1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
|
unit unit_calc_trans_cubic;
// DESCRIPTION:
// This unit calculates the 3th order transfer function between two set of matching quads or star positions.
// The output are ten transfer coefficients for X axis and ten coefficients for the Y-axis.
{Copyright (C) 2024 by Han Kleijn, www.hnsky.org
email: han.k.. at...hnsky.org
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/. }
{This unit is based on some C language routines from the package Match. See describtion below. Conversion and modification for the ASTAP program by Han Kleijn.
The original Match version was suitable an eight coefficients 3th order solution but was extended to a ten cofficients 3th order solution by Cecile Melis for the Siril program.
The licence of this code has been changed to MPL2 with permission from Michael Richmond by email dated 2024-2-15:
"Yes, I grant you permission to change the license for the code you have adopted to the Mozilla Public License, v2.0."
}
// ==============================================================================
// Original description for the Match program.
// http://spiff.rit.edu/match/
{* match: a package to match lists of stars (or other items)
* Copyright (C) 2000 Michael William Richmond
*
* Contact: Michael William Richmond
* Physics Department
* Rochester Institute of Technology
* 85 Lomb Memorial Drive
* Rochester, NY 14623-5603
* E-mail: mwrsps@rit.edu
*
*
*
*/
}
interface
uses
Classes, SysUtils,math, astap_main;
type
TMatrix = array of array of Double;
TVector = array of Double;
s_star = record
x, y: Double;
end;
TStarArray = array of s_star;
TTrans = record
x00,x10,x01,x20,x11,x02,x30,x21,x12,x03 : double; //was orginally a, b, c, d, e, f, g, h
y00,y10,y01,y20,y11,y02,y30,y21,y12,y03 : double; // i, j, k, l, m, n, o, p
end;
function Calc_Trans_Cubic(stars_reference: TStarArray; // First array of s_star structure we match the output TRANS takes their coords into those of array B
stars_distorted: TStarArray; // Second array of s_star structure we match
out trans: TTrans; // Transfer coefficients for starsA positions to starsB positions
out err_mess : string // any error message
): boolean; //succes
implementation
type
Tsolutionvector = array[0..9] of Double;
const
MATRIX_TOL=1E-100;
{/***************************************************************************
* PROCEDURE: gauss_pivot
*
* DESCRIPTION:
* This routine is called by "gauss_matrix". Given a square "matrix"
* of "num"-by-"num" elements, and given a "vector" of "num" elements,
* and given a particular "row" value, this routine finds the largest
* value in the matrix at/below the given "row" position. If that
* largest value isn't in the given "row", this routine switches
* rows in the matrix (and in the vector) so that the largest value
* will now be in "row".
*
* RETURN:
* SH_SUCCESS if all goes well
* SH_GENERIC_ERROR if not -- if matrix is singular
*
* </AUTO>
*/}
procedure Gauss_Pivot(var matrix: TMatrix; // I/O: a square 2-D matrix we are inverting
num: Integer; // I: number of rows and cols in matrix
var vector: TSolutionVector; // I/O: vector which holds "b" values in input
var biggest_val: TVector; // I: largest value in each row of matrix
row: Integer // I: want to pivot around this row
);
var
i, col, pivot_row : Integer;
big, other_big,temp: Double;
begin
pivot_row := row;
big := Abs(matrix[row][row] / biggest_val[row]);
// Finding the row with the largest value for pivoting
for i := row + 1 to num - 1 do
begin
other_big := Abs(matrix[i][row] / biggest_val[i]);
if other_big > big then
begin
big := other_big;
pivot_row := i;
end;
end;
// If another row is better for pivoting, switch it with 'row'
// and switch the corresponding elements in 'vector'
// and switch the corresponding elements in 'biggest_val'
// If another row is better for pivoting, switch it with 'row'
if pivot_row <> row then
begin
for col := row to num - 1 do
begin
// Manual swapping of matrix elements
temp := matrix[pivot_row][col];
matrix[pivot_row][col] := matrix[row][col];
matrix[row][col] := temp;
end;
// Manual swapping of vector elements
temp := vector[pivot_row];
vector[pivot_row] := vector[row];
vector[row] := temp;
// Manual swapping of biggest_val elements
temp := biggest_val[pivot_row];
biggest_val[pivot_row] := biggest_val[row];
biggest_val[row] := temp;
end;
end;
{***************************************************************************
* PROCEDURE: gauss_matrix
*
* DESCRIPTION:
* Given a square 2-D 'num'-by-'num' matrix, called "matrix", and given
* a 1-D vector "vector" of 'num' elements, find the 1-D vector
* called "solution_vector" which satisfies the equation
*
* matrix * solution_vector = vector
*
* where the * above represents matrix multiplication.
