1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
|
unit unit_astrometric_solving;
{Copyright (C) 2017, 2024 by Han Kleijn, www.hnsky.org
email: han.k.. at...hnsky.org
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/. }
{ASTAP is using a linear astrometric solution for both stacking and solving. The method is based on what traditionally is called "reducing the plate measurements.
First step is to find star matches between a test image and a reference image. The reference image is either created from a star database or a reference image.
The star positions x, y are to be calculated in standard coordinates which is equivalent to the x,y pixel position. The x,y position are measured relative to the image center.
The test image center, size and orientation position will be different compared with the reference image. The required conversion from test image [x,y] star positions to the
same stars on the test images can be written as:
Xref : = a*xtest + b*ytest + c
Yref:= d*xtest + e*ytest + f
The factors, a,b,c,d,e,f are called the six plate constants and will be slightly different different for each star. They describe the conversion of the test image standard coordinates
to the reference image standard coordinates. Using a least square routine the best solution fit can calculated if at least three matching star positions are found since there are three unknowns.
With the solution and the equatorial center position of the reference image the test image center equatorial position, α and δ can be calculated.
Make from the test image center small one pixel steps in x, y and use the differences in α, δ to calculate the image scale and orientation.
For astrometric solving (plate solving), this "reducing the plate measurement" is done against star positions extracted from a database. The resulting absolute astrometric solution
will allow specification of the α, δ equatorial positions of each pixel. For star alignment this "reducing the plate measurement" is done against a reference image. The resulting
six plate constants are a relative astrometric solution. The position of the reference image is not required. Pixels of the solved image can be stacked with reference image using
the six plate constants only.
To automate this process rather then using reference stars the matching reference objects are the center positions of quads made of four close stars. Comparing the length ratios
of the sides of the quads allows automated matching.
Below a brief flowchart of the ASTAP astrometric solving process:
}
// =>ASTAP astronomical plate solving method by Han Kleijn <=
//
// => Image <= | => Star database <=
//1) Find background, noise and star level |
// |
//2) Find stars and their CCD x, y position (standard coordinates) | Extract the same amount of stars (area corrected) from the area of interest
// | Convert the α, δ equatorial coordinates into standard coordinates
// | (CCD pixel x,y coordinates for optical projection), rigid method
//
//3) Use the extracted stars to construct the smallest irregular tetrahedrons | Use the extracted stars to construct the smallest irregular tetrahedrons
// figures of four star called quads. Calculate the six distance between | figures of four star called quads. Calculate the six distance between
// the four stars and the mean x,y position of the quad | the four stars and the mean x,y position of the quad
// |
//4) For each quad sort the six quad distances. | For each quad sort the six quad distances.
// Label them all where d1 is the longest and d6 the shortest distance. | Label them all where d1 is the longest and d6 the shortest distance.
// |
//5) Scale the six quad star distances as (d1, d2/d1,d3/d1,d4/d1,d5/d1,d6/d1) | Scale the six quad star distances as (d1, d2/d1,d3/d1,d4/d1,d5/d1,d6/d1)
// These are the image hash codes. | These are the database hash codes.
//
// => matching process <=
//6) Find quad hash code matches where the five ratios d2/d1 to d6/d1 match within a small tolerance.
//
//7) For matching quad hash codes, calculate the longest side ratios d1_found/d1_reference. Calculate the median ratio.
// Compare the quads longest side ratios with the median value and remove quads outside a small tolerance.
//
//8) From the remaining matching quads, prepare the "A" matrix/array containing the x,y center positions of the test image quads in standard coordinates
// and the array X_ref, Y_ref containing the x, y center positions of the reference imagete trahedrons in standard coordinates.
//
// A: Sx: X_ref:
// [x1 y1 1] [a1] [X1]
// [x2 y2 1] * [b1] = [X2]
// [x3 y3 1] [c1] [X3]
// [x4 y4 1] [X4]
// [.. .. ..] [..]
// [xn yn 1] [Xn]
//
//
// A: Sx: Y_ref:
// [x1 y1 1] [a2] [Y1]
// [x2 y2 1] * [b2] = [Y2]
// [x3 y3 1] [c2] [Y3]
// [x4 y4 1] [Y4]
// [.. .. ..] [..]
// [xn yn 1] [Yn]
//
// Find the solution matrices Sx and Sy of this overdetermined system of linear equations. (LSQ_FIT)
//
// The solutions Sx and Sy describe the six parameter solution, X_ref:=a1*x + b1*y + c1 and Y_ref:=a2*x + b2*y +c2.
//
//
// With the solution calculate the test image center equatorial position α (crval1), δ (crval2).
//
// Calculate from the solution the pixel size in x (cdelt1) an y (cdelt2) and at the image center position the rotation of the x-axis (crota1)
// and y-axis (crota2) relative to the celestial north using goniometric formulas. Convert these to cd1_1,cd1_2,cd_2_1, cd2_2.
//
// This is the final solution. The solution vector (for position, scale, rotation) can be stored as the FITS keywords crval1, crval2, cd1_1,cd1_2,cd_2_1, cd2_2.
//
// Notes:
// For a low faint star count (<30) the star patterns can be slightly different between image and database due to small magnitude differences.
// For these cases it can be beneficial to extract triples (three stars patterns) from the found quads (four star patterns) but stricter tolerances are required to avoid false detections.
interface
uses Classes,SysUtils,controls,forms,math,stdctrls,
unit_star_align, unit_star_database, astap_main, unit_stack, unit_annotation,unit_stars_wide_field, unit_calc_trans_cubic;
function solve_image(img :image_array;var hd: Theader;memo:tstrings; get_hist{update hist},check_patternfilter :boolean) : boolean;{find match between image and star database}
procedure bin_and_find_stars(img :image_array;binning:integer;cropping,hfd_min:double;max_stars:integer;get_hist{update hist}:boolean; out starlist3:star_list; out short_warning : string);{bin, measure background, find stars}
function report_binning(height :double) : integer;{select the binning}
function position_angle(ra1,dec1,ra0,dec0 : double): double;//Position angle of a body at ra1,dec1 as seen at ra0,dec0. Rigorous method
procedure equatorial_standard(ra0,dec0,ra,dec, cdelt : double; out xx,yy: double);
function read_stars(telescope_ra,telescope_dec,search_field : double; database_type,nrstars_required: integer;out starlist : star_list; out nrstars:integer): boolean;{read star from star database}
procedure binX2_crop(crop {0..1}:double; img : image_array; out img2: image_array);{combine values of 4 pixels and crop is required, Result is mono}
procedure binX1_crop(crop {0..1}:double; img : image_array; var img2: image_array);{crop image, make mono, no binning}
var
star1 : array[0..2] of array of single;
mag2 : double; {magnitude of star found}
implementation
function distance_to_string(dist, inp:double):string; {angular distance to string intended for RA and DEC. Unit is based on dist}
begin
if abs(dist)<pi/(180*60) then {unit seconds}
result:= floattostrF(inp*3600*180/pi,ffFixed,0,1)+'"'
else
if abs(dist)<pi/180 then {unit minutes}
result:= floattostrF(inp*60*180/pi,ffFixed,0,1)+#39
else
result:= floattostrF(inp*180/pi,ffFixed,0,1)+'d'; {° symbol is converted to unicode by tmemo}
end;
function position_angle(ra1,dec1,ra0,dec0 : double): double;//Position angle between a line from ra0,dec0 to ra1,dec1 and a line from ra0, dec0 to the celestial north . Rigorous method
//See book Meeus, Astronomical Algorithms, formula 46.5 edition 1991 or 48.5 edition 1998, angle of moon limb or page 116 edition 1998.
//See also https://astronomy.stackexchange.com/questions/25306/measuring-misalignment-between-two-positions-on-sky
// PA=arctan2(cos(δ0)sin(α1−α0), sin(δ1)cos(δ0)−sin(δ0)cos(δ1)cos(α1−α0)) In lazarus the function is arctan2(y/x)
// is seen at point α0,δ0. This means you are calculating the angle at point α0,δ0 (the reference point) towards point α1,δ1 (the target point).
// To clarify:
// Point α0,δ0 (Reference Point): This is where the observation is made from, or the point of reference.
// Point α1,δ1 (Target Point): This is the point towards which the position angle is being measured.
// Position Angle (PA): This is the angle measured at the reference point α0,δ0, going from the direction of the North Celestial Pole towards the target point α1,δ1, measured eastward (or counter-clockwise).
