .. ..] [..]
// [xn yn 1] [Yn]
//
// Find the solution matrices Sx and Sy of this overdetermined system of linear equations. (LSQ_FIT)
//
// The solutions Sx and Sy describe the six parameter solution, X_ref:=a1*x + b1*y + c1 and Y_ref:=a2*x + b2*y +c2.
//
//
// With the solution calculate the test image center equatorial position α (crval1), δ (crval2).
//
// Calculate from the solution the pixel size in x (cdelt1) an y (cdelt2) and at the image center position the rotation of the x-axis (crota1)
// and y-axis (crota2) relative to the celestial north using goniometric formulas. Convert these to cd1_1,cd1_2,cd_2_1, cd2_2.
//
// This is the final solution. The solution vector (for position, scale, rotation) can be stored as the FITS keywords crval1, crval2, cd1_1,cd1_2,cd_2_1, cd2_2.
//
// Notes:
// For a low faint star count (<30) the star patterns can be slightly different between image and database due to small magnitude differences.
// For these cases it can be beneficial to extract triples (three stars patterns) from the found quads (four star patterns) but stricter tolerances are required to avoid false detections.
{$mode objfpc}{$H+}
interface
uses
Classes, SysUtils,math, unit_command_line_calc_trans_cubic;
type
Timage_array = array of array of array of Single;
Tstar_list = array of array of double;
solution_vector = array[0..2] of double;
var
quad_star_distances1, quad_star_distances2: Tstar_list;
A_XYpositions : Tstar_list;
b_Xrefpositions,b_Yrefpositions : array of double;
// quad_smallest : double;
nr_references,nr_references2 : integer;
solution_vectorX, solution_vectorY,solution_cblack : solution_vector ;
Savefile: file of solution_vector;{to save solution if required for second and third step stacking}
procedure find_stars(img :Timage_array;hfd_min:double; max_stars: integer; out starlist1: Tstar_list);{find stars and put them in a list}
procedure find_quads(starlist :Tstar_list; out quads :Tstar_list); //build quads using closest stars, revised 2025
function find_offset_and_rotation(minimum_quads: integer;tolerance:double) : boolean; {find difference between ref image and new image}
procedure reset_solution_vectors(factor: double); {reset the solution vectors}
function SMedian(list: array of double; leng: integer): double;{get median of an array of double. Taken from CCDciel code but slightly modified}
function solve_image(img :Timage_array ) : boolean;{find match between image and star database}
procedure bin_and_find_stars(img :Timage_array;binfactor:integer;cropping,hfd_min:double; max_stars: integer; out starlist3:Tstar_list; out short_warning : string);{bin, measure background, find stars}
function report_binning_astrometric(height,arcsec_per_px:double) : integer;{select the binning}
var
star1 : array[0..2] of array of single;
implementation
uses
unit_command_line_general,
unit_command_line_star_database,unit_command_line_stars_wide_field;
var
mag2 : double; {magnitude of star found}
procedure ang_sep(ra1,dec1,ra2,dec2 : double;out sep: double);{calculates angular separation. according formula 9.1 old Meeus or 16.1 new Meeus, version 2018-5-23}
var sin_dec1,cos_dec1,sin_dec2,cos_dec2,cos_sep:double;
begin
sincos(dec1,sin_dec1,cos_dec1);{use sincos function for speed}
sincos(dec2,sin_dec2,cos_dec2);
cos_sep:=max(-1.0,min(1.0,sin_dec1*sin_dec2+ cos_dec1*cos_dec2*cos(ra1-ra2)));{min function to prevent run time errors for 1.000000000002. For correct compiling use 1.0 instead of 1. See https://forum.lazarus.freepascal.org/index.php/topic,63511.0.html}
sep:=arccos(cos_sep);
end;
procedure rotate(rot,x,y :double; out x2, y2: double);{rotate a vector point}
var
sin_rot, cos_rot :double;
begin
sincos(rot, sin_rot, cos_rot);
x2:=x * + cos_rot + y*sin_rot;
y2:=x * - sin_rot + y*cos_rot;{SEE PRISMA WIS VADEMECUM BLZ 68}
end;
procedure QuickSort(var A: array of double; iLo, iHi: Integer) ;{ Fast quick sort. Sorts elements in the array list with indices between lo and hi}
var
Lo, Hi : integer;
Pivot, T: double;{ pivot, T, T2 are the same type as the elements of array }
begin
Lo := iLo;
Hi := iHi;
Pivot := A[(Lo + Hi) div 2];
repeat
while A[Lo] < Pivot do Inc(Lo) ;
while A[Hi] > Pivot do Dec(Hi) ;
if Lo <= Hi then
begin {swap}
T := A[Lo];
A[Lo] := A[Hi];
A[Hi] := T;
Inc(Lo) ;
Dec(Hi) ;
end;
until Lo > Hi;
if Hi > iLo then QuickSort(A, iLo, Hi) ; {executes itself recursively}
if Lo < iHi then QuickSort(A, Lo, iHi) ; {executes itself recursively}
end;
function SMedian(list: array of double; leng: integer): double;{get median of an array of double. Taken from CCDciel code but slightly modified}
var
mid : integer;
begin
if leng=0 then result:=nan
else
if leng=1 then result:=list[0]
else
begin
quickSort(list,0,leng-1);
mid := (leng-1) div 2; //(high(list) - low(list)) div 2;
if Odd(leng) then
begin
if leng<=3 then result:=list[mid]
else
begin
result:=(list[mid-1]+list[mid]+list[mid+1])/3;
end;
end
else
result:=(list[mid]+list[mid+1])/2;
end;
end;
{ lsq_fit: }
{ Find the solution vector of an overdetermined system of linear equations according to the method of least squares using GIVENS rotations }
{ }
{ Solve x of A x = b with the least-squares method }
{ In matrix calculations, b_matrix[0..nr_columns-1,0..nr_equations-1]:=solution_vector[0..2] * A_XYpositions[0..nr_columns-1,0..nr_equations-1]}
{ }
{ see also Montenbruck & Pfleger, Astronomy on the personal computer}
function lsq_fit( A_matrix: Tstar_list; {[, 0..3,0..nr_equations-1]} b_matrix : array of double;{equations result, b=A*s} out x_matrix: solution_vector ): boolean;
const tiny = 1E-10; {accuracy}
var i,j,k, nr_equations,nr_columns : integer;
p,q,h : double;
temp_matrix : Tstar_list;
begin
nr_equations:=length(A_matrix[0]);
nr_columns:=length(A_matrix);{should be 3 for this application}
temp_matrix:=A_matrix; {In dynamic arrays, the assignment statement duplicates only the reference to the array, while SetLength does the job of physically copying/duplicating it, leaving two separate, independent dynamic arrays.}
setlength(temp_matrix,nr_columns,nr_equations);{duplicate A_matrix to protect data in A_matrix}
for j:=0 to nr_columns-1 do {loop over columns of temp_matrix}
{eliminate matrix elements A[i,j] with i>j from column j}
for i:=j+1 to nr_equations-1 do
if temp_matrix[j,i]<>0 then
begin{calculate p, q and new temp_matrix[j,j]; set temp_matrix[j,i]=0}
if abs(temp_matrix[j,j])<tiny*abs(temp_matrix[j,i]) then
begin
p:=0;
q:=1;
temp_matrix[j,j]:=-temp_matrix[j,i];
temp_matrix[j,i]:=0;
end
else
begin
// Notes:
// Zero the left bottom corner of the matrix
// Residuals are r1..rn
// The sum of the sqr(residuals) should be minimised.
// Take two numbers where (p^2+q^2) = 1.
// Then (r1^2+r2^2) = (p^2+q^2)*(r1^2+r2^2)
// Choose p and h as follows:
// p = +A11/h
// q = -A21/h
// where h= +-sqrt(A11^2+A21^2)
// A21=q*A11+p*A21 = (-A21*A11 + A21*A11)/h=0
h:=sqrt(temp_matrix[j,j]*temp_matrix[j,j]+temp_matrix[j,i]*temp_matrix[j,i]);
if temp_matrix[j,j]<0 then h:=-h;
p:=temp_matrix[j,j]/h;
q:=-temp_matrix[j,i]/h;
temp_matrix[j,j]:=h;
temp_matrix[j,i]:=0;
end;
{calculate the rest of the line}
for k:=j+1 to nr_columns-1 do
begin
h:= p*temp_matrix[k,j] - q*temp_matrix[k,i];
temp_matrix[k,i] := q*temp_matrix[k,j] + p*temp_matrix[k,i];
temp_matrix[k,j] := h;
end;
h:= p*b_matrix[j] - q*b_matrix[i];
b_matrix[i] := q*b_matrix[j] + p*b_matrix[i];
b_matrix[j] := h;
end;
for i:=0 to nr_columns-1 do x_matrix[i]:=0; //2022, extra precaution to zero x_matrix
for i:= nr_columns-1 downto 0 do {back substitution}
begin
H:=b_matrix[i];
for k:=i+1 to nr_columns-1 do
h:=h-temp_matrix[k,i]*x_matrix[k];
if abs(temp_matrix[i,i])>1E-30 then x_matrix[i] := h/temp_matrix[i,i]
else
exit(false);//Prevent runtime error dividing by zero. Should normally not happen. In case of zero due to wrong double star detection by using triples force a failure
{solution vector x:=x_matrix[0]x+x_matrix[1]y+x_matrix[2]}
end;
result:=true;
end; {lsq_fit}
procedure QuickSort_starlist(var A: Tstar_list; iLo, iHi: Integer) ;{ Fast quick sort. Sorts elements in the array list with indices between lo and hi, sort in X only}
var
Lo, Hi : integer;
Pivot, Tx,Ty: double;{ pivot, T are the same type as the elements of array }
begin
Lo := iLo;
Hi := iHi;
Pivot := A[0,(Lo + Hi) div 2];
repeat
while A[0,Lo] < Pivot do Inc(Lo) ; {sort in X only}
while A[0,Hi] > Pivot do Dec(Hi) ;
if Lo <= Hi then
begin {swap}
Tx := A[0,Lo];
Ty := A[1,Lo];
A[0,Lo] := A[0,Hi];
A[1,Lo] := A[1,Hi];
A[0,Hi] := Tx;
A[1,Hi] := Ty;
Inc(Lo) ;
Dec(Hi) ;
end;
until Lo > Hi;
if Hi > iLo then QuickSort_starlist(A, iLo, Hi) ; {executes itself recursively}
if Lo < iHi then QuickSort_starlist(A, Lo, iHi) ; {executes itself recursively}
end;
procedure find_many_quads(starlist: Tstar_list; out quads: Tstar_list; mode: integer {use either 5 or 6 closest stars } );
var
i, j, k, q, nrstars, nrquads, num_closest, num_quads_per_group : integer;
distance, temp, xt, yt, dist1, dist2, dist3, dist4, dist5, dist6: double;
identical_quad: boolean;
closest_indices: array of integer; // Dynamic array to hold closest star indices
quad_indices: array[0..3] of integer; // Indices for the current quad
x1, y1, x2, y2, x3, y3, x4, y4: double; // Star positions
begin
nrstars:=Length(starlist[0]);
// Configure based on mode
case mode of 5:
begin
num_closest:=5; //collect 5 closest stars
num_quads_per_group:=5;// create 5 quads from the 5 stars
end;
6:
begin
num_closest:=6; //collect 6 closest stars
num_quads_per_group:=15;// create 15 quads from the 6 stars
end;
end;
if nrstars < num_closest then
begin // Not enough stars
SetLength(quads, 8, 0);
exit;
end;
nrquads:=0;
SetLength(quads, 8, nrstars * num_quads_per_group); // Pre-allocate space
SetLength(closest_indices, num_closest); // Store closest star indices
for i:=0 to nrstars - 1 do
begin
// Initialize closest distances to a very large value
for j:=0 to num_closest - 1 do
closest_indices[j]:=-1;
x1:=starlist[0, i]; // Reference star
y1:=starlist[1, i];
// Find the 'num_closest' nearest stars
for j:=0 to nrstars - 1 do
begin
if j <> i then // Skip the reference star
begin
distance:=sqr(starlist[0, j] - x1) + sqr(starlist[1, j] - y1);
if distance > 1 then // Skip identical stars (distance=0)
begin
// Insert into the closest list if closer than current farthest
for k:=num_closest - 1 downto 0 do
begin
if (closest_indices[k] = -1) or (distance < sqr(starlist[0, closest_indices[k]] - x1) + sqr(starlist[1, closest_indices[k]] - y1)) then
begin
if k < num_closest - 1 then
begin
closest_indices[k + 1]:=closest_indices[k];
end;
closest_indices[k]:=j;
end
else
break;
end;
end;
end;
end;
// Proceed only if we found enough stars
if closest_indices[num_closest - 1] <> -1 then
begin
// Generate all quads for this group
for q:=0 to num_quads_per_group - 1 do
begin
// Select quad indices based on mode
case mode of
5: //5 quads from 5 closest stars
begin // Original behavior: Rotate which star is excluded
if q = 0 then
begin // Stars: i, closest[0], closest[1], closest[2]
x2:=starlist[0, closest_indices[0]];
y2:=starlist[1, closest_indices[0]];
x3:=starlist[0, closest_indices[1]];
y3:=starlist[1, closest_indices[1]];
x4:=starlist[0, closest_indices[2]];
y4:=starlist[1, closest_indices[2]];
end
else if q = 1 then
begin // Stars: closest[3], closest[0], closest[1], closest[2]
x1:=starlist[0, closest_indices[3]];
y1:=starlist[1, closest_indices[3]];
end
else if q = 2 then
begin // Stars: closest[3], i, closest[1], closest[2]
x2:=starlist[0, i];
y2:=starlist[1, i];
end
else if q = 3 then
begin // Stars: closest[3], i, closest[0], closest[2]
x3:=starlist[0, closest_indices[0]];
y3:=starlist[1, closest_indices[0]];
end
else if q = 4 then
begin // Stars: closest[3], i, closest[0], closest[1]
x4:=starlist[0, closest_indices[1]];
y4:=starlist[1, closest_indices[1]];
end;
end;
6: //15 quads from 6 closest stars
begin // New behavior: All combinations of 4 from 6
case q of // Maps q to 4 distinct indices (0..5)
0: begin quad_indices[0]:=0; quad_indices[1]:=1; quad_indices[2]:=2; quad_indices[3]:=3; end;
1: begin quad_indices[0]:=0; quad_indices[1]:=1; quad_indices[2]:=2; quad_indices[3]:=4; end;
2: begin quad_indices[0]:=0; quad_indices[1]:=1; quad_indices[2]:=2; quad_indices[3]:=5; end;
3: begin quad_indices[0]:=0; quad_indices[1]:=1; quad_indices[2]:=3; quad_indices[3]:=4; end;
4: begin quad_indices[0]:=0; quad_indices[1]:=1; quad_indices[2]:=3; quad_indices[3]:=5; end;
5: begin quad_indices[0]:=0; quad_indices[1]:=1; quad_indices[2]:=4; quad_indices[3]:=5; end;
6: begin quad_indices[0]:=0; quad_indices[1]:=2; quad_indices[2]:=3; quad_indices[3]:=4; end;
7: begin quad_indices[0]:=0; quad_indices[1]:=2; quad_indices[2]:=3; quad_indices[3]:=5; end;
8: begin quad_indices[0]:=0; quad_indices[1]:=2; quad_indices[2]:=4; quad_indices[3]:=5; end;
9: begin quad_indices[0]:=0; quad_indices[1]:=3; quad_indices[2]:=4; quad_indices[3]:=5; end;
10: begin quad_indices[0]:=1; quad_indices[1]:=2; quad_indices[2]:=3; quad_indices[3]:=4; end;
11: begin quad_indices[0]:=1; quad_indices[1]:=2; quad_indices[2]:=3; quad_indices[3]:=5; end;
12: begin quad_indices[0]:=1; quad_indices[1]:=2; quad_indices[2]:=4; quad_indices[3]:=5; end;
13: begin quad_indices[0]:=1; quad_indices[1]:=3; quad_indices[2]:=4; quad_indices[3]:=5; end;
14: begin quad_indices[0]:=2; quad_indices[1]:=3; quad_indices[2]:=4; quad_indices[3]:=5; end;
end;
// Get star positions for the quad
x1:=starlist[0, i]; // Reference star is always included
y1:=starlist[1, i];
x2:=starlist[0, closest_indices[quad_indices[0]]];
y2:=starlist[1, closest_indices[quad_indices[0]]];
x3:=starlist[0, closest_indices[quad_indices[1]]];
y3:=starlist[1, closest_indices[quad_indices[1]]];
x4:=starlist[0, closest_indices[quad_indices[2]]];
y4:=starlist[1, closest_indices[quad_indices[2]]];
end;
end;
// Calculate quad center
xt:=(x1 + x2 + x3 + x4)*0.25;
yt:=(y1 + y2 + y3 + y4)*0.25;
// Check for duplicates
identical_quad:=false;
for k:=0 to nrquads - 1 do
begin
if (abs(xt - quads[6, k]) < 1) and (abs(yt - quads[7, k]) < 1) then
begin
identical_quad:=true;
break;
end;
end;
if not identical_quad then
begin
// Calculate pairwise distances
dist1:=sqrt(sqr(x1 - x2) + sqr(y1 - y2));
dist2:=sqrt(sqr(x1 - x3) + sqr(y1 - y3));
dist3:=sqrt(sqr(x1 - x4) + sqr(y1 - y4));
dist4:=sqrt(sqr(x2 - x3) + sqr(y2 - y3));
dist5:=sqrt(sqr(x2 - x4) + sqr(y2 - y4));