*
* What we do is to use Gaussian elimination (with partial pivoting)
* and back-substitution to find the solution_vector.
* We do not pivot in place, but physically move values -- it
* doesn't take much time in this application. After we have found the
* "solution_vector", we replace the contents of "vector" with the
* "solution_vector".
*
* This is a common algorithm. See any book on linear algebra or
* numerical solutions; for example, "Numerical Methods for Engineers,"
* by Steven C. Chapra and Raymond P. Canale, McGraw-Hill, 1998,
* Chapter 9.
*
* If an error occurs (if the matrix is singular), this prints an error
* message and returns with error code.
*
* RETURN:
* SH_SUCCESS if all goes well
* SH_GENERIC_ERROR if not -- if matrix is singular
*
* </AUTO>
*/}
function Gauss_Matrix(var matrix: TMatrix; // I/O: the square 2-D matrix we'll invert will hold inverse matrix on output
num: Integer; // I: number of rows and cols in matrix
var vector: Tsolutionvector; // I/O: vector which holds "b" values in input and the solution vector "x" on output
out err_mess : string // O: Any error message
): boolean;
var
i,
j,
k : integer;
biggest_val: TVector;
solution_vector: TVector;
factor,
sum : Double;
begin
err_mess:=''; //clear message;
SetLength(biggest_val, num);
SetLength(solution_vector, num);
// Step 1: Find the largest value in each row of matrix,
// and store those values in 'biggest_val' array.
// We use this information to pivot the matrix.
for i := 0 to num - 1 do
begin
biggest_val[i] := Abs(matrix[i][0]);
for j := 1 to num - 1 do
begin
if Abs(matrix[i][j]) > biggest_val[i] then
biggest_val[i] := Abs(matrix[i][j]);
end;
if biggest_val[i] = 0.0 then
begin
// Handle the error: "gauss_matrix: biggest val in row is zero"
// Error handling code should go here. In Pascal, you might raise an exception
// or handle the error in a way that's appropriate for your application.
err_mess:='Gauss_matrix: biggest val in row is zero';
exit(false);
end;
end;
// Step 2: Use Gaussian elimination to convert the "matrix"
// into a triangular matrix, in which the values of all
// elements below the diagonal are zero.
for i := 0 to num - 2 do
begin
// Pivot this row (if necessary)
Gauss_Pivot(matrix, num, vector, biggest_val, i);
// Remark: Gauss_Pivot give never an error in the code.
// if Gauss_Pivot(matrix, num, vector, biggest_val, i) =false then
// begin
// err_mess:='Gauss_matrix error: singular matrix.';
// Exit(false);
// end;
if Abs(matrix[i][i] / biggest_val[i]) < MATRIX_TOL then
begin
err_mess:='Gauss_matrix error: row has a too tiny value';
Exit(false);
end;
// Eliminate this variable in all rows below the current one
for j := i + 1 to num - 1 do
begin
factor := matrix[j][i] / matrix[i][i];
for k := i + 1 to num - 1 do
begin
matrix[j][k] := matrix[j][k] - factor * matrix[i][k];
end;
// And in the vector, too
vector[j] := vector[j] - factor * vector[i];
end;
end;
// Make sure that the last row's single remaining element isn't too tiny
if Abs(matrix[num - 1][num - 1] / biggest_val[num - 1]) < MATRIX_TOL then
begin
err_mess:='Gauss_matrix error: last row has a too tiny value';
Exit(false);
end;
// Step 3: We can now calculate the solution_vector values
// via back-substitution; we start at the last value in the
// vector (at the "bottom" of the vector) and work
// upwards towards the top.
solution_vector[num - 1] := vector[num - 1] / matrix[num - 1][num - 1];
for i := num - 2 downto 0 do
begin
sum := 0.0;
for j := i + 1 to num - 1 do
begin
sum := sum + matrix[i][j] * solution_vector[j];
end;
solution_vector[i] := (vector[i] - sum) / matrix[i][i];
end;
// step 4: okay, we've found the values in the solution vector!