// So in your observational scenario, if you were at point α0,δ0 and wanted to determine the direction to point α1,δ1, the PA would tell you the angle to rotate from the north, moving eastward, to align with the target point.
var
sinDeltaRa,cosDeltaRa,
sinDec0,cosDec0,
sinDec1,cosDec1 : double;
begin
sincos(ra1-ra0,sinDeltaRa,cosDeltaRa);
sincos(dec0,sinDec0,cosDec0);
sincos(dec1,sinDec1,cosDec1);
result:=arctan2(cosDec1*sinDeltaRa,sinDec1*cosDec0 - cosDec1*sinDec0*cosDeltaRa);
end;
{transformation of equatorial coordinates into CCD pixel coordinates for optical projection, rigid method}
{head.ra0,head.dec0: right ascension and declination of the optical axis}
{ra,dec: right ascension and declination}
{xx,yy : CCD coordinates}
{cdelt: CCD scale in arcsec per pixel}
procedure equatorial_standard(ra0,dec0,ra,dec, cdelt : double; out xx,yy: double);
var dv,sin_dec0,cos_dec0,sin_dec ,cos_dec,sin_deltaRA,cos_deltaRA: double;
begin
sincos(dec0 ,sin_dec0 ,cos_dec0);
sincos(dec ,sin_dec ,cos_dec );
sincos(ra-ra0, sin_deltaRA,cos_deltaRA);
dv := (cos_dec0 * cos_dec * cos_deltaRA + sin_dec0 * sin_dec) * cdelt/(3600*180/pi); {cdelt/(3600*180/pi), factor for conversion standard coordinates to CCD pixels}
xx := - cos_dec *sin_deltaRA / dv;{tangent of the angle in RA}
yy := -(sin_dec0 * cos_dec * cos_deltaRA - cos_dec0 * sin_dec) / dv; {tangent of the angle in DEC}
end;
{transformation from CCD coordinates into equatorial coordinates}
{ra0, dec0: right ascension and declination of the optical axis }
{x,y : CCD coordinates }
{cdelt: : scale of CCD pixel in arc seconds }
{ra,dec : right ascension and declination }
//{$INLINE off}
{$INLINE ON}
{procedure standard_equatorialold(ra0,dec0,x,y,cdelt: double; out ra,dec : double); inline; //transformation from CCD coordinates into equatorial coordinates
var sin_dec0 ,cos_dec0,delta : double;
begin
sincos(dec0 ,sin_dec0 ,cos_dec0);
x:=x *cdelt/ (3600*180/pi); //scale CCD pixels to standard coordinates (tang angle)
y:=y *cdelt/ (3600*180/pi);
ra := ra0 + arctan2 (-x, cos_DEC0- y*sin_DEC0); //atan2 is required for images containing celestial pole
dec := arcsin ( (sin_dec0+y*cos_dec0)/sqrt(1.0+x*x+y*y) );
if ra>pi*2 then ra:=ra-pi*2; //prevent values above 2*pi which confuses the direction detection later
if ra<0 then ra:=ra+pi*2;
end;
}
{transformation from CCD coordinates into equatorial coordinates}
{ra0,dec0: right ascension and declination of the optical axis }
{x,y : CCD coordinates }
{cdelt: : scale of CCD pixel in arc seconds }
{ra,dec : right ascension and declination }
{$INLINE ON}
procedure standard_equatorial(ra0,dec0,x,y,cdelt: double; out ra,dec : double); inline;{transformation from CCD coordinates into equatorial coordinates}
var sin_dec0 ,cos_dec0,delta : double;
begin
sincos(dec0 ,sin_dec0 ,cos_dec0);
x:=x *cdelt/ (3600*180/pi);//scale CCD pixels to standard coordinates (tang angle)
y:=y *cdelt/ (3600*180/pi);
delta:=cos_dec0-y*sin_dec0;
ra:=ra0+arctan2(-x,delta); //atan2 is required for images containing celestial pole
dec:=arctan((sin_dec0+y*cos_dec0)/sqrt(sqr(x)+sqr(delta)));
if ra>pi*2 then ra:=ra-pi*2; //prevent values above 2*pi which confuses the direction detection later
if ra<0 then ra:=ra+pi*2;
end;
//procedure give_spiral_position(position : integer; out x,y : integer); {give x,y position of square spiral as function of input value}
//var i,dx,dy,t,count: integer;
//begin
// x :=0;{star position}
// y :=0;
// dx := 0;{first step size x}
// dy := -1;{first step size y}
// count:=0;
// for i:=0 to 10000*10000 {maximum width*height} do
// begin
// if count>=position then exit; {exit and give x and y position}
// inc(count);
// if ( (x = y) or ((x < 0) and (x = -y)) or ((x > 0) and (x = 1-y))) then {turning point}
// begin {swap dx by negative dy and dy by negative dx}
// t:=dx;
// dx := -dy;
// dy := t;
// end;
// x :=x+ dx;{walk through square}
// y :=y+ dy;{walk through square}
// end;{for loop}
//end;
function read_stars(telescope_ra,telescope_dec,search_field : double; database_type,nrstars_required: integer;out starlist : star_list; out nrstars:integer): boolean;{read star from star database}
var
Bp_Rp, ra2,dec2,
frac1,frac2,frac3,frac4,sep : double;
area1,area2,area3,area4,nrstars_required2,count : integer;
begin
result:=false;{assume failure}
nrstars:=0;{set counters at zero}
ra2:=0; {define ra2 value. Prevent ra2 = -nan(0xffffffffffde9) run time failure when first header record is read}
SetLength(starlist,2,nrstars_required);{set array length}
if database_type>1 then {1476 or 290 files}
begin
{Assume the search field is at a crossing of four tiles. The search field area, by definition 100% is split in 8%, 15%, 20%, 57% area for each tile.
There are 500 stars required. It will then retrieve 8% x 500, 15% x 500, 20% x 500, 57% x 500 stars from each tile under the condition these stars are within the green area.
This will work assuming the star density within the green area is reasonable homogene.}
find_areas( telescope_ra,telescope_dec, search_field,{var} area1,area2,area3,area4, frac1,frac2,frac3,frac4);{find up to four star database areas for the square image}
{read 1th area}
if area1<>0 then {read 1th area}
begin
if open_database(telescope_dec,area1)=false then
exit;{open database file or reset buffer}
nrstars_required2:=min(nrstars_required,trunc(nrstars_required * frac1));
while ((nrstars<nrstars_required2) and (readdatabase290(telescope_ra,telescope_dec, search_field, {var} ra2,dec2, mag2,Bp_Rp)) ) do {star 290 file database read. Read up to nrstars_required}
begin {add star}
equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
inc(nrstars);
end;
end;
if area2<>0 then {read 2th area}
begin
if open_database(telescope_dec,area2)=false then
exit; {open database file or reset buffer}
nrstars_required2:=min(nrstars_required,trunc(nrstars_required * (frac1+frac2)));{prevent round up errors resulting in error starlist}
while ((nrstars<nrstars_required2) and (readdatabase290(telescope_ra,telescope_dec, search_field, {var} ra2,dec2, mag2,Bp_Rp)) ) do {star 290 file database read. Read up to nrstars_required}
begin {add star}
equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
inc(nrstars);
end;
end;
if area3<>0 then {read 3th area}
begin
if open_database(telescope_dec,area3)=false then
exit; {open database file or reset buffer}
nrstars_required2:=min(nrstars_required,trunc(nrstars_required * (frac1+frac2+frac3)));
while ((nrstars<nrstars_required2) and (readdatabase290(telescope_ra,telescope_dec, search_field, {var} ra2,dec2, mag2,Bp_Rp)) ) do {star 290 file database read. Read up to nrstars_required}
begin {add star}
equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
inc(nrstars);
end;
end;
if area4<>0 then {read 4th area}
begin
if open_database(telescope_dec,area4)=false then
exit; {open database file}
nrstars_required2:=min(nrstars_required,trunc(nrstars_required * (frac1+frac2+frac3+frac4)));
while ((nrstars<nrstars_required2) and (readdatabase290(telescope_ra,telescope_dec, search_field, {var} ra2,dec2, mag2,Bp_Rp)) ) do{star 290 file database read. Read up to nrstars_required}
begin {add star}
equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
inc(nrstars);
end;
end;
end
else
begin {wide field database, database_type=1}
if wide_database<>name_database then read_stars_wide_field;{load wide field stars array}
count:=0;
cos_telescope_dec:=cos(telescope_dec);
while ((nrstars<nrstars_required) and (count<length(wide_field_stars) div 3) ) do{star 290 file database read. Read up to nrstars_required}
begin
ra2:=wide_field_stars[count*3+1];{contains: mag1, ra1,dec1, mag2,ra2,dec2,mag3........}
dec2:=wide_field_stars[count*3+2];
ang_sep(ra2,dec2,telescope_ra,telescope_dec, sep);{angular seperation. Required for large field of view around the pole. Can not use simple formulas anymore}
if ((sep<search_field*0.5*0.9*(2/sqrt(pi))) and (sep<pi/2)) then {factor 2/sqrt(pi) is to adapt circle search field to surface square. Factor 0.9 is a fiddle factor for trees, house and dark corners. Factor <pi/2 is the limit for procedure equatorial_standard}