dist6:=sqrt(sqr(x3 - x4) + sqr(y3 - y4));
// Optimized bubble sort for 6 elements (5 passes max)
if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
if dist4 > dist3 then begin temp:=dist3; dist3:=dist4; dist4:=temp; end;
if dist5 > dist4 then begin temp:=dist4; dist4:=dist5; dist5:=temp; end;
if dist6 > dist5 then begin temp:=dist5; dist5:=dist6; dist6:=temp; end;
if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
if dist4 > dist3 then begin temp:=dist3; dist3:=dist4; dist4:=temp; end;
if dist5 > dist4 then begin temp:=dist4; dist4:=dist5; dist5:=temp; end;
if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
if dist4 > dist3 then begin temp:=dist3; dist3:=dist4; dist4:=temp; end;
if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
//end optimized bubble sort
// Store the quad
quads[0, nrquads]:=dist1; //largest distance
quads[1, nrquads]:=dist2 / dist1; //scale to largest distance
quads[2, nrquads]:=dist3 / dist1;
quads[3, nrquads]:=dist4 / dist1;
quads[4, nrquads]:=dist5 / dist1;
quads[5, nrquads]:=dist6 / dist1;
quads[6, nrquads]:=xt;
quads[7, nrquads]:=yt;
inc(nrquads);
end;
end; // End of quad generation loop
end; // End of "found enough stars" check
end; // End of star loop
SetLength(quads, 8, nrquads); // Trim to actual number of quads
end;
procedure find_quads(starlist :Tstar_list; out quads :Tstar_list); //build quads using closest stars, revised 2025
const
grid_size = 5.0; // Coarser grid for [-6000, 6000], adjust if needed (e.g., 5.0 for denser clustering)
bucket_capacity = 10; // Max quads per bucket, increase to 20 if overflows occur
var
i,j,k,nrstars,j_index1,j_index2,j_index3,nrquads,Sstart,Send,bandw,startp,
hash_x, hash_y, idx : integer;
distance,distance1,distance2,distance3,x1,x2,x3,x4,xt,y1,y2,y3,y4,yt,
dist1,dist2,dist3,dist4,dist5,dist6,temp,disty : double;
identical_quad : boolean;
hash_table: array of array of integer; // Fixed-size buckets
bucket_counts: array of integer; // Number of quads in each bucket
max_bucket_size: integer; // Debug: track largest bucket
overflow_count: integer; // Debug: count bucket overflows
begin
nrstars:=Length(starlist[0]);{number of quads will lower}
if nrstars<30 then
begin
find_many_quads(starlist, {out} quads,6 {group size});//Find five times more quads by using closest groups of five stars.
exit;
end
else
if nrstars<60 then
begin
find_many_quads(starlist, {out} quads,5 {group size});//Find five times more quads by using closest groups of five stars.
exit;
end;
if nrstars<4 then
begin {not enough stars for quads}
SetLength(quads,8,0);
exit;
end;
if nrstars>=150 then
begin
quickSort_starlist(starlist,0,nrstars-1); {sort in X only}
bandw:=round(2*sqrt(nrstars));{resulting tolerance band will be about twice the average star distance assuming the stars are equally distributed}
end
else
bandw:=nrstars;{switch off pre-filtering in X}
// Initialize hash table and debug counters
SetLength(hash_table, nrstars * 2,bucket_capacity); // 1000 buckets for ~500 stars. In hash table design, the number of buckets is often set to 1–2 times the expected number of entries to achieve a load factor (entries ÷ buckets) of 0.5–1.0, minimizing collisions. Here, with ~350–400 quads, nrstars * 2 = 1000 gives a load factor of ~0.4, which is ideal for performance.
SetLength(bucket_counts, Length(hash_table));
for i := 0 to Length(hash_table) - 1 do
bucket_counts[i] := 0; // Initialize counts
max_bucket_size := 0;
overflow_count := 0;
nrquads:=0;
SetLength(quads,8,nrstars); {will contain the six distances and the central position}
j_index1:=0;{set a default value}
j_index2:=0;
j_index3:=0;
for i:=0 to nrstars-1 do
begin
distance1:=1E99;{distance closest star}
distance2:=1E99;{distance second closest star}
distance3:=1E99;{distance third closest star}
Sstart:=max(0,i-bandw);
Send:=min(nrstars-1,i+bandw); {search in a limited X band only. The stars list are sorted in X. Search speed increases with about 30%}
x1:=starlist[0,i]; // first star position quad array}
y1:=starlist[1,i];
for j:=Sstart to Send do {find closest stars}
begin
if j<>i{not the first star} then
begin
disty:=sqr(starlist[1,j]- y1);
if disty<distance3 then {pre-check to increase processing speed with a small amount}
begin
distance:=sqr(starlist[0,j]-x1)+distY ;{square distances are used}
if distance>1 then {not an identical star. Mod 2021-6-25}
begin
if distance<distance1 then
begin
distance3:=distance2;{distance third closest star}
j_index3:=j_index2;{remember the star position in the list}
distance2:=distance1;{distance second closest star}
j_index2:=j_index1;{remember the star position in the list}
distance1:=distance;{distance closest star}
j_index1:=j;{mark later as used}
end
else
if distance<distance2 then
begin
distance3:=distance2;{distance third closest star}
j_index3:=j_index2;{remember the star position in the list}
distance2:=distance;{distance second closest star}
j_index2:=j;
end
else
if distance<distance3 then
begin
distance3:=distance;{third closest star}
j_index3:=j;{remember the star position in the list}
end;
end;{not an identical star. Mod 2021-6-25}
end; {pre-check}
end;
end;{j}
if distance3<1E99 then //found 4 stars in the restricted area
begin
x2:=starlist[0,j_index1]; // second star position quad array
y2:=starlist[1,j_index1];
x3:=starlist[0,j_index2];
y3:=starlist[1,j_index2];
x4:=starlist[0,j_index3];
y4:=starlist[1,j_index3];
xt:=(x1+x2+x3+x4)*0.25; {mean x position quad. Multiply should be a little faster thne divide but no practical difference}
yt:=(y1+y2+y3+y4)*0.25; {mean y position quad}
// Check for duplicate quad using hash table
identical_quad := False;
hash_x := Trunc(xt / grid_size);
hash_y := Trunc(yt / grid_size);
idx := Abs(hash_x * 31 + hash_y) mod Length(hash_table);
for k := 0 to bucket_counts[idx] - 1 do //check only quad_distances which have the same idx
begin
if (abs(xt - quads[6, hash_table[idx,k]]) < 1) and
(abs(yt - quads[7, hash_table[idx,k]]) < 1) then
begin
identical_quad := True;
break;
end;
end;
// end Check for duplicate quad using hash table
if identical_quad=false then {new quad found}
begin
dist1:=sqrt(distance1);{distance star1-star2, use previous value already calculated}
dist2:=sqrt(distance2);{distance star1-star3}
dist3:=sqrt(distance3);{distance star1-star4}
dist4:=sqrt(sqr(x2-x3)+ sqr(y2-y3));{distance star2-star3}
dist5:=sqrt(sqr(x2-x4)+ sqr(y2-y4));{distance star2-star4}
dist6:=sqrt(sqr(x3-x4)+ sqr(y3-y4));{distance star3-star4}
// Optimized bubble sort for 6 elements (5 passes max)
if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
if dist4 > dist3 then begin temp:=dist3; dist3:=dist4; dist4:=temp; end;
if dist5 > dist4 then begin temp:=dist4; dist4:=dist5; dist5:=temp; end;
if dist6 > dist5 then begin temp:=dist5; dist5:=dist6; dist6:=temp; end;
if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
if dist4 > dist3 then begin temp:=dist3; dist3:=dist4; dist4:=temp; end;
if dist5 > dist4 then begin temp:=dist4; dist4:=dist5; dist5:=temp; end;
if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
if dist4 > dist3 then begin temp:=dist3; dist3:=dist4; dist4:=temp; end;
if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
if dist3 > dist2 then begin temp:=dist2; dist2:=dist3; dist3:=temp; end;
if dist2 > dist1 then begin temp:=dist1; dist1:=dist2; dist2:=temp; end;
//end optimized bubble sort
quads[0,nrquads]:=dist1;{largest distance}
quads[1,nrquads]:=dist2/dist1;{scale relative to largest distance}
quads[2,nrquads]:=dist3/dist1;
quads[3,nrquads]:=dist4/dist1;
quads[4,nrquads]:=dist5/dist1;
quads[5,nrquads]:=dist6/dist1;
quads[6,nrquads]:=xt;{store mean x position}
quads[7,nrquads]:=yt;{store mean y position}
//add_to_hash, Hash table makes the routine 25% faster
hash_x := Trunc(xt / grid_size);
hash_y := Trunc(yt / grid_size);
idx := Abs(hash_x * 31 + hash_y) mod Length(hash_table);
if bucket_counts[idx] >= bucket_capacity then //pre check to speed up
if bucket_counts[idx] >= Length(hash_table[idx]) then //will overflow
begin
SetLength(hash_table[idx], Length(hash_table[idx]) + bucket_capacity);//increase size with bucket capacity. Should not happen. Different dimensions are implemented as arrays, and can each have their own size! https://wiki.freepascal.org/Dynamic_array
Inc(overflow_count); // Track overflows for debugging
end;
hash_table[idx,bucket_counts[idx]] := nrquads;
Inc(bucket_counts[idx]);
if bucket_counts[idx] > max_bucket_size then max_bucket_size := bucket_counts[idx];// record maximum bicket size
//end of add to hash
inc(nrquads); {new unique quad found}
end;
end;//found 4 stars
end;{i}
SetLength(quads,8,nrquads);{adapt to the number found}
if solve_show_log then
begin
memo2_message('Find Quads, max bucket size: '+inttostr(max_bucket_size)+', bucket overflows: '+inttostr(overflow_count) );
end;
if overflow_count>0 then
memo2_message('Warning, bucket size increased!');
end;
function find_fit( minimum_count: integer; quad_tolerance: double) : boolean;
var
nrquads1,nrquads2, i,j,k: integer;
median_ratio : double;
matchList1, matchlist2 : array of array of integer;
ratios : array of double;
begin
result:=false; {assume failure}
nrquads1:=Length(quad_star_distances1[0]);
nrquads2:=Length(quad_star_distances2[0]);
{minimum_count required, 6 for stacking, 3 for plate solving}
if ((nrquads1<minimum_count) or (nrquads2< minimum_count)) then begin nr_references:=0; exit; end;{no solution abort before run time errors}
{Find a tolerance resulting in 6 or more of the best matching quads}
setlength(matchlist2,2,1000);
nr_references2:=0;
i:=0;
repeat
j:=0;
repeat // ==database== ==image==
if abs(quad_star_distances1[1,i] - quad_star_distances2[1,j])<=quad_tolerance then //all length are scaled to the longest length so scale independent
if abs(quad_star_distances1[2,i] - quad_star_distances2[2,j])<=quad_tolerance then
if abs(quad_star_distances1[3,i] - quad_star_distances2[3,j])<=quad_tolerance then
if abs(quad_star_distances1[4,i] - quad_star_distances2[4,j])<=quad_tolerance then
if abs(quad_star_distances1[5,i] - quad_star_distances2[5,j])<=quad_tolerance then
begin
matchlist2[0,nr_references2]:=i;//store match position
matchlist2[1,nr_references2]:=j;
inc(nr_references2);
if nr_references2>=length(matchlist2[0]) then setlength(matchlist2,2,nr_references2+1000);//get more space
end;
inc(j);
until j>=nrquads2;//j loop
inc(i);
until i>=nrquads1;//i loop
if solve_show_log then memo2_message('Found '+inttostr( nr_references2)+ ' references');
if nr_references2< minimum_count then begin nr_references:=0; exit; end;{no solution abort before run time errors}
setlength(ratios,nr_references2);
{calculate median of the longest lenght ratio for matching quads}
for k:=0 to nr_references2-1 do
ratios[k]:=quad_star_distances1[0,matchlist2[0,k]]/quad_star_distances2[0,matchlist2[1,k]]; {ratio between largest length of found and reference quad}
median_ratio:=smedian(ratios,nr_references2);
{calculate median absolute deviation of the longest length ratio for matching quads}
// for k:=0 to nr_references2-1 do {find standard deviation orientation quads}
// deviations[k]:=abs(median_ratio1-ratios[k]);
// mad:=smedian(deviations);{mad is about 0.67499 *sigma for a normal distribution}
// memo2_message('mad :'+floattostr6(mad));
nr_references:=0;
setlength(matchlist1,2,nr_references2);
for k:=0 to nr_references2-1 do {throw outliers out}
begin
if abs(median_ratio-ratios[k])<=quad_tolerance*median_ratio then
begin
matchlist1[0,nr_references]:=matchlist2[0,k];{copy match position within tolerance}
matchlist1[1,nr_references]:=matchlist2[1,k];
inc(nr_references);
end
else
if solve_show_log then memo2_message('quad outlier removed due to abnormal size: '+floattostr6(100*ratios[k]/median_ratio)+'%');
end;
{outliers in largest length removed}
if (nr_references>=3) then {use 3 quads center position}
begin
{fill equations}
setlength(A_XYpositions,3,nr_references);
setlength(b_Xrefpositions,nr_references);
setlength(b_Yrefpositions,nr_references);
for k:=0 to nr_references-1 do
begin
A_XYpositions[0,k]:=quad_star_distances2[6,matchlist1[1,k]]; {average x position of quad}
A_XYpositions[1,k]:=quad_star_distances2[7,matchlist1[1,k]]; {average y position of quad}
A_XYpositions[2,k]:=1;
b_Xrefpositions[k]:=quad_star_distances1[6,matchlist1[0,k]]; {x position of ref quad/database}
b_Yrefpositions[k]:=quad_star_distances1[7,matchlist1[0,k]]; {Y position of ref quad}
{in matrix calculations, b_refpositionX[0..2,0..nr_equations-1]:=solution_vectorX[0..2] * A_XYpositions[0..2,0..nr_equations-1]}
{ b_refpositionY[0..2,0..nr_equations-1]:=solution_matrixY[0..2] * A_XYpositions[0..2,0..nr_equations-1]}
end;
result:=true;{3 or more references}
end;
// else
// if solve_show_log then {global variable set in find stars}
// memo2_message('Found matches: '+inttostr(nr_references));
end;
function find_fit_using_hash(minimum_count: integer; quad_tolerance: double): boolean;
const
NEIGHBOR_BINS = 1; // Check ±1 bin to cover quad_tolerance
MAX_QUADS_PER_BIN = 15; // Preallocate bins for max_hash_count ≈ 13–15
var
nrquads1, nrquads2, i, j, k, bin, delta_bin, adjusted_bin, hash_bins: integer;
median_ratio: double;
matchlist1, matchlist2: array of array of integer;
ratios: array of double;
hash_table1, hash_table2: array of array of integer; // Hash tables for quads
hash_counts1, hash_counts2: array of integer; // Counts per bin
max_hash_count: integer; // Debug: track largest bin size
begin
result := false; {assume failure}
nrquads1 := Length(quad_star_distances1[0]);
nrquads2 := Length(quad_star_distances2[0]);
if (nrquads1 < minimum_count) or (nrquads2 < minimum_count) then
begin
nr_references := 0;
exit;
end;
{Set HASH_BINS to twice the maximum number of quads}
hash_bins := 2 * Max(nrquads1, nrquads2);
{Initialize hash tables with preallocated bins}
SetLength(hash_table1, hash_bins,MAX_QUADS_PER_BIN);//rectangle array for the moment but could be adapted for each has bin individually
SetLength(hash_table2, hash_bins,MAX_QUADS_PER_BIN);
SetLength(hash_counts1, hash_bins);
SetLength(hash_counts2, hash_bins);
for bin := 0 to hash_bins - 1 do
begin
hash_counts1[bin] := 0;
hash_counts2[bin] := 0;
end;
max_hash_count := 0;
{Populate hash tables}
for i := 0 to nrquads1 - 1 do
begin
bin := Trunc(quad_star_distances1[1, i] / quad_tolerance) mod hash_bins;
if hash_counts1[bin] >= MAX_QUADS_PER_BIN then //pre check to speedup.