// We now replace the input values in 'vector' with these
// solution_vector values, and we're done.
for i := 0 to num-1 do begin
vector[i] := solution_vector[i];
end;
Result:=true;
end;
// /************************************************************************
// *
// *
// * ROUTINE: calc_trans_cubic
// *
// * DESCRIPTION:
// * Given a set of "nbright" matched pairs of stars, which we can
// * extract from the "winner_index" and "star_array" arrays,
// * figure out a TRANS structure which takes coordinates of
// * objects in set A and transforms then into coords for set B.
// * In this case, a TRANS contains the sixteen coefficients in the equations
// *
// * x' = A + Bx + Cy + Dxx + Exy + Fyy + Gx(xx+yy) + Hy(xx+yy)
// * y' = I + Jx + Ky + Lxx + Mxy + Nyy + Ox(xx+yy) + Py(xx+yy)
// *
// * where (x,y) are coords in set A and (x',y') are corresponding
// * coords in set B.
// *
// *
// * What we do is to treat each of the two equations above
// * separately. We can write down 8 equations relating quantities
// * in the two sets of points (there are more than 8 such equations,
// * but we don't seek an exhaustive list). For example,
// *
// * x' = A + Bx + Cy + Dxx + Exy + Fyy + GxR + HyR
// * x'x = Ax + Bxx + Cxy + Dxxx + Exxy + Fxyy + GxxR + HxyR
// * x'y = Ay + Bxy + Cyy + Dxxy + Exyy + Fyyy + GxyR + HyyR
// * x'xx = Axx + Bxxx + Cxxy + Dxxxx + Exxxy + Fxxyy + GxxxR + HxxyR
// * x'xy = Axy + Bxxy + Cxyy + Dxxxy + Exxyy + Fxyyy + GxxyR + HxyyR
// * x'yy = Ayy + Bxyy + Cyyy + Dxxyy + Exyyy + Fyyyy + GxyyR + HyyyR
// * x'xR = AxR + BxxR + CxyR + DxxxR + ExxyR + FxyyR + GxxRR + HxyRR
// * x'yR = AyR + BxyR + CyyR + DxxyR + ExyyR + FyyyR + GxyRR + HyyRR
// *
// * (where we have used 'R' as an abbreviation for (xx + yy))
// *
// * Now, since we have "nbright" matched pairs, we can take each of
// * the above 8 equations and form the sums on both sides, over
// * all "nbright" points. So, if S(x) represents the sum of the quantity
// * "x" over all nbright points, and if we let N=nbright, then
// *
// * S(x') = AN + BS(x) + CS(y) + DS(xx) + ES(xy) + FS(yy)
// * + GS(xR) + HS(yR)
// * S(x'x) = AS(x) + BS(xx) + CS(xy) + DS(xxx) + ES(xxy) + FS(xyy)
// * + GS(xxR) + HS(xyR)
// * S(x'y) = AS(y) + BS(xy) + CS(yy) + DS(xxy) + ES(xyy) + FS(yyy)
// * + GS(xyR) + HS(yyR)
// * S(x'xx) = AS(xx) + BS(xxx) + CS(xxy) + DS(xxxx) + ES(xxxy) + FS(xxyy)
// * + GS(xxxR) + HS(xxyR)
// * S(x'xy) = AS(xy) + BS(xxy) + CS(xyy) + DS(xxxy) + ES(xxyy) + FS(xyyy)
// * + GS(xxyR) + HS(xyyR)
// * S(x'yy) = AS(yy) + BS(xyy) + CS(yyy) + DS(xxyy) + ES(xyyy) + FS(yyyy)
// * + GS(xyyR) + HS(yyyR)
// * S(x'xR) = AS(xR) + BS(xxR) + CS(xyR) + DS(xxxR) + ES(xxyR) + FS(xyyR)
// * + GS(xxRR) + HS(xyRR)
// * S(x'yR) = AS(yR) + BS(xyR) + CS(yyR) + DS(xxyR) + ES(xyyR) + FS(yyyR)
// * + GS(xyRR) + HS(yyRR)
// *
// * At this point, we have a set of 8 equations, and 8 unknowns:
// * A, B, C, D, E, F, G, H
// *
// * We can write this set of equations as a matrix equation
// *
// * b = M * v
// *
// * where we KNOW the quantities
// *