begin
equatorial_standard(telescope_ra,telescope_dec,ra2,dec2,1,starlist[0,nrstars]{x},starlist[1,nrstars]{y});{store star CCD x,y position}
inc(nrstars);
end;
inc(count);
end;
mag2:=wide_field_stars[(count-1)*3];{for reporting of highest magnitude used for solving}
end;
// memo2_message('testareas'+#9+floattostr4(telescope_ra*12/pi)+#9+floattostr4(telescope_dec*180/pi)+#9+inttostr(maga)+#9+inttostr(magb)+#9+inttostr(magc)+#9+inttostr(magd)+#9+floattostr4(frac1)+#9+floattostr4(frac2)+#9+floattostr4(frac3)+#9+floattostr4(frac4)+#9+inttostr(area1)+#9+inttostr(area2)+#9+inttostr(area3)+#9+inttostr(area4));
if nrstars<nrstars_required then
SetLength(starlist,2,nrstars); {fix array length on data for case less stars are found}
result:=true;{no errors}
//for testing
// equatorial_standard(telescope_ra,telescope_dec,head.ra0,head.dec0,1,correctionX,correctionY);{calculate correction for x,y position of database center and image center}
// plot_stars_used_for_solving(correctionX,correctionY); {plot image stars and database stars used for the solution}
end;
procedure binX1_crop(crop {0..1}:double; img : image_array; var img2: image_array);{crop image, make mono, no binning}
var
fitsX,fitsY,k, w,h, shiftX,shiftY,nrcolors,width5,height5: integer;
val : single;
begin
nrcolors:=Length(img);
width5:=Length(img[0,0]); {width}
height5:=Length(img[0]); {height}
w:=trunc(crop*length(img[0,0]{width})); {cropped}
h:=trunc(crop*length(img[0]{height}));
setlength(img2,1,h,w); {set length of image array}
shiftX:=round(width5*(1-crop)/2); {crop is 0.9, shift is 0.05 * width}
shiftY:=round(height5*(1-crop)/2); {crop is 0.9, start at 0.05 * height}
for fitsY:=0 to h-1 do
for fitsX:=0 to w-1 do
begin
val:=0;
for k:=0 to nrcolors-1 do {all colors and make mono}
val:=val + img[k ,shiftY+fitsY,shiftX+fitsx];
img2[0,fitsY,fitsX]:=val/nrcolors;
end;
end;
procedure binX2_crop(crop {0..1}:double; img : image_array; out img2: image_array);{combine values of 4 pixels and crop is required, Result is mono}
var
fitsX,fitsY,k, w,h, shiftX,shiftY,nrcolors,width5,height5: integer;
val : single;
begin
nrcolors:=Length(img);
width5:=Length(img[0,0]); {width}
height5:=Length(img[0]); {height}
w:=trunc(crop*width5/2); {half size & cropped. Use trunc for image 1391 pixels wide like M27 test image. Otherwise exception error}
h:=trunc(crop*height5/2);
setlength(img2,1,h,w); {set length of image array}
shiftX:=round(width5*(1-crop)/2); {crop is 0.9, shift is 0.05 * width}
shiftY:=round(height5*(1-crop)/2); {crop is 0.9, start at 0.05 * height}
for fitsY:=0 to h-1 do
for fitsX:=0 to w-1 do
begin
val:=0;
for k:=0 to nrcolors-1 do {all colors}
val:=val+(img[k,shiftY+fitsY*2 ,shiftX+fitsX*2]+
img[k,shiftY+fitsY*2 +1,shiftX+fitsX*2]+
img[k,shiftY+fitsY*2 ,shiftX+fitsX*2+1]+
img[k,shiftY+fitsY*2 +1,shiftX+fitsX*2+1])/4;
img2[0,fitsY,fitsX]:=val/nrcolors;
end;
end;
procedure binX3_crop(crop {0..1}:double; img : image_array; out img2: image_array);{combine values of 9 pixels and crop is required. Result is mono}
var
fitsX,fitsY,k, w,h, shiftX,shiftY,nrcolors,width5,height5: integer;
val : single;
begin
nrcolors:=Length(img);
width5:=Length(img[0,0]); {width}
height5:=Length(img[0]); {height}
w:=trunc(crop*width5/3); {1/3 size and cropped}
h:=trunc(crop*height5/3);
setlength(img2,1,h,w); {set length of image array}
shiftX:=round(width5*(1-crop)/2); {crop is 0.9, shift is 0.05*head.width}
shiftY:=round(height5*(1-crop)/2); {crop is 0.9, start at 0.05*head.height}
for fitsY:=0 to h-1 do {bin & mono image}
for fitsX:=0 to w-1 do
begin
val:=0;
for k:=0 to nrcolors-1 do {all colors}
val:=val+(img[k,shiftY+fitsY*3 ,shiftX+fitsX*3 ]+
img[k,shiftY+fitsY*3 ,shiftX+fitsX*3+1]+
img[k,shiftY+fitsY*3 ,shiftX+fitsX*3+2]+
img[k,shiftY+fitsY*3 +1,shiftX+fitsX*3 ]+
img[k,shiftY+fitsY*3 +1,shiftX+fitsX*3+1]+
img[k,shiftY+fitsY*3 +1,shiftX+fitsX*3+2]+
img[k,shiftY+fitsY*3 +2,shiftX+fitsX*3 ]+
img[k,shiftY+fitsY*3 +2,shiftX+fitsX*3+1]+
img[k,shiftY+fitsY*3 +2,shiftX+fitsX*3+2])/9;
img2[0,fitsY,fitsX]:=val/nrcolors;
end;
end;
procedure binX4_crop(crop {0..1}:double;img : image_array; out img2: image_array);{combine values of 16 pixels and crop is required. Result is mono}
var
fitsX,fitsY,k, w,h, shiftX,shiftY,nrcolors,width5,height5: integer;
val : single;
begin
nrcolors:=Length(img);
width5:=Length(img[0,0]); {width}
height5:=Length(img[0]); {height}
w:=trunc(crop*width5/4); {1/4 size and cropped}
h:=trunc(crop*height5/4);
setlength(img2,1,h,w); {set length of image array}
shiftX:=round(width5*(1-crop)/2); {crop is 0.9, shift is 0.05*head.width}
shiftY:=round(height5*(1-crop)/2); {crop is 0.9, start at 0.05*head.height}
for fitsY:=0 to h-1 do {bin & mono image}
for fitsX:=0 to w-1 do
begin
val:=0;
for k:=0 to nrcolors-1 do {all colors}
val:=val+(img[k,shiftY+fitsY*4 ,shiftX+fitsX*4 ]+
img[k,shiftY+fitsY*4 ,shiftX+fitsX*4+1]+
img[k,shiftY+fitsY*4 ,shiftX+fitsX*4+2]+
img[k,shiftY+fitsY*4 ,shiftX+fitsX*4+3]+
img[k,shiftY+fitsY*4 +1,shiftX+fitsX*4 ]+
img[k,shiftY+fitsY*4 +1,shiftX+fitsX*4+1]+
img[k,shiftY+fitsY*4 +1,shiftX+fitsX*4+2]+
img[k,shiftY+fitsY*4 +1,shiftX+fitsX*4+3]+
img[k,shiftY+fitsY*4 +2,shiftX+fitsX*4 ]+
img[k,shiftY+fitsY*4 +2,shiftX+fitsX*4+1]+
img[k,shiftY+fitsY*4 +2,shiftX+fitsX*4+2]+
img[k,shiftY+fitsY*4 +2,shiftX+fitsX*4+3]+
img[k,shiftY+fitsY*4 +3,shiftX+fitsX*4 ]+
img[k,shiftY+fitsY*4 +3,shiftX+fitsX*4+1]+
img[k,shiftY+fitsY*4 +3,shiftX+fitsX*4+2]+
img[k,shiftY+fitsY*4 +3,shiftX+fitsX*4+3])/16;
img2[0,fitsY,fitsX]:=val/nrcolors;
end;
end;
procedure bin_and_find_stars(img :image_array;binning:integer;cropping,hfd_min:double;max_stars:integer;get_hist{update hist}:boolean; out starlist3:star_list; out short_warning : string);{bin, measure background, find stars}
var
width5,height5,nrstars,i : integer;
img_binned : image_array;
begin
short_warning:='';{clear string}
width5:=length(img[0,0]);{width}
height5:=length(img[0]);{height}
if ((binning>1) or (cropping<1)) then
begin
if binning>1 then memo2_message('Creating grayscale x '+inttostr(binning)+' binning image for solving or star alignment.');
if cropping<>1 then memo2_message('Cropping image x '+floattostrF(cropping,ffFixed,0,2));
if binning=2 then binX2_crop(cropping,img,img_binned) {combine values of 4 pixels, default option if 3 and 4 are not specified}
else
if binning=3 then binX3_crop(cropping,img,img_binned) {combine values of 9 pixels}
else
if binning=4 then binX4_crop(cropping,img,img_binned) {combine values of 16 pixels}
else
if binning=1 then binX1_crop(cropping,img,img_binned); {crop image, no binning}
{test routine, to show bin result}
// img_loaded:=img_binned;
// head.naxis3:=1;
// head.width:=length(img_binned[0,0]);
// head.height:=length(img_binned[0]);
// plot_fits(mainwindow.image1,true,true);//plot real
// exit; }
get_background(0,img_binned,true {load hist},true {calculate also standard deviation background},{out}bck {cblack,star_level} );{get back ground}
find_stars(img_binned,hfd_min,max_stars,starlist3); {find stars of the image and put them in a list}
if length(img_binned[0])<960 then
begin
short_warning:='Warning, remaining image dimensions too low! '; {for FITS header and solution. Dimensions should be equal or better the about 1280x960}
memo2_message('█ █ █ █ █ █ Warning, remaining image dimensions too low! Try to REDUCE OR REMOVE DOWNSAMPLING. Set this option in stack menu, tab alignment.');
end;
img_binned:=nil;
nrstars:=Length(starlist3[0]);
for i:=0 to nrstars-1 do {correct star positions for cropping. Simplest method}
begin
starlist3[0,i]:=(binning-1)*0.5+starlist3[0,i]*binning +(width5*(1-cropping)/2);//correct star positions for binning/ cropping. Position [3.5,3,5] becomes after 2x2 binning [1,1] after x2 [3,3]. So correct for 0.5 pixel
starlist3[1,i]:=(binning-1)*0.5+starlist3[1,i]*binning +(height5*(1-cropping)/2);
// For zero based indexing:
// A star of 2x2 pixels at position [2.5,2.5] is after 2x2 binning at position [1,1]. If doubled to [2,2] then the position has 0.5 pixel shifted.