if hash_counts1[bin] >= Length(hash_table1[bin]) then //Should normally not happen
SetLength(hash_table1[bin], Length(hash_table1[bin]) + MAX_QUADS_PER_BIN); {Fallback resize. Different dimensions are implemented as arrays, and can each have their own size! https://wiki.freepascal.org/Dynamic_array}
hash_table1[bin,hash_counts1[bin]] := i;
Inc(hash_counts1[bin]);
if hash_counts1[bin] > max_hash_count then
max_hash_count := hash_counts1[bin];
end;
for j := 0 to nrquads2 - 1 do
begin
bin := Trunc(quad_star_distances2[1, j] / quad_tolerance) mod hash_bins;
if hash_counts2[bin] >= MAX_QUADS_PER_BIN then //pre check to speedup
if hash_counts2[bin] >= Length(hash_table2[bin]) then //Should normally not happen
SetLength(hash_table2[bin], Length(hash_table2[bin]) + MAX_QUADS_PER_BIN); {Fallback resize. Different dimensions are implemented as arrays, and can each have their own size! https://wiki.freepascal.org/Dynamic_array}
hash_table2[bin,hash_counts2[bin]] := j;
Inc(hash_counts2[bin]);
if hash_counts2[bin] > max_hash_count then
max_hash_count := hash_counts2[bin];
end;
{Find matches using hash tables, checking neighboring bins}
SetLength(matchlist2, 2, nrquads1); {Preallocate for max possible matches}
nr_references2 := 0;
for bin := 0 to hash_bins - 1 do
begin
if (hash_counts1[bin] = 0) then continue; {Skip empty bins}
for delta_bin := -NEIGHBOR_BINS to NEIGHBOR_BINS do
begin
adjusted_bin := (bin + delta_bin) mod hash_bins;
if adjusted_bin < 0 then adjusted_bin := adjusted_bin + hash_bins;
if (hash_counts2[adjusted_bin] = 0) then continue; {Skip empty bins}
for i := 0 to hash_counts1[bin] - 1 do
begin
for j := 0 to hash_counts2[adjusted_bin] - 1 do
begin
if abs(quad_star_distances1[1, hash_table1[bin,i]] - quad_star_distances2[1, hash_table2[adjusted_bin,j]]) <= quad_tolerance then
if abs(quad_star_distances1[2, hash_table1[bin,i]] - quad_star_distances2[2, hash_table2[adjusted_bin,j]]) <= quad_tolerance then
if abs(quad_star_distances1[3, hash_table1[bin,i]] - quad_star_distances2[3, hash_table2[adjusted_bin,j]]) <= quad_tolerance then
if abs(quad_star_distances1[4, hash_table1[bin,i]] - quad_star_distances2[4, hash_table2[adjusted_bin,j]]) <= quad_tolerance then
if abs(quad_star_distances1[5, hash_table1[bin,i]] - quad_star_distances2[5, hash_table2[adjusted_bin,j]]) <= quad_tolerance then
begin
matchlist2[0, nr_references2] := hash_table1[bin,i];
matchlist2[1, nr_references2] := hash_table2[adjusted_bin,j];
Inc(nr_references2);
if nr_references2 >= Length(matchlist2[0]) then
SetLength(matchlist2, 2, nr_references2 + 1000); {Fallback resizing}
end;
end;
end;
end;
end;
if solve_show_log then
memo2_message('Found ' + IntToStr(nr_references2) + ' references, max hash bin size: ' + IntToStr(max_hash_count));
if nr_references2 < minimum_count then
begin
nr_references := 0;
exit;
end;
{Calculate median of the longest length ratio for matching quads}
SetLength(ratios, nr_references2);
for k := 0 to nr_references2 - 1 do
ratios[k] := quad_star_distances1[0, matchlist2[0, k]] / quad_star_distances2[0, matchlist2[1, k]];
median_ratio := smedian(ratios, nr_references2);
{Calculate median absolute deviation and filter matches}
nr_references := 0;
SetLength(matchlist1, 2, nr_references2);
for k := 0 to nr_references2 - 1 do
begin
if abs(median_ratio - ratios[k]) <= quad_tolerance * median_ratio then
begin
matchlist1[0, nr_references] := matchlist2[0, k];
matchlist1[1, nr_references] := matchlist2[1, k];
Inc(nr_references);
end
else if solve_show_log then
memo2_message('Quad outlier removed due to abnormal size: ' + FloatToStrF(100 * ratios[k] / median_ratio, ffFixed, 6, 2) + '%');
end;
{Outliers in largest length removed}
if nr_references >= 3 then
begin
SetLength(A_XYpositions, 3, nr_references);
SetLength(b_Xrefpositions, nr_references);
SetLength(b_Yrefpositions, nr_references);
for k := 0 to nr_references - 1 do
begin
A_XYpositions[0, k] := quad_star_distances2[6, matchlist1[1, k]];
A_XYpositions[1, k] := quad_star_distances2[7, matchlist1[1, k]];
A_XYpositions[2, k] := 1;
b_Xrefpositions[k] := quad_star_distances1[6, matchlist1[0, k]];
b_Yrefpositions[k] := quad_star_distances1[7, matchlist1[0, k]];
end;
result := true;
end;
end;
procedure get_brightest_stars(nr_stars_required: integer;{500} highest_snr: double;snr_list : array of double; var starlist1 : Tstar_list);{ get the brightest star from a star list}
const
range=200;
var
snr_histogram : array [0..range] of integer;
i,count,nrstars, snr_scaled: integer;
snr_required : double;
begin
for i:=0 to length(snr_histogram)-1 do snr_histogram[i]:=0; {clear snr histogram}
for i:=0 to length(snr_list)-1 do
begin
// memo2_message(#9+inttostr(i)+#9+floattostr6(snr_list[i])) ;
snr_scaled:=trunc(snr_list[i]*range/highest_snr);
snr_histogram[snr_scaled]:=snr_histogram[snr_scaled]+1;{count how often this snr value is measured}
end;
count:=0;
i:=range+1;
repeat
dec(i);
count:=count+snr_histogram[i];
// memo2_message(#9+inttostr(snr_histogram[i])+ #9 +inttostr(i));
until ((i<=0) or (count>=nr_stars_required));
snr_required:=highest_snr*i/range;
count:=0;
nrstars:=length(starlist1[0]);
for i:=0 to nrstars-1 do
if snr_list[i]>=snr_required then {preserve brightest stars}
begin
starlist1[0,count]:=starlist1[0,i];{overwrite in the same array}
starlist1[1,count]:=starlist1[1,i];
// memo2_message(#9+floattostr(snr_list[i])+#9+floattostr(starlist2[0,count])+ #9 +floattostr(starlist2[1,count]));
inc(count);
// For testing:
// mainwindow.image1.Canvas.Pen.Mode := pmMerge;
// mainwindow.image1.Canvas.Pen.width := round(1+height2/mainwindow.image1.height);{thickness lines}
// mainwindow.image1.Canvas.brush.Style:=bsClear;
// mainwindow.image1.Canvas.Pen.Color := clred;
// mainwindow.image1.Canvas.Rectangle(round(starlist1[0,i])-15,height2-round(starlist1[1,i])-15, round(starlist1[0,i])+15, height2-round(starlist1[1,i])+15);{indicate hfd with rectangle}
end;
setlength(starlist1,2,count);{reduce length to used length}
end;
procedure get_hist2(img :Timage_array; startx,stopx,starty,stopy,upperlimit : integer; out histogram : Tarray_integer);
var
i,j,col : integer;
total_value : double;
begin
setlength(histogram,upperlimit+1);
for i:=0 to upperlimit do
histogram[i] := 0;{clear histogram}
For i:=startY to stopY do
begin
for j:=startX to stopX do
begin
col:=round(img[0,i,j]);{pixel value for this colour}
if ((col>=1) and (col<upperlimit)) then {ignore black overlap areas and bright stars}
inc(histogram[col],1);{calculate histogram}
end;{j}
end; {i}
end;
procedure SigmaClippedMeanFromHistogram(img :Timage_array; startx,stopx,starty,stopy, upperlimit, maxIterations: integer; convergenceThreshold : double; out meanv,stdev : double);
var
i, totalCount, iteration, binvalue, val: Integer;
sum, sumSquares, variance: Double;
previousMean, previousStdDev: Double;
converged: Boolean;
currentLowerLimit, currentUpperLimit: Integer; // Added for clipping range
sigmaLow, sigmaHigh: Double; // Sigma clipping parameters
histogram : Tarray_integer;
begin
sigmaLow := 3.0; // Standard values for astronomy
sigmaHigh := 2.0;
iteration := 0;
converged := False;
meanv := 0;
stdev := 0;
// Initial range is full histogram
currentLowerLimit := 0;
currentUpperLimit := upperlimit;
get_hist2(img,startx,stopx,starty,stopy,upperlimit,{out} histogram);
while (not converged) and (iteration < maxIterations) do
begin
previousMean := meanv;
previousStdDev := stdev;
// Reset accumulation variables each iteration
sum := 0.0;
sumSquares := 0.0;
totalCount := 0;
// Calculate statistics for current clipping range
for i := currentLowerLimit to currentUpperLimit do
begin
if (i >= 0) and (i < Length(histogram)) then // Bounds check
begin
val := histogram[i];
if val > 0 then
begin
binValue := i; // Bin index represents pixel value
sum := sum + (binValue * val);
sumSquares := sumSquares + (binValue * binValue * val);
totalCount := totalCount + val;
end;
end;
end;
// Calculate mean and standard deviation
if totalCount > 0 then
begin
meanv := sum / totalCount;
if totalCount > 1 then
begin
variance := (sumSquares - (sum * sum) / totalCount) / (totalCount - 1);
if variance > 0 then
stdev := Sqrt(variance)
else
stdev := 0.0;
end
else
stdev := 0.0;
end
else
begin
meanv := 0.0;
stdev := 0.0;
Break; // No data left
end;
//memo2_message('Iteration '+ inttostr(iteration)+' Mean:'+floattostr(meanv)+' Stdev:'+floattostr(stdev));
Inc(iteration);
//Update clipping range for next iteration
if stdev > 0 then
begin
currentLowerLimit := Max(0, Round(meanv - sigmaLow * stdev));
currentLowerLimit := 0;
currentUpperLimit := Min(upperlimit, Round(meanv + sigmaHigh * stdev));
end;
// Check for convergence
if (iteration > 1) and // Don't check convergence on first iteration
(Abs(meanv - previousMean) < convergenceThreshold) and
(Abs(stdev - previousStdDev) < convergenceThreshold) then
converged := True;
end; // while
end;
procedure find_stars(img :Timage_array; hfd_min:double; max_stars :integer;out starlist1: Tstar_list);{find stars and put them in a list}
var
fitsX, fitsY,nrstars,radius,i,j,retries,m,n,xci,yci,sqr_radius,width2,height2,starpixels,xx,yy,startX,endX,startY,endY,stepsX,stepsY : integer;
hfd1,star_fwhm,snr,xc,yc,highest_snr,flux, detection_level,backgr,backgr_org, noise_lev : double;
img_sa : Timage_array;
snr_list : array of double;//array of double;
startTick2 : qword;{for timing/speed purposes}
// flip_vertical,flip_horizontal : boolean;
// starX,starY :integer;
const
buffersize=5000;{5000}
rastersteps=12;
procedure find_stars_routine(startx,endx,starty,endy : integer);
var
fitsX, fitsY,m,n : integer;
begin
for fitsY:=startY to endY do //Search through the image. Stay one pixel away from the borders.
