File: unit_calc_trans_cubic.pas

package info (click to toggle)
astap 2024.11.13-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,032 kB
  • sloc: pascal: 49,240; sh: 205; makefile: 5
file content (863 lines) | stat: -rw-r--r-- 33,438 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
unit unit_calc_trans_cubic;
//  DESCRIPTION:
//  This unit calculates the 3th order transfer function between two set of matching quads or star positions.
//  The output are ten transfer coefficients for X axis and ten coefficients for the Y-axis.

{Copyright (C) 2024 by Han Kleijn, www.hnsky.org
 email: han.k.. at...hnsky.org

This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at https://mozilla.org/MPL/2.0/.   }


{This unit is based on some C language routines from the package Match. See describtion below. Conversion and modification for the ASTAP program by Han Kleijn.
The original Match version was suitable an eight coefficients 3th order solution but was extended to a ten cofficients 3th order solution by Cecile Melis for the Siril program.

The  licence of this code has been changed to MPL2 with permission from Michael Richmond by email dated 2024-2-15:
    "Yes, I grant you permission to change the license for the code you have adopted to the Mozilla Public License, v2.0."
}

// ==============================================================================
// Original description for the Match program.
// http://spiff.rit.edu/match/
{*  match: a package to match lists of stars (or other items)
 *  Copyright (C) 2000  Michael William Richmond
 *
 *  Contact: Michael William Richmond
 *           Physics Department
 *           Rochester Institute of Technology
 *           85 Lomb Memorial Drive
 *           Rochester, NY  14623-5603
 *           E-mail: mwrsps@rit.edu
 *
 *
 *
 */
 }

interface

uses
  Classes, SysUtils,math, astap_main;

type
  TMatrix = array of array of Double;
  TVector = array of Double;
  s_star = record
             x, y: Double;
           end;
  TStarArray = array of s_star;
  TTrans = record
             x00,x10,x01,x20,x11,x02,x30,x21,x12,x03 : double;  //was orginally a, b, c, d, e, f, g, h
             y00,y10,y01,y20,y11,y02,y30,y21,y12,y03 : double;  //              i, j, k, l, m, n, o, p
           end;

function Calc_Trans_Cubic(stars_reference: TStarArray; // First array of s_star structure we match the output TRANS takes their coords into those of array B
                          stars_distorted: TStarArray; // Second array of s_star structure we match
                          out trans: TTrans;  // Transfer coefficients for starsA positions to starsB positions
                          out err_mess : string // any error message
                          ): boolean; //succes


implementation

type
  Tsolutionvector = array[0..9] of Double;

const
  MATRIX_TOL=1E-100;


{/***************************************************************************
 * PROCEDURE: gauss_pivot
 *
 * DESCRIPTION:
 * This routine is called by "gauss_matrix".  Given a square "matrix"
 * of "num"-by-"num" elements, and given a "vector" of "num" elements,
 * and given a particular "row" value, this routine finds the largest
 * value in the matrix at/below the given "row" position.  If that
 * largest value isn't in the given "row", this routine switches
 * rows in the matrix (and in the vector) so that the largest value
 * will now be in "row".
 *
 * RETURN:
 *    SH_SUCCESS          if all goes well
 *    SH_GENERIC_ERROR    if not -- if matrix is singular
 *
 * </AUTO>
 */}
procedure Gauss_Pivot(var matrix: TMatrix;          // I/O: a square 2-D matrix we are inverting
                      num: Integer;                 // I: number of rows and cols in matrix
                      var vector: TSolutionVector;  // I/O: vector which holds "b" values in input
                      var biggest_val: TVector;     // I: largest value in each row of matrix
                      row: Integer                  // I: want to pivot around this row
                     );
var
  i, col, pivot_row  : Integer;
  big, other_big,temp: Double;

begin
  pivot_row := row;
  big := Abs(matrix[row][row] / biggest_val[row]);

  // Finding the row with the largest value for pivoting
  for i := row + 1 to num - 1 do
  begin
    other_big := Abs(matrix[i][row] / biggest_val[i]);
    if other_big > big then
    begin
      big := other_big;
      pivot_row := i;
    end;
  end;
  // If another row is better for pivoting, switch it with 'row'
  // and switch the corresponding elements in 'vector'
  // and switch the corresponding elements in 'biggest_val'
  // If another row is better for pivoting, switch it with 'row'
  if pivot_row <> row then
  begin
    for col := row to num - 1 do
    begin
      // Manual swapping of matrix elements
      temp := matrix[pivot_row][col];
      matrix[pivot_row][col] := matrix[row][col];
      matrix[row][col] := temp;
    end;

    // Manual swapping of vector elements
    temp := vector[pivot_row];
    vector[pivot_row] := vector[row];
    vector[row] := temp;

    // Manual swapping of biggest_val elements
    temp := biggest_val[pivot_row];
    biggest_val[pivot_row] := biggest_val[row];
    biggest_val[row] := temp;
  end;
end;