// A star of 3x3 pixels at position [4,4] is after 3x3 binning at position [1,1]. If tripled to [3,3] then the position has 1.0 pixel shifted.
// A star of 4x4 pixels at position [5.5,5.5] is after 4x4 binning at position [1,1]. If quadruped to [4,4] then the position has 1.5 pixel shifted.
// So positions measured in a binned image should be corrected as x:=(binning-1)*0.5+binning*x and y:=(binning-1)*0.5+binning*y
end;
end
else
begin
if height5>2500 then
begin
short_warning:='Warning, increase downsampling!! '; {for FITS header and solution}
memo2_message('Info: DOWNSAMPLING IS RECOMMENDED FOR LARGE IMAGES. Set this option in stack menu, tab alignment.');
end
else
if height5<960 then
begin
short_warning:='Warning, small image dimensions! '; {for FITS header and solution. Dimensions should be equal or better the about 1280x960}
memo2_message('█ █ █ █ █ █ Warning, small image dimensions!');
end;
get_background(0,img,get_hist {load hist},true {calculate also standard deviation background}, {out}bck{ cblack,star_level});{get back ground}
find_stars(img,hfd_min,max_stars,starlist3); {find stars of the image and put them in a list}
end;
// for i:=0 to length(starlist3[0])-1 do
// log_to_file('d:\temp\referenceA1.txt',floattostr(starlist3[0,i])+', '+floattostr(starlist3[1,i]));
end;
function report_binning(height:double) : integer;{select the binning}
begin
result:=stackmenu1.downsample_for_solving1.itemindex;
if result<=0 then {zero gives -1, Auto is 0}
begin
if height>2500 then result:=2
else
result:=1;
end;
end;
procedure create_grid_list( width2, height2, nrpoints : integer; out grid_list : TStarArray); // Create list of nbpoints x nbpoints positions in the image equally spread. Positions relative to the image center.
var
middleX,middleY : Double;
s, x, y,counter : integer;
begin
middleX:=width2/2;
middleY:=height2/2;
setlength(grid_list,nrpoints*nrpoints);
counter:=0;
for y := 0 to nrpoints-1 do
begin
for x := 0 to nrpoints-1 do
begin
grid_list[counter].x := -middleX+x*width2/(nrpoints-1);
grid_list[counter].y := -middleY+y*height2/(nrpoints-1);
inc(counter);
end;
end;
end;
function add_sip(hd: Theader;memo:tstrings; ra_database,dec_database:double) : boolean;
var
stars_measured,stars_reference : TStarArray;
trans_sky_to_pixel,trans_pixel_to_sky : Ttrans;
len,i : integer;
succ: boolean;
err_mess: string;
ra_t,dec_t, SIN_dec_t,COS_dec_t, SIN_dec_ref,COS_dec_ref,det, delta_ra,SIN_delta_ra,COS_delta_ra, H, dRa,dDec : double;
begin
result:=true;// assume success
{1) Solve the image with the 1th order solver.
2) Get the x,y coordinates of the detected stars= "stars_measured"
3) Get the x,y coordinates of the reference stars= "stars_reference"
4) Shift the x,y coordinates of "stars_measured" to the center of the image. so position [0,0] is at CRPIX1, CRPIX2.
5) Convert reference stars coordinates to the same coordinate system as the measured stars.
In my case I had to convert the quad x,y coordinates to ra, dec and then convert these to image position using the original first order solution
6) Now both the "stars_measured" and "stars_reference" positions match with stars in the image except for distortion. Position [0,0] is at CRPIX1, CRPIX2.
7) For pixel_to_sky call: Calc_Trans_Cubic(stars_measured, stars_reference,...). The trans array will work for pixel to sky.
8) For sky_to_pixel call: Calc_Trans_Cubic(stars_reference, stars_measured,...) The trans array will work for sky to pixel.
}
len:=length(b_Xrefpositions);
if len<20 then
begin
memo2_message('Not enough quads for calculating SIP.');
exit(false);
end;
setlength(stars_measured,len);
setlength(stars_reference,len);
sincos(hd.dec0,SIN_dec_ref,COS_dec_ref);;{ For 5. Conversion (RA,DEC) -> x,y image in fits range 1..max}
for i:=0 to len-1 do
begin
stars_measured[i].x:=1+A_XYpositions[0,i]-hd.crpix1;//position as seen from center at crpix1, crpix2, in fits range 1..width
stars_measured[i].y:=1+A_XYpositions[1,i]-hd.crpix2;
standard_equatorial( ra_database,dec_database,
b_Xrefpositions[i], {x reference star}
b_Yrefpositions[i], {y reference star}
1, {CCD scale}
ra_t,dec_t) ; //calculate back to the reference star positions
{5. Conversion (RA,DEC) -> x,y image in fits range 1..max}
sincos(dec_t,SIN_dec_t,COS_dec_t);
// sincos(hd.dec0,SIN_dec_ref,COS_dec_ref);{Required but for speed executed outside the for loop}
delta_ra:=ra_t-hd.ra0;
sincos(delta_ra,SIN_delta_ra,COS_delta_ra);
H := SIN_dec_t*sin_dec_ref + COS_dec_t*COS_dec_ref*COS_delta_ra;
dRA := (COS_dec_t*SIN_delta_ra / H)*180/pi;
dDEC:= ((SIN_dec_t*COS_dec_ref - COS_dec_t*SIN_dec_ref*COS_delta_ra ) / H)*180/pi;
det:=hd.cd2_2*hd.cd1_1 - hd.cd1_2*hd.cd2_1;
stars_reference[i].x:= - (hd.cd1_2*dDEC - hd.cd2_2*dRA) / det;
stars_reference[i].y:= + (hd.cd1_1*dDEC - hd.cd2_1*dRA) / det;
end;
succ:=Calc_Trans_Cubic(stars_reference, // First array of s_star structure we match the output trans_sky_to_pixel takes their coords into those of array B
stars_measured, // Second array of s_star structure we match
trans_sky_to_pixel, // Transfer coefficients for stars_measured positions to stars_reference positions. Fits range 1..max
err_mess // any error message
);
if succ=false then
begin
memo2_message(err_mess);
exit(false);
end;
{sky to pixel coefficients}
AP_order:=3; //third order
AP_0_0:=trans_sky_to_pixel.x00;
AP_0_1:=trans_sky_to_pixel.x01;
AP_0_2:=trans_sky_to_pixel.x02;
AP_0_3:=trans_sky_to_pixel.x03;
AP_1_0:=-1+trans_sky_to_pixel.x10;
AP_1_1:=trans_sky_to_pixel.x11;
AP_1_2:=trans_sky_to_pixel.x12;
AP_2_0:=trans_sky_to_pixel.x20;
AP_2_1:=trans_sky_to_pixel.x21;
AP_3_0:=trans_sky_to_pixel.x30;
BP_0_0:=trans_sky_to_pixel.y00;
BP_0_1:=-1+trans_sky_to_pixel.y01;
BP_0_2:=trans_sky_to_pixel.y02;
BP_0_3:=trans_sky_to_pixel.y03;
BP_1_0:=trans_sky_to_pixel.y10;
BP_1_1:=trans_sky_to_pixel.y11;
BP_1_2:=trans_sky_to_pixel.y12;
BP_2_0:=trans_sky_to_pixel.y20;
BP_2_1:=trans_sky_to_pixel.y21;
BP_3_0:=trans_sky_to_pixel.y30;
//inverse transformation calculation
//swap the arrays for inverse factors. This works as long the offset is small like in this situation
succ:=Calc_Trans_Cubic(stars_measured, // reference
stars_reference, // distorted
trans_pixel_to_sky, // Transfer coefficients for stars_measured positions to stars_reference positions
err_mess // any error message
);
if succ=false then
begin
memo2_message(err_mess);
exit(false);
end;
sip:=true;
// SIP definitions https://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/shupeADASS.pdf
//Pixel to sky coefficients
A_order:=3;
A_0_0:=trans_pixel_to_sky.x00;
A_0_1:=trans_pixel_to_sky.x01;
A_0_2:=trans_pixel_to_sky.x02;
A_0_3:=trans_pixel_to_sky.x03;
A_1_0:=-1+ trans_pixel_to_sky.x10;
A_1_1:=trans_pixel_to_sky.x11;
A_1_2:=trans_pixel_to_sky.x12;
A_2_0:=trans_pixel_to_sky.x20;
A_2_1:=trans_pixel_to_sky.x21;
A_3_0:=trans_pixel_to_sky.x30;
B_0_0:=trans_pixel_to_sky.y00;
B_0_1:=-1+trans_pixel_to_sky.y01;
B_0_2:=trans_pixel_to_sky.y02;
B_0_3:=trans_pixel_to_sky.y03;
B_1_0:=trans_pixel_to_sky.y10;
B_1_1:=trans_pixel_to_sky.y11;
B_1_2:=trans_pixel_to_sky.y12;
B_2_0:=trans_pixel_to_sky.y20;
B_2_1:=trans_pixel_to_sky.y21;
B_3_0:=trans_pixel_to_sky.y30;
update_integer(memo,'A_ORDER =',' / Polynomial order, axis 1. Pixel to Sky ',3);
update_float(memo,'A_0_0 =',' / SIP coefficient ',false,A_0_0);
update_float(memo,'A_1_0 =',' / SIP coefficient ',false,A_1_0);