// * b = ( S(x'), S(x'x), S(x'y), S(x'xx), S(x'xy), S(x'yy), S(x'xR), S(x'rR) )
// *
// * matr M = [ N S(x) S(y) S(xx) S(xy) S(yy) S(xR) S(yR) ]
// * [ S(x) S(xx) S(xy) S(xxx) S(xxy) S(xyy) S(xxR) S(xyR) ]
// * [ S(y) S(xy) S(yy) S(xxy) S(xyy) S(yyy) S(xyR) S(yyR) ]
// * [ S(xx) S(xxx) S(xxy) S(xxxx) S(xxxy) S(xxyy) S(xxxR) S(xxyR) ]
// * [ S(xy) S(xxy) S(xyy) S(xxxy) S(xxyy) S(xyyy) S(xxyR) S(xyyR) ]
// * [ S(yy) S(xyy) S(yyy) S(xxyy) S(xyyy) S(yyyy) S(xyyR) S(yyyR) ]
// * [ S(xR) S(xxR) S(xyR) S(xxxR) S(xxyR) S(xyyR) S(xxRR) S(xyRR) ]
// * [ S(yR) S(xyR) S(yyR) S(xxyR) S(xyyR) S(yyyR) S(xyRR) S(yyRR) ]
// *
// * and we want to FIND the unknown
// *
// * vector v = ( A, B, C, D, E, F, G, H )
// *
// * So, how to solve this matrix equation? We use a Gaussian-elimination
// * method (see notes in 'gauss_matrix' function). We solve
// * for A, B, C, D, E, F, G, H (and equivalently for I, J, K, L, M, N, O, P),
// * then fill in the fields
// * of the given TRANS structure argument.
// *
// * It's possible that the matrix will be singular, and we can't find
// * a solution. In that case, we print an error message and don't touch
// * the TRANS' fields.
// *
// * [should explain how we make an iterative solution here,
// * but will put in comments later. MWR ]
// *
// * RETURN:
// * SH_SUCCESS if all goes well
// * SH_GENERIC_ERROR if we can't find a solution
// *
// * </AUTO>
// */
function Calc_Trans_Cubic(stars_reference: TStarArray; // First array of s_star structure we match the output TRANS takes their coords into those of array B
stars_distorted: TStarArray; // Second array of s_star structure we match
out trans: TTrans; // Transfer coefficients for starsA positions to starsB positions
out err_mess : string // any error message
): boolean; //succes
var
matrix : Tmatrix;
vector : Tsolutionvector;//array[0..9] of Double;
s1,
s2 : s_star;
sumx2,
sumx2x1,
sumx2y1,
sumx2x1sq,
sumx2x1y1,
sumx2y1sq,
sumx2x1cu,
sumx2x1sqy1,
sumx2x1y1sq,
sumx2y1cu,
sumy2,
sumy2x1,
sumy2y1,
sumy2x1sq,
sumy2x1y1,
sumy2y1sq,
sumy2x1cu,
sumy2x1sqy1,
sumy2x1y1sq,
sumy2y1cu,
sum,
sumx1,
sumy1,
sumx1sq,
sumx1y1,
sumy1sq,
sumx1cu,
sumx1sqy1,
sumx1y1sq,
sumy1cu,
sumx1qu,
sumx1cuy1,
sumx1sqy1sq,
sumx1y1cu,
sumy1qu,
sumx1pe,
sumx1quy1,
sumx1cuy1sq,
sumx1sqy1cu,
sumx1y1qu,
sumy1pe,
sumx1he,
sumx1pey1,
sumx1quy1sq,
sumx1cuy1cu,
sumx1sqy1qu,
sumx1y1pe,
sumy1he : Double;
r,c,i : integer;
begin
// in variable names below, a '1' refers to coordinate of star s1 (which appear on both sides of the matrix equation)
// and a '2' refers to coordinate of star s2 (which appears only on left hand side of matrix equation)
err_mess:=''; //clear message;
if length(stars_reference) <10 {AT_MATCH_REQUIRE_CUBIC} then begin err_mess:='Calc_Trans_Cubic: Not enough equations.'; exit(false); end;
// if_assert(trans.order = AT_TRANS_CUBIC)=false then begin result:=0; exit; end;
// allocate a matrix we'll need for this function
SetLength(matrix, 10, 10); // Assuming a 10x10 matrix
// First, we consider the coefficients x00,x10,x01,x20,x11,x02,x30,x21,x12,x03 in the trans.