begin
for fitsX:=startX to endX do
begin
if ((img_sa[0,fitsY,fitsX]<=0){star free area} and (img[0,fitsY,fitsX]- backgr>detection_level){star}) then {new star above noise level}
begin
starpixels:=0;
if img[0,fitsY,fitsX-1]- backgr>4*noise_lev then inc(starpixels);//inspect in a cross around it.
if img[0,fitsY,fitsX+1]- backgr>4*noise_lev then inc(starpixels);
if img[0,fitsY-1,fitsX]- backgr>4*noise_lev then inc(starpixels);
if img[0,fitsY+1,fitsX]- backgr>4*noise_lev then inc(starpixels);
if starpixels>=2 then //At least 3 illuminated pixels. Not a hot pixel
begin
HFD(img,fitsX,fitsY,14{annulus radius}, hfd1,star_fwhm,snr,flux,xc,yc);{star HFD and FWHM}
if ((hfd1<=10) and (snr>10) and (hfd1>hfd_min) {0.8 is two pixels minimum} and (img_sa[0,round(yc),round(xc)]<=0){prevent rare double detection due to star spikes} ) then
begin
{for testing}
// if flip_vertical=false then starY:=round(height2-yc) else starY:=round(yc);
// if flip_horizontal=true then starX:=round(width2-xc) else starX:=round(xc);
// size:=round(5*hfd1);
// mainform1.image1.Canvas.Rectangle(starX-size,starY-size, starX+size, starY+size);{indicate hfd with rectangle}
// mainform1.image1.Canvas.textout(starX+size,starY+size,floattostrf(hfd1, ffgeneral, 2,1));{add hfd as text}
// mainform1.image1.Canvas.textout(starX+size,starY+size,floattostrf(snr, ffgeneral, 2,1));{add hfd as text}
radius:=round(3.0*hfd1);{for marking star area. A value between 2.5*hfd and 3.5*hfd gives same performance. Note in practice a star PSF has larger wings then predicted by a Gaussian function}
sqr_radius:=sqr(radius);
xci:=round(xc);{star center as integer}
yci:=round(yc);
for n:=-radius to +radius do {mark the whole circular star area as occupied to prevent double detection's}
for m:=-radius to +radius do
begin
j:=n+yci;
i:=m+xci;
if ((j>=0) and (i>=0) and (j<height2) and (i<width2) and (sqr(m)+sqr(n)<=sqr_radius)) then
img_sa[0,j,i]:=1;
end;
{store values}
inc(nrstars);
if nrstars>=length(starlist1[0]) then
begin
SetLength(starlist1,2,nrstars+buffersize);{adapt array size if required}
setlength(snr_list,nrstars+buffersize);{adapt array size if required}
end;
starlist1[0,nrstars-1]:=xc; {store star position}
starlist1[1,nrstars-1]:=yc;
snr_list[nrstars-1]:=snr;{store SNR}
if snr>highest_snr then highest_snr:=snr;{find to highest snr value}
end;
end;
end;
end;
end;
end;
begin
{for testing}
// mainform1.image1.Canvas.Pen.Mode := pmMerge;
// mainform1.image1.Canvas.Pen.width := round(1+hd.height/mainform1.image1.height);{thickness lines}
// mainform1.image1.Canvas.brush.Style:=bsClear;
// mainform1.image1.Canvas.font.color:=$FF;
// mainform1.image1.Canvas.font.size:=10;
// mainform1.image1.Canvas.Pen.Color := $FF;
// flip_vertical:=mainform1.flip_vertical1.Checked;
// flip_horizontal:=mainform1.Flip_horizontal1.Checked;
width2:=length(img[0,0]);{width}
height2:=length(img[0]);{height}
if solve_show_log then begin memo2_message('Start finding stars'); startTick2 := gettickcount64;end;
SetLength(starlist1,2,buffersize);{set array length}
setlength(snr_list,buffersize);{set array length}
setlength(img_sa,1,height2,width2);{set length of image array}
noise_lev:=noise_level[0]; //get_background is called in bin_and_find_star. Background is stored in cblack
retries:=3; {try up to four times to get enough stars from the image}
repeat
highest_snr:=0;
nrstars:=0;{set counters at zero}
for fitsY:=0 to height2-1 do
for fitsX:=0 to width2-1 do
img_sa[0,fitsY,fitsX]:=-1;{mark as star free area}
if retries=3 then
begin
if star_level >30*noise_lev then
begin
detection_level:=star_level;
find_stars_routine(1,width2-1-1,1,height2-1-1);
end
else
retries:=2;{skip}
end;//stars are dominant
if retries=2 then
begin
if star_level2>30*noise_lev then
begin
detection_level:=star_level2;
find_stars_routine(1,width2-1-1,1,height2-1-1);
end
else
retries:=1;{skip}
end;//stars are dominant
if retries=1 then
begin
detection_level:=30*noise_lev;
find_stars_routine(1,width2-1-1,1,height2-1-1);
end;
if retries=0 then //last try to find faint stars, divide image in sections and for each section find background and noise level
begin
if height2<width2 then //calculate steps in x, y
begin
stepsx:=rastersteps;
stepsY:=round(rastersteps*height2/width2);
end
else
begin
stepsY:=rastersteps;
stepsX:=round(rastersteps*width2/height2);
end;
backgr_org:=backgr;
for yy:=0 to stepsY do //find stars in stepsX x stepsY sections
for xx:=0 to stepsX do
begin
startX:=1+round(width2*xx/(stepsX+1));
endX:=min(width2-1-1,round(width2*(xx+1)/(stepsX+1)));
startY:=1+round(height2*yy/(stepsY+1));
endY:=min(height2-1-1,round(height2*(yy+1)/(stepsY+1)));
SigmaClippedMeanFromHistogram(img,startX,endX,startY,endY,max(65500,trunc(backgr_org*2)), 6,0.1,backgr,noise_lev);//mean and noise of this sub section
detection_level:= 7*noise_lev;
find_stars_routine(startX,endX,startY,endY);
end;
end;
if solve_show_log then memo2_message(inttostr(nrstars)+' stars found of the requested '+inttostr(max_stars)+'. Background value is '+inttostr(round(backgr))+ '. Detection level used '+inttostr( round(detection_level))
+' above background. Star level is '+inttostr(round(star_level))+' above background. Noise level is '+floattostrF(noise_lev,ffFixed,0,0));
dec(retries);{Try again with lower detection level}
until ((nrstars>=max_stars) or (retries<0));{reduce dection level till enough stars are found. Note that faint stars have less positional accuracy}
img_sa:=nil;{free mem}
SetLength(starlist1,2,nrstars);{set length correct}
setlength(snr_list,nrstars);{set length correct}
if nrstars>max_stars then {reduce number of stars if too high}
begin
if solve_show_log then memo2_message('Selecting the '+ inttostr(max_stars)+' brightest stars only.');
get_brightest_stars(max_stars, highest_snr, snr_list, starlist1);
end;
if solve_show_log then memo2_message('Finding stars done in '+ inttostr(gettickcount64 - startTick2)+ ' ms');
end;
procedure find_starsOLD(img :Timage_array;hfd_min:double; max_stars : integer; out starlist1: Tstar_list);{find stars and put them in a list}
var
fitsX, fitsY,nrstars,radius,i,j,retries,m,n,xci,yci,sqr_radius,width2,height2,starpixels : integer;
hfd1,star_fwhm,snr,xc,yc,highest_snr,flux, detection_level,noise_lev : double;
img_sa : Timage_array;
snr_list : array of double;
startTick2 : qword;{for timing/speed purposes}
const
buffersize=5000;{5000}
begin
width2:=length(img[0,0]);{width}
height2:=length(img[0]);{height}
if solve_show_log then begin memo2_message('Start finding stars'); startTick2 := gettickcount64;end;
SetLength(starlist1,2,buffersize);{set array length}
setlength(snr_list,buffersize);{set array length}
setlength(img_sa,1,height2,width2);{set length of image array}
noise_lev:=noise_level[0]; //get_background is called in bin_and_find_star. Background is stored in cblack
retries:=3; {try up to four times to get enough stars from the image}
repeat
if retries=3 then
begin if star_level >30*noise_lev then detection_level:=star_level else retries:=2;{skip} end;//stars are dominant
if retries=2 then
begin if star_level2>30*noise_lev then detection_level:=star_level2 else retries:=1;{skip} end;//stars are dominant
if retries=1 then
begin detection_level:=30*noise_lev; end;
if retries=0 then
begin detection_level:= 7*noise_lev; end;
highest_snr:=0;
nrstars:=0;{set counters at zero}
for fitsY:=0 to height2-1 do
for fitsX:=0 to width2-1 do
img_sa[0,fitsY,fitsX]:=-1;{mark as star free area}
for fitsY:=1 to height2-1-1 do //Search through the image. Stay one pixel away from the borders.
begin
for fitsX:=1 to width2-1-1 do
begin
if (( img_sa[0,fitsY,fitsX]<=0){star free area} and (img[0,fitsY,fitsX]-backgr>detection_level){star}) then {new star, at least 3.5 * sigma above noise level}
begin
starpixels:=0;
if img[0,fitsY,fitsX-1]- backgr>4*noise_lev then inc(starpixels);//inspect in a cross around it.
if img[0,fitsY,fitsX+1]- backgr>4*noise_lev then inc(starpixels);
if img[0,fitsY-1,fitsX]- backgr>4*noise_lev then inc(starpixels);
if img[0,fitsY+1,fitsX]- backgr>4*noise_lev then inc(starpixels);
if starpixels>=2 then //At least 3 illuminated pixels. Not a hot pixel
begin
HFD(img,fitsX,fitsY,14{annulus radius}, hfd1,star_fwhm,snr,flux,xc,yc);{star HFD and FWHM}
if ((hfd1<=10) and (snr>10) and (hfd1>hfd_min) {0.8 is two pixels minimum} and (img_sa[0,round(yc),round(xc)]<=0){prevent rare double detection due to star spikes}) then
begin
radius:=round(3.0*hfd1);{for marking star area. A value between 2.5*hfd and 3.5*hfd gives same performance. Note in practice a star PSF has larger wings then predicted by a Gaussian function}
sqr_radius:=sqr(radius);
xci:=round(xc);{star center as integer}
yci:=round(yc);
for n:=-radius to +radius do {mark the whole circular star area as occupied to prevent double detection's}
for m:=-radius to +radius do
begin
j:=n+yci;
i:=m+xci;
if ((j>=0) and (i>=0) and (j<height2) and (i<width2) and (sqr(m)+sqr(n)<=sqr_radius)) then
img_sa[0,j,i]:=1;
end;
{store values}
inc(nrstars);
if nrstars>=length(starlist1[0]) then
begin
SetLength(starlist1,2,nrstars+buffersize);{adapt array size if required}
setlength(snr_list,nrstars+buffersize);{adapt array size if required}
end;
starlist1[0,nrstars-1]:=xc; {store star position}
starlist1[1,nrstars-1]:=yc;
snr_list[nrstars-1]:=snr;{store SNR}
if snr>highest_snr then highest_snr:=snr;{find to highest snr value}
end;
end;
end;
end;
end;
if solve_show_log then memo2_message(inttostr(nrstars)+' stars found of the requested '+inttostr(max_stars)+'. Background value is '+inttostr(round(backgr))+ '. Detection level used '+inttostr( round(detection_level))
+' above background. Star level is '+inttostr(round(star_level))+' above background. Noise level is '+floattostrF(noise_level[0],ffFixed,0,0));
dec(retries);{Try again with lower detection level}
until ((nrstars>=max_stars) or (retries<0));{reduce dection level till enough stars are found. Note that faint stars have less positional accuracy}
img_sa:=nil;{free mem}
SetLength(starlist1,2,nrstars);{set length correct}
setlength(snr_list,nrstars);{set length correct}
if nrstars>max_stars then {reduce number of stars if too high}
begin
if solve_show_log then memo2_message('Selecting the '+ inttostr(max_stars)+' brightest stars only.');
get_brightest_stars(max_stars, highest_snr, snr_list, starlist1);
end;
if solve_show_log then memo2_message('Finding stars done in '+ inttostr(gettickcount64 - startTick2)+ ' ms');
end;
procedure reset_solution_vectors(factor: double); {reset the solution vectors}
begin
solution_vectorX[0]:=factor;{should be one} // x:=s[1]x+s[2]y+s[3] }
solution_vectorX[1]:=0;
solution_vectorX[2]:=0;
solution_vectorY[0]:=0; // y:=s[1]x+s[2]y+s[3]
solution_vectorY[1]:=factor;{should be one}
solution_vectorY[2]:=0;
end;
function find_offset_and_rotation(minimum_quads: integer;tolerance:double) : boolean; {find difference between ref image and new image}
var
xy_sqr_ratio : double;
nrquads : integer;
begin
result:=false; //assume failure
nrquads := Length(quad_star_distances1[0]);
{3 quads required giving 3 center quad references}
if nrquads<180 then//use brute forsh method
begin
if find_fit(minimum_quads, tolerance)=false then
begin
reset_solution_vectors(0.001);{nullify}
exit;
end;
end
else
begin //use hash based routine
if find_fit_using_hash(minimum_quads, tolerance)=false then
begin
reset_solution_vectors(0.001);{nullify}
exit;
end;
end;
{in matrix calculations, b_refpositionX[0..2,0..nr_equations-1]:=solution_vectorX[0..2] * A_XYpositions[0..2,0..nr_equations-1]}
{ b_refpositionY[0..2,0..nr_equations-1]:=solution_matrixY[0..2] * A_XYpositions[0..2,0..nr_equations-1]}
{find solution vector for X:=ax+by+c / b_Xref:=solution[0]x+solution[1]y+solution[2]}
if (lsq_fit( A_XYpositions {[0..2,0..nr_equations-1]},b_Xrefpositions, solution_vectorX {[0..2]}))=false then begin reset_solution_vectors(0.001);exit; end;
{find solution vector for Y:=ax+by+c / b_Yref:=solution[0]x+solution[1]y+solution[2]}
if (lsq_fit( A_XYpositions {0..2,[0..nr_equations-1]},b_Yrefpositions, solution_vectorY {[0..2]}))=false then begin reset_solution_vectors(0.001);exit; end;
xy_sqr_ratio:=(sqr(solution_vectorX[0])+sqr(solution_vectorX[1]) ) / (0.00000001+ sqr(solution_vectorY[0])+sqr(solution_vectorY[1]) );
if ((xy_sqr_ratio<0.9) or (xy_sqr_ratio>1.1)) then {dimensions x, y are not the same, something wrong.}
begin
result:=false;
reset_solution_vectors(0.001);{nullify}
if solve_show_log then {global variable set in find stars} memo2_message('Solution skipped on XY ratio: '+ floattostr(xy_sqr_ratio));
end
else
result:=true;
end;
function floattostrF2(const x:double; width1,decimals1 :word): string;
begin
str(x:width1:decimals1,result);
if formatSettings.decimalseparator<>'.' then result:=StringReplace(result,'.',formatSettings.decimalseparator,[]); {replaces dot by komma}
end;
function fnmodulo (x,range: double):double;
begin
{range should be 2*pi or 24 hours or 0 .. 360}
x:=range *frac(X /range); {quick method for big numbers}
if x<0 then x:=x+range; {do not like negative numbers}
fnmodulo:=x;
end;
function distance_to_string(dist, inp:double):string; {angular distance to string intended for RA and DEC. Unit is based on dist}
begin
if abs(dist)<pi/(180*60) then {unit seconds}
result:= floattostrF2(inp*3600*180/pi,0,1)+'"'
else
if abs(dist)<pi/180 then {unit minutes}
result:= floattostrF2(inp*60*180/pi,0,1)+#39
else
result:= floattostrF2(inp*180/pi,0,1)+'d';
end;
function position_angle(ra1,dec1,ra0,dec0 : double): double;//Position angle between a line from ra0,dec0 to ra1,dec1 and a line from ra0, dec0 to the celestial north . Rigorous method
//See book Meeus, Astronomical Algorithms, formula 46.5 edition 1991 or 48.5 edition 1998, angle of moon limb or page 116 edition 1998.