update_float(memo,'A_0_1 =',' / SIP coefficient ',false,A_0_1);
update_float(memo,'A_2_0 =',' / SIP coefficient ',false,A_2_0);
update_float(memo,'A_1_1 =',' / SIP coefficient ',false,A_1_1);
update_float(memo,'A_0_2 =',' / SIP coefficient ',false,A_0_2);
update_float(memo,'A_3_0 =',' / SIP coefficient ',false,A_3_0);
update_float(memo,'A_2_1 =',' / SIP coefficient ',false,A_2_1);
update_float(memo,'A_1_2 =',' / SIP coefficient ',false,A_1_2);
update_float(memo,'A_0_3 =',' / SIP coefficient ',false,A_0_3);
update_integer(memo,'B_ORDER =',' / Polynomial order, axis 2. Pixel to sky. ',3);
update_float(memo,'B_0_0 =',' / SIP coefficient ',false ,B_0_0);
update_float(memo,'B_0_1 =',' / SIP coefficient ',false ,B_0_1);
update_float(memo,'B_1_0 =',' / SIP coefficient ',false ,B_1_0);
update_float(memo,'B_2_0 =',' / SIP coefficient ',false ,B_2_0);
update_float(memo,'B_1_1 =',' / SIP coefficient ',false ,B_1_1);
update_float(memo,'B_0_2 =',' / SIP coefficient ',false ,B_0_2);
update_float(memo,'B_3_0 =',' / SIP coefficient ',false ,B_3_0);
update_float(memo,'B_2_1 =',' / SIP coefficient ',false ,B_2_1);
update_float(memo,'B_1_2 =',' / SIP coefficient ',false ,B_1_2);
update_float(memo,'B_0_3 =',' / SIP coefficient ',false ,B_0_3);
update_integer(memo,'AP_ORDER=',' / Inv polynomial order, axis 1. Sky to pixel. ',3);
update_float(memo,'AP_0_0 =',' / SIP coefficient ',false,AP_0_0);
update_float(memo,'AP_1_0 =',' / SIP coefficient ',false,AP_1_0);
update_float(memo,'AP_0_1 =',' / SIP coefficient ',false,AP_0_1);
update_float(memo,'AP_2_0 =',' / SIP coefficient ',false,AP_2_0);
update_float(memo,'AP_1_1 =',' / SIP coefficient ',false,AP_1_1);
update_float(memo,'AP_0_2 =',' / SIP coefficient ',false,AP_0_2);
update_float(memo,'AP_3_0 =',' / SIP coefficient ',false,AP_3_0);
update_float(memo,'AP_2_1 =',' / SIP coefficient ',false,AP_2_1);
update_float(memo,'AP_1_2 =',' / SIP coefficient ',false,AP_1_2);
update_float(memo,'AP_0_3 =',' / SIP coefficient ',false,AP_0_3);
update_integer(memo,'BP_ORDER=',' / Inv polynomial order, axis 2. Sky to pixel. ',3);
update_float(memo,'BP_0_0 =',' / SIP coefficient ',false,BP_0_0);
update_float(memo,'BP_1_0 =',' / SIP coefficient ',false,BP_1_0);
update_float(memo,'BP_0_1 =',' / SIP coefficient ',false,BP_0_1);
update_float(memo,'BP_2_0 =',' / SIP coefficient ',false,BP_2_0);
update_float(memo,'BP_1_1 =',' / SIP coefficient ',false,BP_1_1);
update_float(memo,'BP_0_2 =',' / SIP coefficient ',false,BP_0_2);
update_float(memo,'BP_3_0 =',' / SIP coefficient ',false,BP_3_0);
update_float(memo,'BP_2_1 =',' / SIP coefficient ',false,BP_2_1);
update_float(memo,'BP_1_2 =',' / SIP coefficient ',false,BP_1_2);
update_float(memo,'BP_0_3 =',' / SIP coefficient ',false,BP_0_3);
end;
function solve_image(img :image_array;var hd: Theader;memo:tstrings; get_hist{update hist},check_patternfilter :boolean) : boolean;{find match between image and star database}
var
nrstars,nrstars_required,nrstars_required2,count,max_distance,nr_quads, minimum_quads,database_stars,binning,match_nr,
spiral_x, spiral_y, spiral_dx, spiral_dy,spiral_t,max_stars,i, database_density,limit,err : integer;
search_field,step_size,ra_database,dec_database,ra_database_offset,radius,fov2,fov_org, max_fov,fov_min,oversize,oversize2,
sep_search,seperation,ra7,dec7,centerX,centerY,correctionX,correctionY,cropping, min_star_size_arcsec,hfd_min,
current_dist, quad_tolerance,dummy, flip, extra,distance,mount_sep, mount_ra_sep,mount_dec_sep,ra_start,dec_start,pixel_aspect_ratio,
crota1,crota2,flipped_image : double;
solution, go_ahead, autoFOV,use_triples,yes_use_triples : boolean;
startTick : qword;{for timing/speed purposes}
distancestr,mess,info_message,popup_warningG05,popup_warningSample,suggest_str, solved_in,
offset_found,ra_offset_str,dec_offset_str,mount_info_str,mount_offset_str,warning_downsample : string;
starlist1,starlist2 : star_list;
var {with value}
quads_str: string=' quads';
const
popupnotifier_visible : boolean=false;
begin
Screen.Cursor:=crHourglass;{$IfDef Darwin}{$else}application.processmessages;{$endif}// Show hourglass cursor, processmessages is for Linux. Note in MacOS processmessages disturbs events keypress for lv_left, lv_right key
result:=false;
esc_pressed:=false;
warning_str:='';{for header}
startTick := GetTickCount64;
popup_warningG05:='';
if check_patternfilter then {for OSC images with low dimensions only}
begin
check_pattern_filter(img);
get_hist:=true; {update required}
end;
quad_tolerance:=strtofloat2(stackmenu1.quad_tolerance1.text);
quad_tolerance:=min(quad_tolerance,0.01);//prevent too high tolerances set by command line
max_stars:=strtoint2(stackmenu1.max_stars1.text,500);{maximum star to process, if so filter out brightest stars later}
use_triples:=stackmenu1.use_triples1.checked;
ra_start:=ra_radians;//start position search;
dec_start:=dec_radians;//start position search;
if ((fov_specified=false) and (hd.cdelt2<>0)) then {no fov in native command line and hd.cdelt2 in header}
fov_org:=min(180,hd.height*abs(hd.cdelt2)) {calculate FOV. PI can give negative hd.cdelt2}
else
fov_org:=min(180,strtofloat2(stackmenu1.search_fov1.text));{use specfied FOV in stackmenu. 180 max to prevent runtime errors later}
if select_star_database(stackmenu1.star_database1.text,fov_org)=false then {select database prior to cropping selection}
begin
result:=false;
errorlevel:=32;{no star database}
exit;
end
else
begin
memo2_message('Using star database '+uppercase(name_database));
if ((fov_org>30) and (database_type<>001)) then
warning_str:=warning_str+'Very large FOV, use W08 database! '
else
if ((fov_org>6) and (database_type=1476)) then
warning_str:=warning_str+'Large FOV, use G05 (or V05) database! ';
if warning_str<>'' then memo2_message(warning_str);
popup_warningG05:=#10+warning_str;
end;
if database_type=1476 then {.1476 database}
max_fov:=5.142857143 {warning FOV should be less the database tiles dimensions, so <=5.142857143 degrees. Otherwise a tile beyond next tile could be selected}
else {.1476 database}
if database_type=290 then {.290 database}
max_fov:=9.53 {warning FOV should be less the database tiles dimensions, so <=9.53 degrees. Otherwise a tile beyond next tile could be selected}
else
max_fov:=180;
if max_stars=0 then max_stars:=500;// temporary. Remove in 2024;
val(copy(name_database,2,2),database_density,err);
if ((err<>0) or
(database_density=17) or (database_density=18)) then //old databases V17, G17, G18, H17, H18
database_density:=9999
else
database_density:=database_density*100;
min_star_size_arcsec:=strtofloat2(stackmenu1.min_star_size1.text); {arc sec};
autoFOV:=(fov_org=0);{specified auto FOV}
repeat {autoFOV loop}
if autoFOV then
begin
if fov_org=0 then
begin
if database_type<>001 then
begin
fov_org:=9.5;
fov_min:=0.38;
end
else
begin
fov_org:=90;
fov_min:=12;
end
end
else fov_org:=fov_org/1.5;
memo2_message('Trying FOV: '+floattostrF(fov_org,ffFixed,0,1));
end;
if fov_org>max_fov then
begin
cropping:=max_fov/fov_org;
fov2:=max_fov; {temporary cropped image, adjust FOV to adapt}
end
else
begin
cropping:=1;
fov2:=fov_org;
end;;
limit:=round(database_density*sqr(fov2)*hd.width/hd.height);//limit in stars per square degree. limit=density*surface_full_image
if limit<max_stars then
begin
max_stars:=limit;//reduce the number of stars to use.