// We form the sums that make up the elements of matrix M
sum := 0.0;
sumx1 := 0.0;
sumy1 := 0.0;
sumx1sq := 0.0;
sumx1y1 := 0.0;
sumy1sq := 0.0;
sumx1cu := 0.0;
sumx1sqy1 := 0.0;
sumx1y1sq := 0.0;
sumy1cu := 0.0;
sumx1qu := 0.0;
sumx1cuy1 := 0.0;
sumx1sqy1sq := 0.0;
sumx1y1cu := 0.0;
sumy1qu := 0.0;
sumx1pe := 0.0;
sumx1quy1 := 0.0;
sumx1cuy1sq := 0.0;
sumx1sqy1cu := 0.0;
sumx1y1qu := 0.0;
sumy1pe := 0.0;
sumx1he := 0.0;
sumx1pey1 := 0.0;
sumx1quy1sq := 0.0;
sumx1cuy1cu := 0.0;
sumx1sqy1qu := 0.0;
sumx1y1pe := 0.0;
sumy1he := 0.0;
sumx2 := 0.0;
sumx2x1 := 0.0;
sumx2y1 := 0.0;
sumx2x1sq := 0.0;
sumx2x1y1 := 0.0;
sumx2y1sq := 0.0;
sumx2x1cu := 0.0;
sumx2x1sqy1 := 0.0;
sumx2x1y1sq := 0.0;
sumx2y1cu := 0.0;
sumy2 := 0.0;
sumy2x1 := 0.0;
sumy2y1 := 0.0;
sumy2x1sq := 0.0;
sumy2x1y1 := 0.0;
sumy2y1sq := 0.0;
sumy2x1cu := 0.0;
sumy2x1sqy1 := 0.0;
sumy2x1y1sq := 0.0;
sumy2y1cu := 0.0;
for i := 0 to min(length(stars_reference)-1,length(stars_distorted)-1) do //take the minimum of the two array for the case one list is longer. Should not happen normally.
begin
sumx2 := sumx2 + stars_distorted[i].x;
sumx2x1 := sumx2x1 + (stars_distorted[i].x * stars_reference[i].x);
sumx2y1 := sumx2y1 + (stars_distorted[i].x * stars_reference[i].y);
sumx2x1sq := sumx2x1sq + (stars_distorted[i].x * stars_reference[i].x * stars_reference[i].x);
sumx2x1y1 := sumx2x1y1 + (stars_distorted[i].x * stars_reference[i].x * stars_reference[i].y);
sumx2y1sq := sumx2y1sq + (stars_distorted[i].x * stars_reference[i].y * stars_reference[i].y);
sumx2x1cu := sumx2x1cu + (stars_distorted[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x);
sumx2x1sqy1 := sumx2x1sqy1 + (stars_distorted[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y);
sumx2x1y1sq := sumx2x1y1sq + (stars_distorted[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y);
sumx2y1cu := sumx2y1cu + (stars_distorted[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
sumy2 := sumy2 + stars_distorted[i].y;
sumy2x1 := sumy2x1 + (stars_distorted[i].y * stars_reference[i].x);
sumy2y1 := sumy2y1 + (stars_distorted[i].y * stars_reference[i].y);
sumy2x1sq := sumy2x1sq + (stars_distorted[i].y * stars_reference[i].x * stars_reference[i].x);
sumy2x1y1 := sumy2x1y1 + (stars_distorted[i].y * stars_reference[i].x * stars_reference[i].y);
sumy2y1sq := sumy2y1sq + (stars_distorted[i].y * stars_reference[i].y * stars_reference[i].y);
sumy2x1cu := sumy2x1cu + (stars_distorted[i].y * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x);
sumy2x1sqy1 := sumy2x1sqy1 + (stars_distorted[i].y * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y);
sumy2x1y1sq := sumy2x1y1sq + (stars_distorted[i].y * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y);
sumy2y1cu := sumy2y1cu + (stars_distorted[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
{ elements of the matrix }
sum := sum + 1.0;
sumx1 := sumx1 + stars_reference[i].x;
sumy1 := sumy1 + stars_reference[i].y;
sumx1sq := sumx1sq + (stars_reference[i].x * stars_reference[i].x);
sumx1y1 := sumx1y1 + (stars_reference[i].x * stars_reference[i].y);
sumy1sq := sumy1sq + (stars_reference[i].y * stars_reference[i].y);
sumx1cu := sumx1cu + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x);
sumx1sqy1 := sumx1sqy1 + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].y);
sumx1y1sq := sumx1y1sq + (stars_reference[i].x * stars_reference[i].y * stars_reference[i].y);
sumy1cu := sumy1cu + (stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
sumx1qu := sumx1qu + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x);
sumx1cuy1 := sumx1cuy1 + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y);