//See also https://astronomy.stackexchange.com/questions/25306/measuring-misalignment-between-two-positions-on-sky
// PA=arctan2(cos(δ0)sin(α1−α0), sin(δ1)cos(δ0)−sin(δ0)cos(δ1)cos(α1−α0)) In lazarus the function is arctan2(y/x)
// is seen at point α0,δ0. This means you are calculating the angle at point α0,δ0 (the reference point) towards point α1,δ1 (the target point).
// To clarify:
// Point α0,δ0 (Reference Point): This is where the observation is made from, or the point of reference.
// Point α1,δ1 (Target Point): This is the point towards which the position angle is being measured.
// Position Angle (PA): This is the angle measured at the reference point α0,δ0, going from the direction of the North Celestial Pole towards the target point α1,δ1, measured eastward (or counter-clockwise).
// So in your observational scenario, if you were at point α0,δ0 and wanted to determine the direction to point α1,δ1, the PA would tell you the angle to rotate from the north, moving eastward, to align with the target point.
var
sinDeltaRa,cosDeltaRa,
sinDec0,cosDec0,
sinDec1,cosDec1 : double;
begin
sincos(ra1-ra0,sinDeltaRa,cosDeltaRa);
sincos(dec0,sinDec0,cosDec0);
sincos(dec1,sinDec1,cosDec1);
result:=arctan2(cosDec1*sinDeltaRa,sinDec1*cosDec0 - cosDec1*sinDec0*cosDeltaRa);
end;
{transformation of equatorial coordinates into CCD pixel coordinates for optical projection, rigid method}
{ra0,dec0: right ascension and declination of the optical axis}
{ra,dec: right ascension and declination}
{xx,yy : CCD coordinates}
{cdelt: CCD scale in arcsec per pixel}
{$INLINE ON}
procedure equatorial_standard(ra0,dec0,ra,dec, cdelt : double; out xx,yy: double); inline;
var dv,sin_dec0,cos_dec0,sin_dec ,cos_dec,sin_deltaRA,cos_deltaRA: double;
begin
sincos(dec0 ,sin_dec0 ,cos_dec0);
sincos(dec ,sin_dec ,cos_dec );
sincos(ra-ra0, sin_deltaRA,cos_deltaRA);
dv := (cos_dec0 * cos_dec * cos_deltaRA + sin_dec0 * sin_dec) * cdelt/(3600*180/pi); {cdelt/(3600*180/pi), factor for onversion standard coordinates to CCD pixels}
xx := - cos_dec *sin_deltaRA / dv;{tangent of the angle in RA}
yy := -(sin_dec0 * cos_dec * cos_deltaRA - cos_dec0 * sin_dec) / dv; {tangent of the angle in DEC}
end;
{transformation from CCD coordinates into equatorial coordinates}
{ra0,dec0: right ascension and declination of the optical axis }
{x,y : CCD coordinates }
{cdelt: : scale of CCD pixel in arc seconds }
{ra,dec : right ascension and declination }
procedure standard_equatorial(ra0,dec0,x,y,cdelt: double; out ra,dec : double); {transformation from CCD coordinates into equatorial coordinates}
var sin_dec0 ,cos_dec0 : double;
begin
sincos(dec0 ,sin_dec0 ,cos_dec0);
x:=x *cdelt/ (3600*180/pi);{scale CCD pixels to standard coordinates (tang angle)}
y:=y *cdelt/ (3600*180/pi);
ra := ra0 + arctan2 (-x, cos_DEC0- y*sin_DEC0);{atan2 is required for images containing celestial pole}
if ra>pi*2 then ra:=ra-pi*2; {prevent values above 2*pi which confuses the direction detection later}
if ra<0 then ra:=ra+pi*2;
dec := arcsin ( (sin_dec0+y*cos_dec0)/sqrt(1.0+x*x+y*y) );
end;
//procedure give_spiral_position(position : integer; var x,y : integer); {give x,y position of square spiral as function of input value}
//var i,dx,dy,t,count: integer;
//begin
// x :=0;{star position}
// y :=0;
// dx := 0;{first step size x}
// dy := -1;{first step size y}
// count:=0;
// for i:=0 to 10000*10000 {maximum width*height} do
// begin
// if count>=position then exit; {exit and give x and y position}
// inc(count);
// if ( (x = y) or ((x < 0) and (x = -y)) or ((x > 0) and (x = 1-y))) then {turning point}
// begin {swap dx by negative dy and dy by negative dx}
// t:=dx;
// dx := -dy;
// dy := t;
// end;
// x :=x+ dx;{walk through square}
// y :=y+ dy;{walk through square}
// end;{for loop}
//end;
function read_stars(telescope_ra,telescope_dec,search_field : double; nrstars_required: integer; out starlist: Tstar_list): boolean;{read star from star database}
var
Bp_Rp, ra2,dec2,
frac1,frac2,frac3,frac4,sep : double;
nrstars,area1,area2,area3,area4,nrstars_required2,count : integer;
// correctionX,correctionY : double;
begin
result:=false;{assume failure}
nrstars:=0;{set counters at zero}
ra2:=0; {define ra2 value. Prevent ra2 = -nan(0xffffffffffde9) run time failure when first header record is read}
SetLength(starlist,2,nrstars_required);{set array length}
if database_type<>001 then {1476 or 290 files}
begin
{Assume the search field is at a crossing of four tiles. The search field area, by definition 100% is split in 8%, 15%, 20%, 57% area for each tile.
There are 500 stars required. It will then retrieve 8% x 500, 15% x 500, 20% x 500, 57% x 500 stars from each tile under the condition these stars are within the green area.
This will work assuming the star density within the green area is reasonable homogene.}
find_areas( telescope_ra,telescope_dec, search_field,{var} area1,area2,area3,area4, frac1,frac2,frac3,frac4);{find up to four star database areas for the square image}
{read 1th area}
if area1<>0 then {read 1th area}
begin
if open_database(telescope_dec,area1)=false then
exit;{open database file or reset buffer}
nrstars_required2:=min(nrstars_required,trunc(nrstars_required * frac1));
while ((nrstars<nrstars_required2) and (readdatabase290(telescope_ra,telescope_dec, search_field, {var} ra2,dec2, mag2,Bp_Rp)) ) do {star 290 file database read. Read up to nrstars_required}
begin {add star}
equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
inc(nrstars);
end;
end;
if area2<>0 then {read 2th area}
begin
if open_database(telescope_dec,area2)=false then
exit; {open database file or reset buffer}
nrstars_required2:=min(nrstars_required,trunc(nrstars_required * (frac1+frac2)));{prevent round up errors resulting in error starlist}
while ((nrstars<nrstars_required2) and (readdatabase290(telescope_ra,telescope_dec, search_field, {var} ra2,dec2, mag2,Bp_Rp)) ) do {star 290 file database read. Read up to nrstars_required}
begin {add star}
equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
inc(nrstars);
end;
end;
if area3<>0 then {read 3th area}
begin
if open_database(telescope_dec,area3)=false then
exit; {open database file or reset buffer}
nrstars_required2:=min(nrstars_required,trunc(nrstars_required * (frac1+frac2+frac3)));
while ((nrstars<nrstars_required2) and (readdatabase290(telescope_ra,telescope_dec, search_field, {var} ra2,dec2, mag2,Bp_Rp)) ) do {star 290 file database read. Read up to nrstars_required}
begin {add star}
equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
inc(nrstars);
end;
end;
if area4<>0 then {read 4th area}
begin
if open_database(telescope_dec,area4)=false then
exit; {open database file}
nrstars_required2:=min(nrstars_required,trunc(nrstars_required * (frac1+frac2+frac3+frac4)));
while ((nrstars<nrstars_required2) and (readdatabase290(telescope_ra,telescope_dec, search_field, {var} ra2,dec2, mag2,Bp_Rp)) ) do{star 290 file database read. Read up to nrstars_required}
begin {add star}
equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
inc(nrstars);
end;
end;
end
else
begin {wide field database}
if wide_database<>name_database then read_stars_wide_field;{load wide field stars array}
count:=0;
cos_telescope_dec:=cos(telescope_dec);
while ((nrstars<nrstars_required) and (count<length(wide_field_stars) div 3) ) do{star 290 file database read. Read up to nrstars_required}
begin
ra2:=wide_field_stars[count*3+1];{contains: mag1, ra1,dec1, mag2,ra2,dec2,mag3........}
dec2:=wide_field_stars[count*3+2];
ang_sep(ra2,dec2,telescope_ra,telescope_dec, sep);{angular seperation. Required for large field of view around the pole. Can not use simple formulas anymore}
if ((sep<search_field*0.5*0.9*(2/sqrt(pi))) and (sep<pi/2)) then {factor 2/sqrt(pi) is to adapt circle search field to surface square. Factor 0.9 is a fiddle factor for trees, house and dark corners. Factor <pi/2 is the limit for procedure equatorial_standard}
begin
equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
inc(nrstars);
end;
inc(count);
end;
mag2:=wide_field_stars[(count-1)*3];{for reporting of highest magnitude used for solving}
end;
// memo2_message('testareas'+#9+floattostr4(telescope_ra*12/pi)+#9+floattostr4(telescope_dec*180/pi)+#9+inttostr(maga)+#9+inttostr(magb)+#9+inttostr(magc)+#9+inttostr(magd)+#9+floattostr4(frac1)+#9+floattostr4(frac2)+#9+floattostr4(frac3)+#9+floattostr4(frac4)+#9+inttostr(area1)+#9+inttostr(area2)+#9+inttostr(area3)+#9+inttostr(area4));
if nrstars<nrstars_required then
SetLength(starlist,2,nrstars); {fix array length on data for case less stars are found}
result:=true;{no errors}
//for testing
// equatorial_standard(telescope_ra,telescope_dec,ra0,dec0,1,correctionX,correctionY);{calculate correction for x,y position of database center and image center}
// plot_stars_used_for_solving(correctionX,correctionY); {plot image stars and database stars used for the solution}
end;
procedure check_pattern_filter(var img: Timage_array); {normalize bayer pattern. Colour shifts due to not using a white light source for the flat frames are avoided.}
var
fitsX,fitsY,col,h,w,counter1,counter2, counter3,counter4 : integer;
value1,value2,value3,value4,maxval : double;
oddx, oddy :boolean;
begin
col:=length(img);{the real number of colours}
h:=length(img[0]);{height}
w:=length(img[0,0]);{width}
if col>1 then
begin
memo2_message('Skipping check pattern filter. This filter works only for raw OSC images!');
exit;
end
else
memo2_message('Applying check pattern filter.');
value1:=0; value2:=0; value3:=0; value4:=0;
counter1:=0; counter2:=0; counter3:=0; counter4:=0;
for fitsY:=(h div 4) to (h*3) div 4 do {use one quarter of the image to find factors. Works also a little better if no dark-flat is subtracted. It also works better if boarder is black}
for fitsX:=(w div 4) to (w*3) div 4 do
begin
oddX:=odd(fitsX);
oddY:=odd(fitsY);
if ((oddX=false) and (oddY=false)) then begin value1:=value1+img[0,fitsY,fitsX]; inc(counter1) end else {separate counters for case odd() dimensions are used}