memo2_message('Database limit for this FOV is '+inttostr(max_stars)+' stars.');
end;
binning:=report_binning(hd.height*cropping); {select binning on dimensions of cropped image}
hfd_min:=max(0.8,min_star_size_arcsec/(binning*fov_org*3600/hd.height) );{to ignore hot pixels which are too small}
bin_and_find_stars(img,binning,cropping,hfd_min,max_stars,get_hist{update hist}, starlist2, warning_downsample);{bin, measure background, find stars. Do this every repeat since hfd_min is adapted}
nrstars:=Length(starlist2[0]);
if ((hd.xpixsz<>0) and (hd.ypixsz<>0) and (abs(hd.xpixsz-hd.ypixsz)>0.1)) then //non-square pixels, correct. Remove in future?
begin //very very rare. Example QHY6 camera
memo2_message('Rare none square pixels specified.');
pixel_aspect_ratio:=hd.xpixsz/hd.ypixsz;
for i:=0 to nrstars-1 do {correct star positions for non-square pixels}
begin
starlist2[0,i]:=hd.width/2+(starlist2[0,i]-hd.width/2)*pixel_aspect_ratio;
end;
end
else
pixel_aspect_ratio:=1;// this is the case in 99.95% of the cases
{report advice}
if length(warning_downsample)>0 then
begin
popup_warningSample:=#10+warning_downsample; {warning for popup notifier}
end
else
popup_warningSample:='';
{prepare popupnotifier1 text}
if stackmenu1.force_oversize1.checked=false then info_message:='▶▶' {normal} else info_message:='▶'; {slow}
info_message:= ' [' +stackmenu1.radius_search1.text+'°]'+#9+info_message+#9+inttostr(nrstars)+' 🟊' +
#10+'↕ '+floattostrf(fov_org,ffFixed,0,2)+'°'+ #9+#9+inttostr(binning)+'x'+inttostr(binning)+' ⇒ '+inttostr(hd.width)+'x'+inttostr(hd.height)+
popup_warningG05+popup_warningSample+
#10+mainwindow.ra1.text+'h, '+mainwindow.dec1.text+'° '+#9+{for tray icon} extractfilename(filename2)+
#10+extractfileDir(filename2);
nrstars_required:=round(nrstars*(hd.height/hd.width));{A little less. The square search field is based on height only.}
solution:=false; {assume no match is found}
go_ahead:=(nrstars>=6); {bare minimum for three quads. Should be more but let's try}
if go_ahead then {enough stars, lets find quads}
begin
yes_use_triples:=((nrstars<30) and (use_triples));
if yes_use_triples then
begin
find_triples_using_quads(starlist2,quad_star_distances2); {find star triples for new image. Quads and quad_smallest are binning independent}
quad_tolerance:=0.002;
quads_str:=' triples';
if solve_show_log then memo2_message('For triples the hash code tolerance is forced to '+floattostr(quad_tolerance)+'.');
end
else
begin
find_quads(starlist2,quad_star_distances2);{find star quads for new image. Quads and quad_smallest are binning independent}
quads_str:=' quads';
end;
nr_quads:=Length(quad_star_distances2[0]);
go_ahead:=nr_quads>=3; {enough quads?}
{The step size is fixed. If a low amount of quads are detected, the search window (so the database read area) is increased up to 200% guaranteeing that all quads of the image are compared with the database quads while stepping through the sky}
if nr_quads<25 then oversize:=2 {make dimensions of square search window twice then the image height}
else
if nr_quads>100 then oversize:=1 {make dimensions of square search window equal to the image height}
else
oversize:=2*sqrt(25/nr_quads);{calculate between 25 th=2 and 100 th=1, quads are area related so take sqrt to get oversize}
if stackmenu1.force_oversize1.checked then oversize:=2;
oversize:=min(oversize,max_fov/fov2);//limit request to database to 1 tile so 5.142857143 degrees for 1476 database or 9.53 degrees for type 290 database. Otherwise a tile beyond next tile could be selected}
radius:=strtofloat2(stackmenu1.radius_search1.text);{radius search field}
minimum_quads:=3 + nr_quads div 100; {prevent false detections for star rich images, 3 quads give the 3 center quad references and is the bare minimum. It possible to use one quad and four star positions but it in not reliable}
end
else
begin
memo2_message('Only '+inttostr(nrstars)+' stars found in image. Abort');
errorlevel:=2;
end;
if go_ahead then
begin
search_field:=fov2*(pi/180);
STEP_SIZE:=search_field;{fixed step size search spiral}
if database_type=1 then
begin {make small steps for wide field images. Much more reliable}
step_size:=step_size*0.1;
max_distance:=round(radius/(0.1*fov2+0.00001)); {expressed in steps}
memo2_message('Wide field, making small steps for reliable solving.');
end
else
max_distance:=round(radius/(fov2+0.00001));{expressed in steps}
memo2_message(inttostr(nrstars)+' stars, '+inttostr(nr_quads)+quads_str+' selected in the image. '+inttostr(nrstars_required)+' database stars, '
+inttostr(round(nr_quads*nrstars_required/nrstars))+' database'+quads_str+' required for the '+floattostrF(oversize*fov2,ffFixed,0,2)+'° square search window. '
+'Step size '+floattostrF(fov2,FFfixed,0,2) +'°.');
stackmenu1.Memo2.Lines.BeginUpdate;{do not update tmemo, very very slow and slows down program}
stackmenu1.Memo2.disablealign;{prevent paint messages from other controls to update tmemo and make it grey. Mod 2021-06-26}
match_nr:=0;
repeat {Maximum accuracy loop. In case math is found on a corner, do a second solve. Result will be more accurate using all stars of the image}
count:=0;{search field counter}
distance:=0; {required for reporting no too often}
{spiral variables}
spiral_x :=0;
spiral_y :=0;
spiral_dx := 0;{first step size x}
spiral_dy := -1;{first step size y}
repeat {search in squared spiral}
{begin spiral routine, find a new squared spiral position position}
if count<>0 then {first do nothing, start with [0 0] then start with [1 0],[1 1],[0 1],[-1 1],[-1 0],[-1 -1],[0 -1],[1 -1],[2 -1].[2 0] ..............}
begin {start spiral around [0 0]}
if ( (spiral_x = spiral_y) or ((spiral_x < 0) and (spiral_x = -spiral_y)) or ((spiral_x > 0) and (spiral_x = 1-spiral_y))) then {turning point}
begin {swap dx by negative dy and dy by negative dx}
spiral_t:=spiral_dx;
spiral_dx := -spiral_dy;
spiral_dy := spiral_t;
end;
spiral_x :=spiral_x+ spiral_dx;{walk through square}
spiral_y :=spiral_y+ spiral_dy;{walk through square}
end;{end spiral around [0 0]}
{adapt search field to matrix position, +0+0/+1+0,+1+1,+0+1,-1+1,-1+0,-1-1,+0-1,+1-1..}
dec_database:=STEP_SIZE*spiral_y+dec_radians;
flip:=0;
if dec_database>+pi/2 then begin dec_database:=pi-dec_database; flip:=pi; end {crossed the pole}
else
if dec_database<-pi/2 then begin dec_database:=-pi-dec_database; flip:=pi; end;
if dec_database>0 then extra:=step_size/2 else extra:=-step_size/2;{use the distance furthest away from the pole}
ra_database_offset:= (STEP_SIZE*spiral_x/cos(dec_database-extra));{step larger near pole. This ra_database is an offset from zero}
if ((ra_database_offset<=+pi/2+step_size/2) and (ra_database_offset>=-pi/2)) then {step_size for overlap}
begin
ra_database:=fnmodulo(flip+ra_radians+ra_database_offset,2*pi);{add offset to ra after the if statement! Otherwise no symmetrical search}
ang_sep(ra_database,dec_database,ra_radians,dec_radians, {out}seperation);{calculates angular separation. according formula 9.1 old Meeus or 16.1 new Meeus, version 2018-5-23}
//if solve_show_log then
//begin
// memo2_message('Read database at: '+prepare_ra(ra_database,' ')+', '+prepare_dec(dec_database,' '));
//end;
if seperation<=radius*pi/180+step_size/2 then {Use only the circular area withing the square area}
begin
{info reporting}
if seperation*180/pi>distance+fov_org then {new distance reached. Update once in the square spiral, so not too often since it cost CPU time}
begin
distance:=seperation*180/pi;
distancestr:=inttostr(round(seperation*180/pi))+'°';{show on stackmenu what's happening}
stackmenu1.actual_search_distance1.caption:=distancestr;
stackmenu1.caption:= 'Search distance: '+distancestr;
mainwindow.caption:= 'Search distance: '+distancestr;
if commandline_execution then {command line execution}
begin
{$ifdef CPUARM}
{ tray icon gives a fatal execution error in the old compiler for armhf}
{$else}
mainwindow.TrayIcon1.hint:=distancestr+info_message;
{$endif}
if distance>2*fov_org then {prevent flash for short distance solving}
begin
if popupnotifier_visible=false then begin mainwindow.popupnotifier1.visible:=true; popupnotifier_visible:=true; end; {activate only once}
mainwindow.popupnotifier1.text:=distancestr+info_message;
end;
end;
end; {info reporting}
{read nrstars_required stars from database. If search field is oversized, number of required stars increases with the power of the oversize factor. So the star density will be the same as in the image to solve}
if match_nr=0 then
begin
oversize2:=oversize
end
else
oversize2:=min(max_fov/fov2, max(oversize, sqrt(sqr(hd.width/hd.height)+sqr(1)))); //Use full image for solution for second solve but limit to one tile max to prevent tile selection problems.