sumx1sqy1sq := sumx1sqy1sq + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y);
sumx1y1cu := sumx1y1cu + (stars_reference[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
sumy1qu := sumy1qu + (stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
sumx1pe := sumx1pe + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x);
sumx1quy1 := sumx1quy1 + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y);
sumx1cuy1sq := sumx1cuy1sq + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y);
sumx1sqy1cu := sumx1sqy1cu + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
sumx1y1qu := sumx1y1qu + (stars_reference[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
sumy1pe := sumy1pe + (stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
sumx1he := sumx1he + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x);
sumx1pey1 := sumx1pey1 + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y);
sumx1quy1sq := sumx1quy1sq + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y);
sumx1cuy1cu := sumx1cuy1cu + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
sumx1sqy1qu := sumx1sqy1qu + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
sumx1y1pe := sumx1y1pe + (stars_reference[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
sumy1he := sumy1he + (stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
end;
// Now turn these sums into a matrix and a vector
// For the matrix, we fill the lower triangle and then transpose for the upper one rows 0-9 - column 0
matrix[0][0] := sum;
matrix[1][0] := sumx1;
matrix[2][0] := sumy1;
matrix[3][0] := sumx1sq;
matrix[4][0] := sumx1y1;
matrix[5][0] := sumy1sq;
matrix[6][0] := sumx1cu;
matrix[7][0] := sumx1sqy1;
matrix[8][0] := sumx1y1sq;
matrix[9][0] := sumy1cu;
//rows 1-9 - column 1
matrix[1][1] := sumx1sq;
matrix[2][1] := sumx1y1;
matrix[3][1] := sumx1cu;
matrix[4][1] := sumx1sqy1;
matrix[5][1] := sumx1y1sq;
matrix[6][1] := sumx1qu;
matrix[7][1] := sumx1cuy1;
matrix[8][1] := sumx1sqy1sq;
matrix[9][1] := sumx1y1cu;
//rows 2-9 - column 2
matrix[2][2] := sumy1sq;
matrix[3][2] := sumx1sqy1;
matrix[4][2] := sumx1y1sq;
matrix[5][2] := sumy1cu;
matrix[6][2] := sumx1cuy1;
matrix[7][2] := sumx1sqy1sq;
matrix[8][2] := sumx1y1cu;
matrix[9][2] := sumy1qu;
//rows 3-9 - column 3
matrix[3][3] := sumx1qu;
matrix[4][3] := sumx1cuy1;
matrix[5][3] := sumx1sqy1sq;
matrix[6][3] := sumx1pe;
matrix[7][3] := sumx1quy1;
matrix[8][3] := sumx1cuy1sq;
matrix[9][3] := sumx1sqy1cu;
//rows 4-9 - column 4
matrix[4][4] := sumx1sqy1sq;
matrix[5][4] := sumx1y1cu;
matrix[6][4] := sumx1quy1;
matrix[7][4] := sumx1cuy1sq;
matrix[8][4] := sumx1sqy1cu;
matrix[9][4] := sumx1y1qu;
//rows 5-9 - column 5
matrix[5][5] := sumy1qu;
matrix[6][5] := sumx1cuy1sq;
matrix[7][5] := sumx1sqy1cu;
matrix[8][5] := sumx1y1qu;
matrix[9][5] := sumy1pe;
//rows 6-9 - column 6
matrix[6][6] := sumx1he;
matrix[7][6] := sumx1pey1;
matrix[8][6] := sumx1quy1sq;
matrix[9][6] := sumx1cuy1cu;
//rows 7-9 - column 7
matrix[7][7] := sumx1quy1sq;
matrix[8][7] := sumx1cuy1cu;
matrix[9][7] := sumx1sqy1qu;
//rows 8-9 - column 8
matrix[8][8] := sumx1sqy1qu;
matrix[9][8] := sumx1y1pe;
//rows 9 - column 9
matrix[9][9] := sumy1he;
// and we transpose
for r := 0 to 8 do begin
for c := r + 1 to 9 do begin
matrix[r][c] := matrix[c][r];
end;
end;
vector[0] := sumx2;
vector[1] := sumx2x1;
vector[2] := sumx2y1;
vector[3] := sumx2x1sq;
vector[4] := sumx2x1y1;
vector[5] := sumx2y1sq;
vector[6] := sumx2x1cu;
vector[7] := sumx2x1sqy1;
vector[8] := sumx2x1y1sq;
vector[9] := sumx2y1cu;
//Writeln('before calling solution routines for ABCDEFGHIJ, here's matrix');
// and now call the Gaussian-elimination routines to solve the matrix.