if ((oddX=true) and (oddY=false)) then begin value2:=value2+img[0,fitsY,fitsX]; inc(counter2) end else
if ((oddX=false) and (oddY=true)) then begin value3:=value3+img[0,fitsY,fitsX]; inc(counter3) end else
if ((oddX=true) and (oddY=true)) then begin value4:=value4+img[0,fitsY,fitsX]; inc(counter4) end;
end;
{now normalise the bayer pattern pixels}
value1:=value1/counter1;
value2:=value2/counter2;
value3:=value3/counter3;
value4:=value4/counter4;
maxval:=max(max(value1,value2),max(value3,value4));
value1:=maxval/value1;
value2:=maxval/value2;
value3:=maxval/value3;
value4:=maxval/value4;
for fitsY:=0 to h-1 do
for fitsX:=0 to w-1 do
begin
oddX:=odd(fitsX);
oddY:=odd(fitsY);
if ((value1<>1) and (oddX=false) and (oddY=false)) then img[0,fitsY,fitsX]:=round(img[0,fitsY,fitsX]*value1) else
if ((value2<>1) and (oddX=true) and (oddY=false)) then img[0,fitsY,fitsX]:=round(img[0,fitsY,fitsX]*value2) else
if ((value3<>1) and (oddX=false) and (oddY=true)) then img[0,fitsY,fitsX]:=round(img[0,fitsY,fitsX]*value3) else
if ((value4<>1) and (oddX=true) and (oddY=true)) then img[0,fitsY,fitsX]:=round(img[0,fitsY,fitsX]*value4);
end;
end;
procedure bin_mono_and_crop(binning: integer; crop {0..1}:double;img : Timage_array; out img2: Timage_array);// Make mono, bin and crop
var
fitsX,fitsY,k, w,h, shiftX,shiftY,nrcolors,width5,height5,i,j,x,y: integer;
val : single;
begin
nrcolors:=Length(img);
width5:=Length(img[0,0]);{width}
height5:=Length(img[0]); {height}
w:=trunc(crop*width5/binning); {dimensions after binning and crop}
h:=trunc(crop*height5/binning);
setlength(img2,1,h,w); {set length of image array}
shiftX:=round(width5*(1-crop)/2); {crop is 0.9, shift is 0.05*head.width}
shiftY:=round(height5*(1-crop)/2); {crop is 0.9, start at 0.05*head.height}
if binning=1 then
begin
for fitsY:=0 to h-1 do
for fitsX:=0 to w-1 do
begin
val:=0;
for k:=0 to nrcolors-1 do {all colors and make mono}
val:=val + img[k ,shiftY+fitsY,shiftX+fitsx];
img2[0,fitsY,fitsX]:=val/nrcolors;
end;
end
else
if binning=2 then
begin
for fitsY:=0 to h-1 do
for fitsX:=0 to w-1 do
begin
val:=0;
for k:=0 to nrcolors-1 do {all colors}
val:=val+(img[k,shiftY+fitsY*2 ,shiftX+fitsX*2]+
img[k,shiftY+fitsY*2 +1,shiftX+fitsX*2]+
img[k,shiftY+fitsY*2 ,shiftX+fitsX*2+1]+
img[k,shiftY+fitsY*2 +1,shiftX+fitsX*2+1])/4;
img2[0,fitsY,fitsX]:=val/nrcolors;
end;
end
else
if binning=3 then
begin
for fitsY:=0 to h-1 do {bin & mono image}
for fitsX:=0 to w-1 do
begin
val:=0;
for k:=0 to nrcolors-1 do {all colors}
val:=val+(img[k,shiftY+fitsY*3 ,shiftX+fitsX*3 ]+
img[k,shiftY+fitsY*3 ,shiftX+fitsX*3+1]+
img[k,shiftY+fitsY*3 ,shiftX+fitsX*3+2]+
img[k,shiftY+fitsY*3 +1,shiftX+fitsX*3 ]+
img[k,shiftY+fitsY*3 +1,shiftX+fitsX*3+1]+
img[k,shiftY+fitsY*3 +1,shiftX+fitsX*3+2]+
img[k,shiftY+fitsY*3 +2,shiftX+fitsX*3 ]+
img[k,shiftY+fitsY*3 +2,shiftX+fitsX*3+1]+
img[k,shiftY+fitsY*3 +2,shiftX+fitsX*3+2])/9;
img2[0,fitsY,fitsX]:=val/nrcolors;
end;
end
else
if binning=4 then
begin
for fitsY:=0 to h-1 do //bin & mono image
for fitsX:=0 to w-1 do
begin
val:=0;
for k:=0 to nrcolors-1 do //all colors to mono. Test shows this loop doesn't introduce much delay for mono images
val:=val+(img[k,shiftY+fitsY*4 ,shiftX+fitsX*4 ]+
img[k,shiftY+fitsY*4 ,shiftX+fitsX*4+1]+
img[k,shiftY+fitsY*4 ,shiftX+fitsX*4+2]+
img[k,shiftY+fitsY*4 ,shiftX+fitsX*4+3]+
img[k,shiftY+fitsY*4 +1,shiftX+fitsX*4 ]+
img[k,shiftY+fitsY*4 +1,shiftX+fitsX*4+1]+
img[k,shiftY+fitsY*4 +1,shiftX+fitsX*4+2]+
img[k,shiftY+fitsY*4 +1,shiftX+fitsX*4+3]+
img[k,shiftY+fitsY*4 +2,shiftX+fitsX*4 ]+
img[k,shiftY+fitsY*4 +2,shiftX+fitsX*4+1]+
img[k,shiftY+fitsY*4 +2,shiftX+fitsX*4+2]+
img[k,shiftY+fitsY*4 +2,shiftX+fitsX*4+3]+
img[k,shiftY+fitsY*4 +3,shiftX+fitsX*4 ]+
img[k,shiftY+fitsY*4 +3,shiftX+fitsX*4+1]+
img[k,shiftY+fitsY*4 +3,shiftX+fitsX*4+2]+
img[k,shiftY+fitsY*4 +3,shiftX+fitsX*4+3])/16;
img2[0,fitsY,fitsX]:=val/nrcolors; //mono result
end;
end
else
begin //any bin factor. This routine is at bin 4x4 about twice slower then the above routine
for fitsY:=0 to h-1 do
for fitsX:=0 to w-1 do
begin
val:=0;
x:=shiftX+fitsX*binning;
y:=shiftY+fitsY*binning;
for k:=0 to nrcolors-1 do {all colors to mono. Test shows this loop doesn't introduce much delay for mono images}
begin
for i:=0 to binning-1 do
for j:=0 to binning-1 do
val:=val + img[k,y+i ,x+j];
end;
img2[0,fitsY,fitsX]:=val/(nrcolors*sqr(binning)); //mono result
end;
end;
end;
procedure convert_mono(var img: Timage_array);
var
fitsX,fitsY,width2,height2: integer;
img_temp : Timage_array;
begin
memo2_message('Converting to mono.');
height2:=Length(img[0]); {height}
width2:=Length(img[0,0]); {width}
setlength(img_temp,1,height2,width2);{set length of image array mono}
for fitsY:=0 to height2-1 do
for fitsX:=0 to width2-1 do
img_temp[0,fitsY,fitsX]:=(img[0,fitsY,fitsX]+img[1,fitsY,fitsX]+img[2,fitsY,fitsX])/3;
img:=nil;
img:=img_temp;
end;
procedure bin_and_find_stars(img :Timage_array;binfactor:integer;cropping,hfd_min:double;max_stars: integer;out starlist3:Tstar_list; out short_warning : string);{bin, measure background, find stars}
var
width2,height2,nrstars,i : integer;
img_binned : Timage_array;
begin
short_warning:='';{clear string}
width2:=length(img[0,0]);{width}
height2:=length(img[0]);{height}
if ((binfactor>1) or (cropping<1)) then
begin
if binfactor>1 then memo2_message('Creating grayscale x '+inttostr(binfactor)+' binning image for solving/star alignment.');
if cropping<>1 then memo2_message('Cropping image x '+floattostrF2(cropping,0,2));
bin_mono_and_crop(binfactor, cropping,img,img_binned); // Make mono, bin and crop
get_background(0,img_binned,true {load hist},true {calculate also standard deviation background},{var}backgr,star_level,star_level2 );{get back ground}
find_stars(img_binned,hfd_min,max_stars, starlist3); {find stars of the image and put them in a list}
nrstars:=Length(starlist3[0]);
if height2<960 then
begin
short_warning:='Warning, remaining image dimensions too low! '; {for FITS header and solution. Dimensions should be equal or better the about 1280x960}
memo2_message('Warning, remaining image dimensions too low! Try to REDUCE OR REMOVE DOWNSAMPLING.');
end;
for i:=0 to nrstars-1 do {correct star positions for binning and cropping. Simplest method}
begin
starlist3[0,i]:=(binfactor-1)*0.5+starlist3[0,i]*binfactor +(width2*(1-cropping)/2);//correct star positions for binfactor/ cropping. Position [3.5,3,5] becomes after 2x2 binfactor [1,1] after x2 [3,3]. So correct for 0.5 pixel
starlist3[1,i]:=(binfactor-1)*0.5+starlist3[1,i]*binfactor +(height2*(1-cropping)/2);
// For zero based indexing:
// A star of 2x2 pixels at position [2.5,2.5] is after 2x2 binfactor at position [1,1]. If doubled to [2,2] then the position has 0.5 pixel shifted.
// A star of 3x3 pixels at position [4,4] is after 3x3 binfactor at position [1,1]. If tripled to [3,3] then the position has 1.0 pixel shifted.
// A star of 4x4 pixels at position [5.5,5.5] is after 4x4 binfactor at position [1,1]. If quadruped to [4,4] then the position has 1.5 pixel shifted.
// So positions measured in a binned image should be corrected as x:=(binfactor-1)*0.5+binfactor*x and y:=(binfactor-1)*0.5+binfactor*y
end;
end
else
begin
if height2>2500 then
begin
short_warning:='Warning, increase downsampling!! '; {for FITS header and solution}
memo2_message('Info: DOWNSAMPLING IS RECOMMENDED FOR LARGE IMAGES. Set this option in stack menu, tab alignment.');
end
else
if height2<960 then
begin
short_warning:='Warning, small image dimensions!! '; {for FITS header and solution. Dimensions should be equal or better the about 1280x960}
memo2_message('█ █ █ █ █ █ Warning, small image dimensions!!');
end;
if length(img)>=3 then //colour image
convert_mono(img);
get_background(0,img,true {calc hist},true {calculate also standard deviation background}, {var} backgr,star_level,star_level2);{get back ground}
find_stars(img,hfd_min, max_stars,starlist3); {find stars of the image and put them in a list}
end;
end;
function report_binning_astrometric(height,arcsec_per_px:double) : integer;{select the binning}
begin
result:=downsample_for_solving1;
if result<=0 then {zero gives -1, Auto is 0}
begin //auto
if height>2500 then result:=2 else result:=1;
result:=max(result, round(1.5/arcsec_per_px));//pixelscale should be larger then 1"/px
end;
result:=min(16,result);//16 max. Too much anyhow
end;
function apply_arctan(fov : double): double; //assume the optical system can be modeled by a simple arctan function like a standard rectilinear (pinhole) lens
begin
result:=2*arctan((fov/2)*pi/180)*180/pi;
end;
function add_sip(ra_database,dec_database:double) : boolean;
var
stars_measured,stars_reference : TStarArray;
trans_sky_to_pixel,trans_pixel_to_sky : Ttrans;
len,i : integer;
succ: boolean;
err_mess: string;
ra_t,dec_t, SIN_dec_t,COS_dec_t, SIN_dec_ref,COS_dec_ref,det, delta_ra,SIN_delta_ra,COS_delta_ra, H, dRa,dDec : double;
begin
result:=true;// assume success
{1) Solve the image with the 1th order solver.
2) Get the x,y coordinates of the detected stars= "stars_measured"
3) Get the x,y coordinates of the reference stars= "stars_reference"
4) Shift the x,y coordinates of "stars_measured" to the center of the image. so position [0,0] is at CRPIX1, CRPIX2.
5) Convert reference stars coordinates to the same coordinate system as the measured stars.
In my case I had to convert the quad x,y coordinates to ra, dec and then convert these to image position using the original first order solution
6) Now both the "stars_measured" and "stars_reference" positions match with stars in the image except for distortion. Position [0,0] is at CRPIX1, CRPIX2.
7) For pixel_to_sky call: Calc_Trans_Cubic(stars_measured, stars_reference,...). The trans array will work for pixel to sky.
8) For sky_to_pixel call: Calc_Trans_Cubic(stars_reference, stars_measured,...) The trans array will work for sky to pixel.