nrstars_required2:=round(nrstars_required*oversize2*oversize2); //nr of stars requested request from database
if read_stars(ra_database,dec_database,search_field*oversize2,database_type,nrstars_required2,{out} starlist1 ,{out}database_stars)= false then
begin
{$IFDEF linux}
//keep till 2026
if ((name_database='d50') and (dec_database>pi*(90-15)/180)) then //Files 3502,3503 and 3601.1476 had permission error. Star database fixed on 2023-11-27
application.messagebox(pchar('Star database file permission error near pole. Update the D50 database to crrect !!'), pchar('ASTAP error:'),0)
else
{$ENDIF}
application.messagebox(pchar('No star database found at '+database_path+' !'+#13+'Download and install one star database.'), pchar('ASTAP error:'),0);
errorlevel:=33;{read error star database}
exit; {no stars}
end;
if yes_use_triples then
find_triples_using_quads(starlist1,quad_star_distances1){find quads for reference image/database. Filter out too small quads for Earth based telescopes}
{Note quad_smallest is binning independent value. Don't use cdelt2 for pixelsize calculation since fov_specified could be true making cdelt2 unreliable or fov=auto}
else
find_quads(starlist1, quad_star_distances1);{find quads for reference image/database. Filter out too small quads for Earth based telescopes}
{Note quad_smallest is binning independent value. Don't use cdelt2 for pixelsize calculation since fov_specified could be true making cdelt2 unreliable or fov=auto}
if solve_show_log then {global variable set in find stars}
memo2_message('Search '+ inttostr(count)+', ['+inttostr(spiral_x)+','+inttostr(spiral_y)+'],'+#9+'position: '+#9+ prepare_ra(ra_database,': ')+#9+prepare_dec(dec_database,'° ')+#9+' Down to magn '+ floattostrF(mag2/10,ffFixed,0,1) +#9+' '+inttostr(database_stars)+' database stars' +#9+' '+inttostr(length(quad_star_distances1[0]))+' database quads to compare.'+mess);
// for testing purposes
// for testing create supplement hnsky planetarium program
//stackmenu1.memo2.lines.add(floattostr(ra_database*12/pi)+',,,'+floattostr(dec_database*180/pi)+',,,,'+inttostr(count)+',,-8,'+floattostr( step_size*600*180/pi)+',' +floattostr(step_size*600*180/pi));
// stackmenu1.memo2.lines.add(floattostr(ra_database*12/pi)+',,,'+floattostr(dec_database*180/pi)+',,,,'+inttostr(count)+',,-99');
solution:=find_offset_and_rotation(minimum_quads {>=3},quad_tolerance);{find an solution}
// for testing purpose
//equatorial_standard(ra_database,dec_database,hd.ra0,hd.dec0,1,correctionX,correctionY);{calculate correction for x,y position of database center and image center}
//head.cdelt1:=-head.cdelt1;
//head.cdelt2:=-head.cdelt2;
//plot_stars_used_for_solving(correctionX,correctionY); {plot image stars and database stars used for the solution}
//exit;
Application.ProcessMessages;
if esc_pressed then
begin
stackmenu1.Memo2.enablealign;{allow paint messages from other controls to update tmemo. Mod 2021-06-26}
stackmenu1.Memo2.Lines.EndUpdate;
Screen.Cursor:=crDefault; { back to normal }
exit;
end;
end;{within search circle. Otherwise the search is within a kind of square}
end;{within RA range}
inc(count);{step further in spiral}
until ((solution) or (spiral_x>max_distance));{squared spiral search}
if solution then
begin
centerX:=(hd.width-1)/2 ;{center image in 0..hd.width-1 range}
centerY:=(hd.height-1)/2;{center image in 0..hd.height-1 range}
standard_equatorial( ra_database,dec_database,
(solution_vectorX[0]*(centerX) + solution_vectorX[1]*(centerY) +solution_vectorX[2]), {x}
(solution_vectorY[0]*(centerX) + solution_vectorY[1]*(centerY) +solution_vectorY[2]), {y}
1, {CCD scale}
ra_radians ,dec_radians {put the calculated image center equatorial position into the start search position});
//current_dist:=sqrt(sqr(solution_vectorX[0]*(centerX) + solution_vectorX[1]*(centerY) +solution_vectorX[2]) + sqr(solution_vectorY[0]*(centerX) + solution_vectorY[1]*(centerY) +solution_vectorY[2]))/3600; {current distance telescope and image center in degrees}
inc(match_nr);
end
else
match_nr:=0;//This should not happen for the second solve but just in case
until ((solution=false) {or (current_dist<fov2*0.05)}{within 5% if image height from center} or (match_nr>=2));{Maximum accuracy loop. After match possible on a corner do a second solve using the found hd.ra0,hd.dec0 for maximum accuracy USING ALL STARS}
stackmenu1.Memo2.enablealign;{allow paint messages from other controls to update tmemo. Mod 2021-06-26}
stackmenu1.Memo2.Lines.EndUpdate;
end; {enough quads in image}
until ((autoFOV=false) or (solution) or (fov2<=fov_min)); {loop for autoFOV from 9.5 to 0.37 degrees. Will lock between 9.5*1.25 downto 0.37/1.25 or 11.9 downto 0.3 degrees}
if solution then
begin
hd.ra0:=ra_radians;//store solution in header
hd.dec0:=dec_radians;
hd.crpix1:=centerX+1;{center image in fits coordinate range 1..hd.width}
hd.crpix2:=centery+1;
ang_sep(ra_radians,dec_radians,ra_start,dec_start, sep_search);//calculate search offset
memo2_message(inttostr(nr_references)+ ' of '+ inttostr(nr_references2)+quads_str+' selected matching within '+floattostr(quad_tolerance)+' tolerance.' // 3 quads are required giving 3 center quad references}
+' Solution["] x:='+floattostr6(solution_vectorX[0])+'x+ '+floattostr6(solution_vectorX[1])+'y+ '+floattostr6(solution_vectorX[2])
+', y:='+floattostr6(solution_vectorY[0])+'x+ '+floattostr6(solution_vectorY[1])+'y+ '+floattostr6(solution_vectorY[2]) );
// following doesn't give maximum angle accuracy, so is not used.