// The solution for TRANS coefficients A, B, C, D, E, F, I, J will be placed
// into the elements on 'vector" after "gauss_matrix' finishes.
if gauss_matrix(matrix, 10, vector,err_mess)=false then
begin
err_mess:=err_mess+', Calc_trans_cubic: can not solve for coeffs A,B,C,D,E,F,G,H,I,J';
exit(false);
end;
//Writeln('after calling solution routines, here's matrix');
trans.x00 := vector[0];
trans.x10 := vector[1];
trans.x01 := vector[2];
trans.x20 := vector[3];
trans.x11 := vector[4];
trans.x02 := vector[5];
trans.x30 := vector[6];
trans.x21 := vector[7];
trans.x12 := vector[8];
trans.x03 := vector[9];
// Okay, now we solve for TRANS coefficients y00,y10,y01,y20,y11,y02,y30,y21,y12,y03
// using the * set of equations that relates y' to (x,y)
//rows 0-9 - column 0
matrix[0][0] := sum;
matrix[1][0] := sumx1;
matrix[2][0] := sumy1;
matrix[3][0] := sumx1sq;
matrix[4][0] := sumx1y1;
matrix[5][0] := sumy1sq;
matrix[6][0] := sumx1cu;
matrix[7][0] := sumx1sqy1;
matrix[8][0] := sumx1y1sq;
matrix[9][0] := sumy1cu;
//rows 1-9 - column 1
matrix[1][1] := sumx1sq;
matrix[2][1] := sumx1y1;
matrix[3][1] := sumx1cu;
matrix[4][1] := sumx1sqy1;
matrix[5][1] := sumx1y1sq;
matrix[6][1] := sumx1qu;
matrix[7][1] := sumx1cuy1;
matrix[8][1] := sumx1sqy1sq;
matrix[9][1] := sumx1y1cu;
//rows 2-9 - column 2
matrix[2][2] := sumy1sq;
matrix[3][2] := sumx1sqy1;
matrix[4][2] := sumx1y1sq;
matrix[5][2] := sumy1cu;
matrix[6][2] := sumx1cuy1;
matrix[7][2] := sumx1sqy1sq;
matrix[8][2] := sumx1y1cu;
matrix[9][2] := sumy1qu;
//rows 3-9 - column 3
matrix[3][3] := sumx1qu;
matrix[4][3] := sumx1cuy1;
matrix[5][3] := sumx1sqy1sq;
matrix[6][3] := sumx1pe;
matrix[7][3] := sumx1quy1;
matrix[8][3] := sumx1cuy1sq;
matrix[9][3] := sumx1sqy1cu;
//rows 4-9 - column 4
matrix[4][4] := sumx1sqy1sq;
matrix[5][4] := sumx1y1cu;
matrix[6][4] := sumx1quy1;
matrix[7][4] := sumx1cuy1sq;
matrix[8][4] := sumx1sqy1cu;
matrix[9][4] := sumx1y1qu;
//rows 5-9 - column 5
matrix[5][5] := sumy1qu;
matrix[6][5] := sumx1cuy1sq;
matrix[7][5] := sumx1sqy1cu;
matrix[8][5] := sumx1y1qu;
matrix[9][5] := sumy1pe;
//rows 6-9 - column 6
matrix[6][6] := sumx1he;
matrix[7][6] := sumx1pey1;
matrix[8][6] := sumx1quy1sq;
matrix[9][6] := sumx1cuy1cu;
//rows 7-9 - column 7
matrix[7][7] := sumx1quy1sq;
matrix[8][7] := sumx1cuy1cu;
matrix[9][7] := sumx1sqy1qu;
//rows 8-9 - column 8
matrix[8][8] := sumx1sqy1qu;
matrix[9][8] := sumx1y1pe;
//rows 9 - column 9
matrix[9][9] := sumy1he;
// and we transpose
for r := 0 to 8 do begin
for c := r + 1 to 9 do begin
matrix[r][c] := matrix[c][r];
end;
end;
vector[0] := sumy2;
vector[1] := sumy2x1;
vector[2] := sumy2y1;
vector[3] := sumy2x1sq;
vector[4] := sumy2x1y1;
vector[5] := sumy2y1sq;
vector[6] := sumy2x1cu;
vector[7] := sumy2x1sqy1;
vector[8] := sumy2x1y1sq;
vector[9] := sumy2y1cu;
// And now call the Gaussian-elimination routines to solve the matrix.