}
len:=length(b_Xrefpositions);
if len<20 then
begin
memo2_message('Not enough quads for calculating SIP.');
exit(false);
end;
setlength(stars_measured,len);
setlength(stars_reference,len);
sincos(dec0,SIN_dec_ref,COS_dec_ref);;{ For 5. Conversion (RA,DEC) -> x,y image in fits range 1..max}
for i:=0 to len-1 do
begin
stars_measured[i].x:=1+A_XYpositions[0,i]-crpix1;//position as seen from center at crpix1, crpix2, in fits range 1..width
stars_measured[i].y:=1+A_XYpositions[1,i]-crpix2;
standard_equatorial( ra_database,dec_database,
b_Xrefpositions[i], {x reference star}
b_Yrefpositions[i], {y reference star}
1, {CCD scale}
ra_t,dec_t) ; //calculate back to the reference star positions
{5. Conversion (RA,DEC) -> x,y image in fits range 1..max}
sincos(dec_t,SIN_dec_t,COS_dec_t);
delta_ra:=ra_t-ra0;
sincos(delta_ra,SIN_delta_ra,COS_delta_ra);
H := SIN_dec_t*sin_dec_ref + COS_dec_t*COS_dec_ref*COS_delta_ra;
dRA := (COS_dec_t*SIN_delta_ra / H)*180/pi;
dDEC:= ((SIN_dec_t*COS_dec_ref - COS_dec_t*SIN_dec_ref*COS_delta_ra ) / H)*180/pi;
det:=cd2_2*cd1_1 - cd1_2*cd2_1;
stars_reference[i].x:= - (cd1_2*dDEC - cd2_2*dRA) / det;
stars_reference[i].y:= + (cd1_1*dDEC - cd2_1*dRA) / det;
end;
succ:=Calc_Trans_Cubic(stars_reference, // First array of s_star structure we match the output trans_sky_to_pixel takes their coords into those of array B
stars_measured, // Second array of s_star structure we match
trans_sky_to_pixel, // Transfer coefficients for stars_measured positions to stars_reference positions. Fits range 1..max
err_mess // any error message
);
if succ=false then
begin
memo2_message(err_mess);
exit(false);
end;
{sky to pixel coefficients}
AP_order:=3; //third order
AP_0_0:=trans_sky_to_pixel.x00;
AP_0_1:=trans_sky_to_pixel.x01;
AP_0_2:=trans_sky_to_pixel.x02;
AP_0_3:=trans_sky_to_pixel.x03;
AP_1_0:=-1+trans_sky_to_pixel.x10;
AP_1_1:=trans_sky_to_pixel.x11;
AP_1_2:=trans_sky_to_pixel.x12;
AP_2_0:=trans_sky_to_pixel.x20;
AP_2_1:=trans_sky_to_pixel.x21;
AP_3_0:=trans_sky_to_pixel.x30;
BP_0_0:=trans_sky_to_pixel.y00;
BP_0_1:=-1+trans_sky_to_pixel.y01;
BP_0_2:=trans_sky_to_pixel.y02;
BP_0_3:=trans_sky_to_pixel.y03;
BP_1_0:=trans_sky_to_pixel.y10;
BP_1_1:=trans_sky_to_pixel.y11;
BP_1_2:=trans_sky_to_pixel.y12;
BP_2_0:=trans_sky_to_pixel.y20;
BP_2_1:=trans_sky_to_pixel.y21;
BP_3_0:=trans_sky_to_pixel.y30;
//inverse transformation calculation
//swap the arrays for inverse factors. This works as long the offset is small like in this situation
succ:=Calc_Trans_Cubic(stars_measured, // reference
stars_reference, // distorted
trans_pixel_to_sky, // Transfer coefficients for stars_measured positions to stars_reference positions
err_mess // any error message
);
if succ=false then
begin
memo2_message(err_mess);
exit(false);
end;
// SIP definitions https://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/shupeADASS.pdf
//Pixel to sky coefficients
A_order:=3;
A_0_0:=trans_pixel_to_sky.x00;
A_0_1:=trans_pixel_to_sky.x01;
A_0_2:=trans_pixel_to_sky.x02;
A_0_3:=trans_pixel_to_sky.x03;
A_1_0:=-1+ trans_pixel_to_sky.x10;
A_1_1:=trans_pixel_to_sky.x11;
A_1_2:=trans_pixel_to_sky.x12;
A_2_0:=trans_pixel_to_sky.x20;
A_2_1:=trans_pixel_to_sky.x21;
A_3_0:=trans_pixel_to_sky.x30;
B_0_0:=trans_pixel_to_sky.y00;
B_0_1:=-1+trans_pixel_to_sky.y01;
B_0_2:=trans_pixel_to_sky.y02;
B_0_3:=trans_pixel_to_sky.y03;
B_1_0:=trans_pixel_to_sky.y10;
B_1_1:=trans_pixel_to_sky.y11;
B_1_2:=trans_pixel_to_sky.y12;
B_2_0:=trans_pixel_to_sky.y20;
B_2_1:=trans_pixel_to_sky.y21;
B_3_0:=trans_pixel_to_sky.y30;
update_integer('A_ORDER =',' / Polynomial order, axis 1. Pixel to Sky ',3);
update_float('A_0_0 =',' / SIP coefficient ',A_0_0);
update_float('A_1_0 =',' / SIP coefficient ',A_1_0);
update_float('A_0_1 =',' / SIP coefficient ',A_0_1);
update_float('A_2_0 =',' / SIP coefficient ',A_2_0);
update_float('A_1_1 =',' / SIP coefficient ',A_1_1);
update_float('A_0_2 =',' / SIP coefficient ',A_0_2);
update_float('A_3_0 =',' / SIP coefficient ',A_3_0);
update_float('A_2_1 =',' / SIP coefficient ',A_2_1);
update_float('A_1_2 =',' / SIP coefficient ',A_1_2);
update_float('A_0_3 =',' / SIP coefficient ',A_0_3);
update_integer('B_ORDER =',' / Polynomial order, axis 2. Pixel to sky. ',3);
update_float('B_0_0 =',' / SIP coefficient ' ,B_0_0);
update_float('B_0_1 =',' / SIP coefficient ' ,B_0_1);
update_float('B_1_0 =',' / SIP coefficient ' ,B_1_0);
update_float('B_2_0 =',' / SIP coefficient ' ,B_2_0);
update_float('B_1_1 =',' / SIP coefficient ' ,B_1_1);
update_float('B_0_2 =',' / SIP coefficient ' ,B_0_2);
update_float('B_3_0 =',' / SIP coefficient ' ,B_3_0);
update_float('B_2_1 =',' / SIP coefficient ' ,B_2_1);
update_float('B_1_2 =',' / SIP coefficient ' ,B_1_2);
update_float('B_0_3 =',' / SIP coefficient ' ,B_0_3);
update_integer('AP_ORDER=',' / Inv polynomial order, axis 1. Sky to pixel. ',3);
update_float('AP_0_0 =',' / SIP coefficient ',AP_0_0);
update_float('AP_1_0 =',' / SIP coefficient ',AP_1_0);
update_float('AP_0_1 =',' / SIP coefficient ',AP_0_1);
update_float('AP_2_0 =',' / SIP coefficient ',AP_2_0);
update_float('AP_1_1 =',' / SIP coefficient ',AP_1_1);
update_float('AP_0_2 =',' / SIP coefficient ',AP_0_2);
update_float('AP_3_0 =',' / SIP coefficient ',AP_3_0);
update_float('AP_2_1 =',' / SIP coefficient ',AP_2_1);
update_float('AP_1_2 =',' / SIP coefficient ',AP_1_2);
update_float('AP_0_3 =',' / SIP coefficient ',AP_0_3);
update_integer('BP_ORDER=',' / Inv polynomial order, axis 2. Sky to pixel. ',3);
update_float('BP_0_0 =',' / SIP coefficient ',BP_0_0);
update_float('BP_1_0 =',' / SIP coefficient ',BP_1_0);
update_float('BP_0_1 =',' / SIP coefficient ',BP_0_1);
update_float('BP_2_0 =',' / SIP coefficient ',BP_2_0);
update_float('BP_1_1 =',' / SIP coefficient ',BP_1_1);
update_float('BP_0_2 =',' / SIP coefficient ',BP_0_2);
update_float('BP_3_0 =',' / SIP coefficient ',BP_3_0);
update_float('BP_2_1 =',' / SIP coefficient ',BP_2_1);
update_float('BP_1_2 =',' / SIP coefficient ',BP_1_2);
update_float('BP_0_3 =',' / SIP coefficient ',BP_0_3);
end;
function solve_image(img :Timage_array) : boolean;{find match between image and star database}
var
nrstars,nrstars_required,nrstars_required2,count,max_distance,nr_quads, minimum_quads,binning,match_nr,
spiral_x, spiral_y, spiral_dx, spiral_dy,spiral_t,database_density,limit,err, width2, height2,i : integer;
search_field,step_size,ra_database,dec_database,telescope_ra_offset,radius,fov2,fov_org, max_fov,fov_min,
oversize,oversize2,sep_search,seperation,ra7,dec7,centerX,centerY,cropping, min_star_size_arcsec,hfd_min,
quad_tolerance,flip,extra,distance,flipped_image,xi,yi,arcsec_per_px,crota1_rad,crota2_rad,cdelt1_arcsec,cdelt2_arcsec,vfov : double;
solution, go_ahead ,autoFOV : boolean;
startTick : qword;{for timing/speed purposes}
distancestr,mess,suggest_str, warning_downsample, solved_in, offset_found,ra_offset,dec_offset,mount_info,mount_offset : string;
starlist1,starlist2 : Tstar_list;
begin
result:=false;
esc_pressed:=false;
warning_str:='';{for header}
startTick := GetTickCount64;
quad_tolerance:=strtofloat2(quad_tolerance1);
//quad_tolerance:=min(quad_tolerance,0.008);//prevent too high tolerances set by command line
width2:=length(img[0,0]); {width}
height2:=length(img[0]); {height}
if ((fov_specified=false) and (cdelt2<>0)) then {no FOV in native command line and cdelt2 in header}
fov_org:=apply_arctan(height2*abs(cdelt2)){calculate FOV. PI can give negative CDELT2}
else
fov_org:=min(180,strtofloat2(search_fov1));{use specfied FOV in stackmenu. 180 max to prevent runtime errors later}
if select_star_database(star_database1,fov_org)=false then {select database prior to cropping selection}
begin
result:=false;
memo2_message('Error, no star database found at '+database_path+' ! Download and install a star database.');
errorlevel:=32;{no star database}
exit;
end
else
begin
//stackmenu1.star_database1.text:=name_database;
memo2_message('Using star database '+uppercase(name_database));
if ((fov_org>30) and (database_type<>001)) then
warning_str:=warning_str+'Wide field image, use W08 database! '
else
if ((fov_org>6) and (database_type=1476)) then
warning_str:=warning_str+'Large FOV, use G05 database! ';
if warning_str<>'' then memo2_message(warning_str);
end;
if check_pattern_filter1 then {for OSC images with low dimensions only}
check_pattern_filter(img);
if database_type=1476 then {.1476 database}
max_fov:=5.142857143 {warning FOV should be less the database tiles dimensions, so <=5.142857143 degrees. Otherwise a tile beyond next tile could be selected}
else {.1476 database}
if database_type=290 then {.290 database}
max_fov:=9.53 {warning FOV should be less the database tiles dimensions, so <=9.53 degrees. Otherwise a tile beyond next tile could be selected}
else
max_fov:=180;
dec_radians:=dec0; {store temporary}
ra_radians:=ra0;
min_star_size_arcsec:=strtofloat2(min_star_size1); {arc sec};
autoFOV:=(fov_org=0);{specified auto FOV}
val(copy(name_database,2,2),database_density,err);
if ((err<>0) or
(database_density=17) or (database_density=18)) then //old databases V17, G17, G18, H17, H18
database_density:=9999
else
database_density:=database_density*100;
repeat {autoFOV loop}
if autoFOV then
begin
if fov_org=0 then
begin
if database_type<>001 then
begin
fov_org:=9.5;
fov_min:=0.38;
end
else
begin
fov_org:=90;
fov_min:=12;
end
end
else fov_org:=fov_org/1.5;
memo2_message('Trying FOV: '+floattostrF(fov_org,ffFixed,0,1));
end;
if fov_org>max_fov then
begin
cropping:=max_fov/fov_org;
fov2:=max_fov; {temporary cropped image, adjust FOV to adapt}
end
else
begin
cropping:=1;
fov2:=fov_org;
end;
limit:=round(database_density*sqr(fov2)*width2/height2);//limit in stars per square degree. limit=density*surface_full_image
if limit<max_stars then
begin
max_stars:=limit;//reduce the number of stars to use.
memo2_message('Database limit for this FOV is '+inttostr(max_stars)+' stars.');
end;
arcsec_per_px:=fov_org*3600/height2;//arc sec per pixel unbinned
binning:=report_binning_astrometric(height2*cropping,arcsec_per_px); {select binning on dimensions of cropped image only}
hfd_min:=max(0.8,min_star_size_arcsec/(binning*fov_org*3600/height2) );{to ignore hot pixels which are too small}
bin_and_find_stars(img,binning,cropping,hfd_min, max_stars,starlist2, warning_downsample);{bin, measure background, find stars. Do this every repeat since hfd_min is adapted}
nrstars:=Length(starlist2[0]);
{prepare popupnotifier1 text}
if force_oversize1=false then mess:=' normal' else mess:=' slow';
memo2_message('ASTAP solver version CLI-'+astap_version+#10+
'Search radius: '+ radius_search1+' degrees, '+#10+
'Start position: '+prepare_ra(ra0,': ')+', '+prepare_dec(dec0,'d ')+#10+
'Image height: '+floattostrf2(fov_org,0,2)+' degrees'+#10+
'Binning: '+inttostr(binning)+'x'+inttostr(binning)+#10+
'Image dimensions: '+inttostr(width2)+'x'+inttostr(height2)+#10+
'Quad tolerance: '+quad_tolerance1+#10+
'Minimum star size: '+min_star_size1+'"' +#10+
'Speed:'+mess);
nrstars_required:=round(nrstars*(height2/width2));{square search field based on height.}
solution:=false; {assume no match is found}
go_ahead:=(nrstars>=5); {bare minimum. Should be more but let's try}
if go_ahead then {enough stars, lets find quads}
begin
find_quads(starlist2,quad_star_distances2);{find star quads for new image. Quads and quad_smallest are binning independend}
nr_quads:=Length(quad_star_distances2[0]);
go_ahead:=nr_quads>=3; {enough quads?}
{The step size is fixed. If a low amount of stars are detected, the search window (so the database read area) is increased up to 200% guaranteeing that all quads of the image are compared with the database quads while stepping through the sky}
if nrstars<35 then oversize:=2 {make dimensions of square search window twice then the image height}
else
if nrstars>140 {at least 100 quads} then oversize:=1 {make dimensions of square search window equal to the image height}
else
oversize:=2*sqrt(35/nrstars);{calculate between 35 th=2 and 140 th=1, stars/quads are area related so take sqrt to get oversize}
if force_oversize1 then oversize:=2;
oversize:=min(oversize,max_fov/fov2);//limit request to database to 1 tile so 5.142857143 degrees for 1476 database or 9.53 degrees for type 290 database. Otherwise a tile beyond next tile could be selected}
radius:=strtofloat2(radius_search1);{radius search field}
// memo2_message(inttostr(nrstars)+' stars, '+inttostr(nr_quads)+' quads selected in the image. '+inttostr(nrstars_required)+' database stars, '+inttostr(round(nr_quads*nrstars_required/nrstars))+' database quads required for the square search field of '+floattostrF2(fov2,0,1)+'d. '+oversize_mess );
minimum_quads:=3 + nrstars div 140 {prevent false detections for star rich images, 3 quads give the 3 center quad references and is the bare minimum. It possible to use one quad and four star positions but it in not reliable}
end
else
begin
memo2_message('Only '+inttostr(nrstars)+' stars found in image. Abort');
errorlevel:=2;
end;
if go_ahead then
begin
search_field:=fov2*(pi/180);
STEP_SIZE:=search_field;{fixed step size search spiral. Prior to version 0.9.211 this was reduced for small star counts}
if database_type=1 then
begin {make smal steps for wide field images. Much more reliable}
step_size:=step_size*0.1;
max_distance:=round(radius/(0.1*fov2+0.00001)); {expressed in steps}
memo2_message('Wide field, making small steps for reliable solving.');
end
else
max_distance:=round(radius/(fov2+0.00001));{expressed in steps}
memo2_message(inttostr(nrstars)+' stars, '+inttostr(nr_quads)+' quads selected in the image. '+inttostr(round(nrstars_required*sqr(oversize)))+' database stars, '
+inttostr(round(nr_quads*nrstars_required*sqr(oversize)/nrstars))+' database quads required for the '+floattostrF(oversize*fov2,ffFixed,0,2)+'d square search window. '
+'Step size '+floattostrF(fov2,FFfixed,0,2) +'d. Oversize '+floattostrF(oversize,FFfixed,0,2));
match_nr:=0;
repeat {Maximum accuracy loop. In case math is found on a corner, do a second solve. Result will be more accurate using all stars of the image}
count:=0;{search field counter}
distance:=0; {required for reporting no too often}
{spiral variables}
spiral_x :=0;
spiral_y :=0;
spiral_dx := 0;{first step size x}
spiral_dy := -1;{first step size y}
repeat {search in squared spiral}
{begin spiral routine, find a new squared spiral position position}
if count<>0 then {first do nothing, start with [0 0] then start with [1 0],[1 1],[0 1],[-1 1],[-1 0],[-1 -1],[0 -1],[1 -1],[2 -1].[2 0] ..............}
begin {start spiral around [0 0]}
if ( (spiral_x = spiral_y) or ((spiral_x < 0) and (spiral_x = -spiral_y)) or ((spiral_x > 0) and (spiral_x = 1-spiral_y))) then {turning point}
begin {swap dx by negative dy and dy by negative dx}
spiral_t:=spiral_dx;
spiral_dx := -spiral_dy;
spiral_dy := spiral_t;
end;
spiral_x :=spiral_x+ spiral_dx;{walk through square}
spiral_y :=spiral_y+ spiral_dy;{walk through square}
end;{end spiral around [0 0]}
{adapt search field to matrix position, +0+0/+1+0,+1+1,+0+1,-1+1,-1+0,-1-1,+0-1,+1-1..}
dec_database:=STEP_SIZE*spiral_y+dec_radians;
flip:=0;
if dec_database>+pi/2 then begin dec_database:=pi-dec_database; flip:=pi; end {crossed the pole}
else
if dec_database<-pi/2 then begin dec_database:=-pi-dec_database; flip:=pi; end;
if dec_database>0 then extra:=step_size/2 else extra:=-step_size/2;{use the distance furthest away from the pole}
telescope_ra_offset:= (STEP_SIZE*spiral_x/cos(dec_database-extra));{step larger near pole. This ra_database is an offsett from zero}
if ((telescope_ra_offset<=+pi/2+step_size/2) and (telescope_ra_offset>=-pi/2)) then {step_size for overlap}
begin
ra_database:=fnmodulo(flip+ra_radians+telescope_ra_offset,2*pi);{add offset to ra after the if statement! Otherwise no symmetrical search}
ang_sep(ra_database,dec_database,ra_radians,dec_radians, {out}seperation);{calculates angular separation. according formula 9.1 old Meeus or 16.1 new Meeus, version 2018-5-23}
if seperation<=radius*pi/180+step_size/2 then {Use only the circular area withing the square area}
begin
{info reporting}
//stackmenu1.field1.caption:= '['+inttostr(spiral_x)+','+inttostr(spiral_y)+']';{show on stackmenu what's happening}
if seperation*180/pi>distance+fov_org then {new distance reached. Update once in the square spiral, so not too often since it cost CPU time}
begin
distance:=seperation*180/pi;
distancestr:=inttostr(round(seperation*180/pi))+'d,';{show on stackmenu what's happening}
write(distancestr);
end; {info reporting}
{read nrstars_required stars from database. If search field is oversized, number of required stars increases with the power of the oversize factor. So the star density will be the same as in the image to solve}
if match_nr=0 then
oversize2:=oversize
else
oversize2:=min(max_fov/fov2, max(oversize, sqrt(sqr(width2/height2)+sqr(1)))); //Use full image for solution for second solve but limit to one tile max to prevent tile selection problems.