// hd.cd1_1:= - solution_vectorX[0]/3600;{/3600, arcsec to degrees conversion}
// hd.cd1_2:= - solution_vectorX[1]/3600;
// hd.cd2_1:= + solution_vectorY[0]/3600;
// hd.cd2_2:= + solution_vectorY[1]/3600;
//New 2023 method for correct rotation angle/annotation near to the celestial pole.
if solution_vectorX[0]*solution_vectorY[1] - solution_vectorX[1]*solution_vectorY[0] >0 then // flipped?
flipped_image:=-1 //change rotation for flipped image, {Flipped image. Either flipped vertical or horizontal but not both. Flipped both horizontal and vertical is equal to 180 degrees rotation and is not seen as flipped}
else
flipped_image:=+1;//not flipped
// position +1 pixels in direction hd.crpix2
standard_equatorial( ra_database,dec_database, (solution_vectorX[0]*(centerX) + solution_vectorX[1]*(centerY+1) +solution_vectorX[2]), {x}
(solution_vectorY[0]*(centerX) + solution_vectorY[1]*(centerY+1) +solution_vectorY[2]), {y}
1, {CCD scale} ra7 ,dec7{equatorial position}); // the position 1 pixel away
crota2:=-position_angle(ra7,dec7,hd.ra0,hd.dec0);//Position angle between a line from ra0,dec0 to ra1,dec1 and a line from ra0, dec0 to the celestial north . Rigorous method
// position 1*flipped_image pixels in direction hd.crpix1
standard_equatorial( ra_database,dec_database,(solution_vectorX[0]*(centerX+flipped_image) + solution_vectorX[1]*(centerY) +solution_vectorX[2]), {x} //A pixel_aspect_ratio unequal of 1 is very rare, none square pixels
(solution_vectorY[0]*(centerX+flipped_image) + solution_vectorY[1]*(centerY) +solution_vectorY[2]), {y}
1, {CCD scale} ra7 ,dec7{equatorial position});
crota1:=pi/2-position_angle(ra7,dec7,hd.ra0,hd.dec0);//Position angle between a line from ra0,dec0 to ra1,dec1 and a line from ra0, dec0 to the celestial north . Rigorous method
if crota1>pi then crota1:=crota1-2*pi;//keep within range -pi to +pi
hd.cdelt1:=flipped_image*sqrt(sqr(solution_vectorX[0])+sqr(solution_vectorX[1]))/3600; // from unit arcsec to degrees
hd.cdelt2:=sqrt(sqr(solution_vectorY[0])+sqr(solution_vectorY[1]))/3600;
hd.cd1_1:=+hd.cdelt1*cos(crota1);
hd.cd1_2:=-hd.cdelt1*sin(crota1)*flipped_image;
hd.cd2_1:=+hd.cdelt2*sin(crota2)*flipped_image;
hd.cd2_2:=+hd.cdelt2*cos(crota2);
hd.crota2:=crota2*180/pi;//convert to degrees
hd.crota1:=crota1*180/pi;
//end new 2023 method
solved_in:=' Solved in '+ floattostr(round((GetTickCount64 - startTick)/100)/10)+' sec.';{make string to report in FITS header.}
offset_found:={' Δ was '}distance_to_string(sep_search {scale selection},sep_search)+'.';
if ra_mount<99 then {mount position known and specified. Calculate mount offset}
begin
mount_ra_sep:=pi*frac((ra_mount-ra_radians)/pi) * cos((dec_mount+dec_radians)*0.5 {average dec});//total mount error. Only used for scaling
mount_dec_sep:=dec_mount-dec_radians;
mount_sep:=sqrt(sqr(mount_ra_sep)+sqr(mount_dec_sep));//mount_sep is only used for scaling}
ra_offset_str:=distance_to_string(mount_sep, mount_ra_sep);
dec_offset_str:=distance_to_string(mount_sep, mount_dec_sep);
mount_offset_str:=' Mount offset RA='+ra_offset_str+', DEC='+dec_offset_str;{ascii}
mount_info_str:=' Mount Δα='+ra_offset_str+ ', Δδ='+dec_offset_str+'. '+#9;
end
else
mount_info_str:='';{no mount info}
memo2_message('Solution found: '+ prepare_ra8(hd.ra0,': ')+#9+prepare_dec2(hd.dec0,'° ') +#9+ solved_in+#9+' Δ was '+offset_found+#9+ mount_info_str+' Used stars down to magnitude: '+floattostrF(mag2/10,ffFixed,0,1) );
mainwindow.caption:=('Solution found: '+ prepare_ra(hd.ra0,': ')+' '+prepare_dec(hd.dec0,'° ') );
result:=true;
memo.BeginUpdate;
if ((stackmenu1.add_sip1.checked) and
(add_sip(hd,memo,ra_database,dec_database))) then //takes about 50 ms sec due to the header update. Calculations are very fast
begin //SIP added
update_text(memo,'CTYPE1 =',#39+'RA---TAN-SIP'+#39+' / TAN (gnomic) projection + SIP distortions ');
update_text(memo,'CTYPE2 =',#39+'DEC--TAN-SIP'+#39+' / TAN (gnomic) projection + SIP distortions ');
mainwindow.Polynomial1.itemindex:=1;//switch to sip
end
else
begin //No SIP added.
update_text(memo,'CTYPE1 =',#39+'RA---TAN'+#39+' / first parameter RA, projection TANgential ');
update_text(memo,'CTYPE2 =',#39+'DEC--TAN'+#39+' / second parameter DEC, projection TANgential ');
end;
update_text(memo,'CUNIT1 =',#39+'deg '+#39+' / Unit of coordinates ');
update_text(memo,'EQUINOX =',' 2000.0 / Equinox of coordinates ');{the equinox is 2000 since the database is in 2000}
update_float(memo,'CRPIX1 =',' / X of reference pixel ',false,hd.crpix1);
update_float(memo,'CRPIX2 =',' / Y of reference pixel ',false ,hd.crpix2);
update_float(memo,'CRVAL1 =',' / RA of reference pixel (deg) ',false ,hd.ra0*180/pi);
update_float(memo,'CRVAL2 =',' / DEC of reference pixel (deg) ',false ,hd.dec0*180/pi);
update_float(memo,'CDELT1 =',' / X pixel size (deg) ',false ,hd.cdelt1);
update_float(memo,'CDELT2 =',' / Y pixel size (deg) ',false ,hd.cdelt2);
update_float(memo,'CROTA1 =',' / Image twist X axis (deg) ',false ,hd.crota1);
update_float(memo,'CROTA2 =',' / Image twist Y axis (deg) E of N if not flipped.',false ,hd.crota2);
update_float(memo,'CD1_1 =',' / CD matrix to convert (x,y) to (Ra, Dec) ',false ,hd.cd1_1);
update_float(memo,'CD1_2 =',' / CD matrix to convert (x,y) to (Ra, Dec) ',false ,hd.cd1_2);
update_float(memo,'CD2_1 =',' / CD matrix to convert (x,y) to (Ra, Dec) ',false ,hd.cd2_1);
update_float(memo,'CD2_2 =',' / CD matrix to convert (x,y) to (Ra, Dec) ',false ,hd.cd2_2);
update_text(memo,'PLTSOLVD=',' T / Astrometric solved by ASTAP v'+astap_version+'. ');
update_text(memo,'COMMENT 7', solved_in+' Offset '+offset_found+mount_offset_str);
memo.EndUpdate;
if solve_show_log then {global variable set in find stars}
begin
equatorial_standard(ra_database,dec_database,hd.ra0,hd.dec0,1,correctionX,correctionY);{calculate correction for x,y position of database center and image center}
plot_stars_used_for_solving(starlist1,starlist2,hd,correctionX,correctionY); {plot image stars and database stars used for the solution}
memo2_message('See viewer image for image stars used (red) and database star used (yellow)');
end;
if ( (fov_org>1.05*(hd.height*hd.cdelt2) ) or (fov_org<0.95*(hd.height*hd.cdelt2)) ) then //in astap hd.cdelt2 is always positive. No need for absolute function
begin
if hd.xpixsz<>0 then suggest_str:='Warning inexact scale! Set FOV='+floattostrF(hd.height*hd.cdelt2,ffFixed,0,2)+'d or scale='+floattostrF(hd.cdelt2*3600,ffFixed,0,1)+'"/pix or FL='+inttostr(round((180/(pi*1000)*hd.xpixsz/hd.cdelt2)) )+'mm '
else suggest_str:='Warning inexact scale! Set FOV='+floattostrF(hd.height*hd.cdelt2,ffFixed,0,2)+'d or scale='+floattostrF(hd.cdelt2*3600,ffFixed,0,1)+'"/pix ';
memo2_message(suggest_str);
warning_str:=suggest_str+warning_str;
end;
end
else
begin
memo2_message('No solution found! :(');
mainwindow.caption:='No solution found! :(';
update_text(memo,'PLTSOLVD=',' F / No plate solution found. ');
remove_key(memo,'COMMENT 7',false{all});
end;
warning_str:=warning_str + warning_downsample; {add the last warning from loop autoFOV}
if warning_str<>'' then
begin
update_longstr(memo,'WARNING =',warning_str);{update or insert long str including single quotes}
end;
Screen.Cursor:=crDefault; { back to normal }
end;
begin
end.
|