if gauss_matrix(matrix, 10, vector,err_mess)=false then
begin
err_mess:=err_mess+', Calc_trans_cubic: Can not solve for coeffs y00,y10,y01,y20,y11,y02,y30,y21,y12,y03';
exit(false);
end;
//Writeln('after calling solution routines, here's matrix');
// const A,K 00
// x; B,L 10
// y; C,M 01
// x*x; D,N 20
// x*y; E,O 11
// y*y; F,P 02
// x*x*x; G,Q 30
// x*x*y; H,R 21
// x*y*y; I,S 12
// y*y*y; J,T 03
trans.y00 := vector[0];
trans.y10 := vector[1];
trans.y01 := vector[2];
trans.y20 := vector[3];
trans.y11 := vector[4];
trans.y02 := vector[5];
trans.y30 := vector[6];
trans.y21 := vector[7];
trans.y12 := vector[8];
trans.y03 := vector[9];
//free_matrix(matrix, 10);//Not required in FPC
Result :=true;
end;
// TEST PROGRAM FOR DEVELOPMENT ONLY ==================================================================================
{
procedure rotate(rot,x,y :double;var x2,y2:double);//rotate a vector point, angle seen from y-axis, counter clockwise
var
sin_rot, cos_rot :double;
begin
sincos(rot, sin_rot, cos_rot);
x2:=x * + sin_rot + y*cos_rot;//ROTATION MOON AROUND CENTER OF PLANET
y2:=x * - cos_rot + y*sin_rot;//SEE PRISMA WIS VADEMECUM BLZ 68
end;
var
b : TVector;
i,j,k, count : Integer;
x,y,x2,y2,testx,testy, maxerrorX,maxerrorY,correction,errorposX,errorposY: Double;
distorted,reference,ideal: TStarArray;
trans: TTrans;
sss : string;
f: textfile;
begin
count:=0;
setlength(distorted,50);
setlength(reference,50);
// setlength(ideal,10000);
for j:=1 to +10 do
begin
for i:=1 to +10 do
begin
//x:=j*150;//image 3000x3000
//y:=i*150;
reference[count].x:=i;//reference X
reference[count].y:=j;//reference X
distorted[count].x:=i+1000+i*i*0.00001+i*j*0.00002+j*j*0.00003+i*i*i*0.00004+i*i*j*0.00005+i*j*j*0.00006+j*j*j*0.00007;
distorted[count].y:=j+1000+i*i*0.00008+i*j*0.00009+j*j*0.00010+i*i*i*0.00011+i*i*j*0.00012+i*j*j*0.00013+j*j*j*0.00014;
inc(count);
if count>=length(distorted) then break;
end;
if count>=length(distorted) then break;
end;
setlength(distorted,count);
setlength(reference,count);
//TESTING ============
if Calc_Trans_Cubic(reference, // First array of s_star structure we match the output TRANS takes their coords into those of array B
distorted, // Second array of s_star structure we match
trans, // Place solved coefficients into this existing structure's fields
sss
)=false
then
beep //failure
else
//succes
beep;
// const A,K
// x; B,L
// y; C,M
// x*x; D,N
// x*y; E,O
// y*y; F,P
// x*x*x; G,Q
// x*x*y; H,R
// x*y*y; I,S
// y*y*y; J,T
// log_to_file( 'c:\temp\test.txt',floattostr(reference[i].x)+#9+floattostr(reference[i].y)+#9+floattostr(testX)+#9+floattostr(testY));
beep;
}
end.
|