nrstars_required2:=round(nrstars_required*oversize2*oversize2); //nr of stars requested request from database
if read_stars(ra_database,dec_database,search_field*oversize2,nrstars_required2,{out} starlist1)= false then
begin
memo2_message('Error, no star database found at '+database_path+' ! Download and install a star database.');
errorlevel:=33;{read error star database}
exit; {no stars}
end;
//mod 2025 ###################################################
if match_nr=1 then //2025 first solution found, filter out stars for the second match. Avoid that stars outside the image boundaries are used to create database quads
begin //keep only stars which are visible in the image according the first solution
count:=0;
for i:=0 to Length(starlist1[0])-1 do
begin
rotate(crota2_rad,starlist1[0,i]/cdelt1_arcsec,starlist1[1,i]/cdelt2_arcsec,xi,yi);{rotate to screen orientation}
xi:=centerX-xi;
yi:=centerY-yi;
if ((xi>0) and (xi<width2) and (yi>0) and (yi<height2)) then //within image boundaries
begin
starlist1[0,count]:=starlist1[0,i];
starlist1[1,count]:=starlist1[1,i];
inc(count);
end;
end;
setlength(starlist1,2,count);
end; //keep only stars visible in image
//mod 2025 ###################################################
find_quads(starlist1,quad_star_distances1);{find quads for reference image/database. Filter out too small quads for Earth based telescopes}
if solve_show_log then {global variable set in find stars}
memo2_message('Search '+ inttostr(count)+', ['+inttostr(spiral_x)+','+inttostr(spiral_y)+'], position: '+ prepare_ra(ra_database,': ')+prepare_dec(dec_database,'d ')+#9+' Down to magn '+ floattostrF2(mag2/10,0,1) +#9+' '+inttostr(length(starlist1[0]))+' database stars' +#9+' '+inttostr(length(quad_star_distances1[0]))+' database quads to compare.');
// for testing purposes
// create supplement lines for sky coverage testing and write to log using -log
// memo2.add(floattostr(ra_database*12/pi)+',,,'+floattostr(dec_database*180/pi)+',,,,'+inttostr(count)+',,-99'); {create hnsky supplement to test sky coverage}
solution:=find_offset_and_rotation(minimum_quads {>=3},quad_tolerance);{find an solution}
end; {within search circle. Otherwise the search is within a kind of square}
end;{ra in range}
inc(count);{step further in spiral}
until ((solution) or (spiral_x>max_distance));{squared spiral search}
if solution then
begin
centerX:=(width2-1)/2 ;{center image in 0..width2-1 range}
centerY:=(height2-1)/2;{center image in 0..height2-1 range}
standard_equatorial( ra_database,dec_database,
(solution_vectorX[0]*(centerX) + solution_vectorX[1]*(centerY) +solution_vectorX[2]), {x}
(solution_vectorY[0]*(centerX) + solution_vectorY[1]*(centerY) +solution_vectorY[2]), {y}
1, {CCD scale}
ra_radians ,dec_radians {center equatorial position});
//current_dist:=sqrt(sqr(solution_vectorX[0]*(centerX) + solution_vectorX[1]*(centerY) +solution_vectorX[2]) + sqr(solution_vectorY[0]*(centerX) + solution_vectorY[1]*(centerY) +solution_vectorY[2]))/3600; {current distance telescope and image center in degrees}
//mod 2025 ############################################################
if solution_vectorX[0]*solution_vectorY[1] - solution_vectorX[1]*solution_vectorY[0] >0 then // flipped?
flipped_image:=-1 //change rotation for flipped image, {Flipped image. Either flipped vertical or horizontal but not both. Flipped both horizontal and vertical is equal to 180 degrees rotation and is not seen as flipped}
else
flipped_image:=+1;//not flipped
// position +1 pixels in direction hd.crpix2
standard_equatorial( ra_database,dec_database, (solution_vectorX[0]*(centerX) + solution_vectorX[1]*(centerY+1) +solution_vectorX[2]), {x}
(solution_vectorY[0]*(centerX) + solution_vectorY[1]*(centerY+1) +solution_vectorY[2]), {y}
1, {CCD scale} ra7 ,dec7{equatorial position}); // the position 1 pixel away
crota2_rad:=-position_angle(ra7,dec7,ra_radians,dec_radians);//Position angle between a line from ra0,dec0 to ra1,dec1 and a line from ra0, dec0 to the celestial north . Rigorous method
cdelt1_arcsec:=flipped_image*sqrt(sqr(solution_vectorX[0])+sqr(solution_vectorX[1])); // unit arcsec
cdelt2_arcsec:=sqrt(sqr(solution_vectorY[0])+sqr(solution_vectorY[1])); //unit arcsec
//mod 2025 ############################################################
inc(match_nr);
end
else
match_nr:=0;//This should not happen for the second solve but just in case
until ((solution=false) or (match_nr>=2));{Maximum accurcy loop. After match possible on a corner do a second solve using the found ra0,dec0 for maximum accuracy USING ALL STARS}
end; {enough quads in image}
until ((autoFOV=false) or (solution) or (fov2<=fov_min)); {loop for autoFOV from 9.5 to 0.37 degrees. Will lock between 9.5*1.25 downto 0.37/1.25 or 11.9 downto 0.3 degrees}
if solution then
begin
ang_sep(ra_radians,dec_radians,ra0,dec0, sep_search);{calculate search offset}
ra0:=ra_radians;//store solution
dec0:=dec_radians;
crpix1:=centerX+1;{center image in fits coordinate range 1..width2}
crpix2:=centery+1;
memo2_message(#10+inttostr(nr_references)+ ' of '+ inttostr(nr_references2)+' quads selected matching within '+quad_tolerance1+' tolerance.' {2 quads are required giving 8 star references or 3 quads giving 3 center quad references}
+#10+'Solution["] x:='+floattostr6(solution_vectorX[0])+'*x+ '+floattostr6(solution_vectorX[1])+'*y+ '+floattostr6(solution_vectorX[2])
+', y:='+floattostr6(solution_vectorY[0])+'*x+ '+floattostr6(solution_vectorY[1])+'*y+ '+floattostr6(solution_vectorY[2]) );
// following doesn't give maximum angle accuracy, so is not used.
// cd1_1:= - solution_vectorX[0]/3600;{/3600, arcsec to degrees conversion}
// cd1_2:= - solution_vectorX[1]/3600;
// cd2_1:= + solution_vectorY[0]/3600;
// cd2_2:= + solution_vectorY[1]/3600;
// position 1*flipped_image pixels in direction crpix1
standard_equatorial( ra_database,dec_database,(solution_vectorX[0]*(centerX+flipped_image) + solution_vectorX[1]*(centerY) +solution_vectorX[2]), {x} //A pixel_aspect_ratio unequal of 1 is very rare, none square pixels
(solution_vectorY[0]*(centerX+flipped_image) + solution_vectorY[1]*(centerY) +solution_vectorY[2]), {y}
1, {CCD scale} ra7 ,dec7{equatorial position});
crota1_rad:=pi/2-position_angle(ra7,dec7,ra_radians,dec_radians);//Position angle between a line from ra0,dec0 to ra1,dec1 and a line from ra0, dec0 to the celestial north . Rigorous method
if crota1_rad>pi then crota1_rad:=crota1_rad-2*pi;//keep within range -pi to +pi
cdelt1:=cdelt1_arcsec/3600;//convert from arc seconds to degrees
cdelt2:=cdelt2_arcsec/3600;
cd1_1:=+cdelt1*cos(crota1_rad);
cd1_2:=-cdelt1*sin(crota1_rad)*flipped_image;
cd2_1:=+cdelt2*sin(crota2_rad)*flipped_image;
cd2_2:=+cdelt2*cos(crota2_rad);
crota2:=crota2_rad*180/pi;//convert to degrees
crota1:=crota1_rad*180/pi;
solved_in:='Solved in '+ floattostr(round((GetTickCount64 - startTick)/100)/10)+' sec.';{make string to report in FITS header.}
offset_found:=distance_to_string(sep_search ,sep_search)+'.';
if ra_mount<99 then {mount position known and specified}
begin
ra_offset:=distance_to_string(sep_search, pi*frac((ra_mount-ra0)/pi) * cos((dec0+dec_mount)*0.5 {average dec}));
dec_offset:=distance_to_string(sep_search,dec_mount-dec0);
mount_offset:=' Mount offset RA='+ra_offset+', DEC='+dec_offset;{ascii}
mount_info:=' Mount Δα='+ra_offset+ ', Δδ='+dec_offset+'. ';
end
else
begin
mount_offset:='';
mount_info:='';
end;
memo2_message('Solution found: '+ prepare_ra(ra0,': ')+' '+prepare_dec(dec0,'d ') +#10+solved_in+' Δ was '+offset_found+' '+ mount_info+' Used stars down to magnitude: '+floattostrF2(mag2/10,0,1) );
result:=true;
if ((add_sip1) and
(add_sip(ra_database,dec_database))) then //takes about 50 ms sec due to the header update. Calculations are very fast
begin
update_text ('CTYPE1 =',#39+'RA---TAN-SIP'+#39+' / TAN (gnomic) projection + SIP distortions ');
update_text ('CTYPE2 =',#39+'DEC--TAN-SIP'+#39+' / TAN (gnomic) projection + SIP distortions ');
end
else
begin
update_text ('CTYPE1 =',#39+'RA---TAN'+#39+' / first parameter RA, projection TANgential ');
update_text ('CTYPE2 =',#39+'DEC--TAN'+#39+' / second parameter DEC, projection TANgential ');
end;
update_text ('CUNIT1 =',#39+'deg '+#39+' / Unit of coordinates ');
update_float ('CRPIX1 =',' / X of reference pixel ' ,crpix1);
update_float ('CRPIX2 =',' / Y of reference pixel ' ,crpix2);
update_float ('CRVAL1 =',' / RA of reference pixel (deg) ' ,ra0*180/pi);
update_float ('CRVAL2 =',' / DEC of reference pixel (deg) ' ,dec0*180/pi);
update_float ('CDELT1 =',' / X pixel size (deg) ' ,cdelt1);
update_float ('CDELT2 =',' / Y pixel size (deg) ' ,cdelt2);
update_float ('CROTA1 =',' / Image twist of X axis (deg) ' ,crota1);
update_float ('CROTA2 =',' / Image twist of Y axis (deg) ' ,crota2);
update_float ('CD1_1 =',' / CD matrix to convert (x,y) to (Ra, Dec) ' ,cd1_1);
update_float ('CD1_2 =',' / CD matrix to convert (x,y) to (Ra, Dec) ' ,cd1_2);
update_float ('CD2_1 =',' / CD matrix to convert (x,y) to (Ra, Dec) ' ,cd2_1);
update_float ('CD2_2 =',' / CD matrix to convert (x,y) to (Ra, Dec) ' ,cd2_2);
update_text ('PLTSOLVD=',' T / Astrometric solved by ASTAP_CLI v'+astap_version+'. ');
update_text ('COMMENT 7', solved_in+' Offset was '+offset_found+mount_offset);
vfov:=apply_arctan(height2*cdelt2);
if ((fov_org > 1.05 * (vfov)) or (fov_org < 0.95 * (vfov))) then //in astap hd.cdelt2 is always positive. No need for absolute function
begin
if xpixsz<>0 then suggest_str:='Warning scale was inaccurate! Set FOV='+floattostrF2(height2*cdelt2,0,2)+'d, scale='+floattostrF2(cdelt2*3600,0,1)+'", FL='+inttostr(round((180/(pi*1000)*xpixsz/cdelt2)) )+'mm'
else suggest_str:='Warning scale was inaccurate! Set FOV='+floattostrF2(height2*cdelt2,0,2)+'d, scale='+floattostrF2(cdelt2*3600,0,1)+'"';
memo2_message(suggest_str);
warning_str:=suggest_str+warning_str;
end;
end
else
begin
memo2_message('No solution found! :(');
update_text ('PLTSOLVD=',' F / No plate solution found. ');
remove_key('COMMENT 7',false{all});
end;
warning_str:=warning_str + warning_downsample; {add the last warning from loop autoFOV}
//No longer required for the new D50.. databases
// if nrstars_required>database_stars+4 then
// begin
// memo2_message('Warning, reached the limit of the star database!');
// warning_str:=warning_str+' Star database limit was reached!';
// end;
if warning_str<>'' then
begin
update_longstr('WARNING =',warning_str);{update or insert long str including single quotes}
end;
if database_type=1 then wide_field_stars:=nil; {free wide_field_database}
end;
end.
|