{***************************************************************************
 * PROCEDURE: gauss_matrix
 *
 * DESCRIPTION:
 * Given a square 2-D 'num'-by-'num' matrix, called "matrix", and given
 * a 1-D vector "vector" of 'num' elements, find the 1-D vector
 * called "solution_vector" which satisfies the equation
 *
 *      matrix * solution_vector  =  vector
 *
 * where the * above represents matrix multiplication.
 *
 * What we do is to use Gaussian elimination (with partial pivoting)
 * and back-substitution to find the solution_vector.
 * We do not pivot in place, but physically move values -- it
 * doesn't take much time in this application.  After we have found the
 * "solution_vector", we replace the contents of "vector" with the
 * "solution_vector".
 *
 * This is a common algorithm.  See any book on linear algebra or
 * numerical solutions; for example, "Numerical Methods for Engineers,"
 * by Steven C. Chapra and Raymond P. Canale, McGraw-Hill, 1998,
 * Chapter 9.
 *
 * If an error occurs (if the matrix is singular), this prints an error
 * message and returns with error code.
 *
 * RETURN:
 *    SH_SUCCESS          if all goes well
 *    SH_GENERIC_ERROR    if not -- if matrix is singular
 *
 * </AUTO>
 */}

function Gauss_Matrix(var matrix: TMatrix;        // I/O: the square 2-D matrix we'll invert will hold inverse matrix on output
                      num: Integer;                // I: number of rows and cols in matrix
                      var vector: Tsolutionvector;  // I/O: vector which holds "b" values in input and the solution vector "x" on output
                      out err_mess : string         // O: Any error message

                      ): boolean;

var
  i,
  j,
  k               : integer;
  biggest_val: TVector;
  solution_vector: TVector;
  factor,
  sum             : Double;
begin
  err_mess:=''; //clear message;
  SetLength(biggest_val, num);
  SetLength(solution_vector, num);
  // Step 1: Find the largest value in each row of matrix,
  //         and store those values in 'biggest_val' array.
  //         We use this information to pivot the matrix.
  for i := 0 to num - 1 do
  begin
    biggest_val[i] := Abs(matrix[i][0]);
    for j := 1 to num - 1 do
    begin
      if Abs(matrix[i][j]) > biggest_val[i] then
        biggest_val[i] := Abs(matrix[i][j]);
    end;

    if biggest_val[i] = 0.0 then
    begin
      // Handle the error: "gauss_matrix: biggest val in row is zero"
      // Error handling code should go here. In Pascal, you might raise an exception
      // or handle the error in a way that's appropriate for your application.
      err_mess:='Gauss_matrix: biggest val in row is zero';
      exit(false);
    end;
  end;

   // Step 2: Use Gaussian elimination to convert the "matrix"
   // into a triangular matrix, in which the values of all
   // elements below the diagonal are zero.
  for i := 0 to num - 2 do
  begin
    // Pivot this row (if necessary)
    Gauss_Pivot(matrix, num, vector, biggest_val, i);

//    Remark: Gauss_Pivot give never an error in the code.
//    if Gauss_Pivot(matrix, num, vector, biggest_val, i) =false then
//    begin
//      err_mess:='Gauss_matrix error: singular matrix.';
//      Exit(false);
//    end;

    if Abs(matrix[i][i] / biggest_val[i]) < MATRIX_TOL then
    begin
      err_mess:='Gauss_matrix error: row has a too tiny value';
      Exit(false);
    end;

    // Eliminate this variable in all rows below the current one
    for j := i + 1 to num - 1 do
    begin
      factor := matrix[j][i] / matrix[i][i];
      for k := i + 1 to num - 1 do
      begin
        matrix[j][k] := matrix[j][k] - factor * matrix[i][k];
      end;
      // And in the vector, too
      vector[j] := vector[j] - factor * vector[i];
    end;
  end;

  // Make sure that the last row's single remaining element isn't too tiny
  if Abs(matrix[num - 1][num - 1] / biggest_val[num - 1]) < MATRIX_TOL then
  begin
    err_mess:='Gauss_matrix error: last row has a too tiny value';
    Exit(false);
  end;

  //  Step 3: We can now calculate the solution_vector values
  //          via back-substitution; we start at the last value in the
  //          vector (at the "bottom" of the vector) and work
  //          upwards towards the top.
  solution_vector[num - 1] := vector[num - 1] / matrix[num - 1][num - 1];
  for i := num - 2 downto 0 do
  begin
      sum := 0.0;
      for j := i + 1 to num - 1 do
      begin
          sum := sum + matrix[i][j] * solution_vector[j];
      end;
      solution_vector[i] := (vector[i] - sum) / matrix[i][i];
  end;

  // step 4: okay, we've found the values in the solution vector!
  //         We now replace the input values in 'vector' with these
  //         solution_vector values, and we're done.
  for i := 0 to num-1 do begin
    vector[i] := solution_vector[i];
  end;
  Result:=true;
end;



  // /************************************************************************
  //  *
  //  *
  //  * ROUTINE: calc_trans_cubic
  //  *
  //  * DESCRIPTION:
  //  * Given a set of "nbright" matched pairs of stars, which we can
  //  * extract from the "winner_index" and "star_array" arrays,
  //  * figure out a TRANS structure which takes coordinates of
  //  * objects in set A and transforms then into coords for set B.
  //  * In this case, a TRANS contains the sixteen coefficients in the equations
  //  *
  //  *      x' =  A + Bx + Cy + Dxx + Exy + Fyy + Gx(xx+yy) + Hy(xx+yy)
  //  *      y' =  I + Jx + Ky + Lxx + Mxy + Nyy + Ox(xx+yy) + Py(xx+yy)
  //  *
  //  * where (x,y) are coords in set A and (x',y') are corresponding
  //  * coords in set B.
  //  *
  //  *
  //  * What we do is to treat each of the two equations above
  //  * separately.  We can write down 8 equations relating quantities
  //  * in the two sets of points (there are more than 8 such equations,
  //  * but we don't seek an exhaustive list).  For example,
  //  *
  //  *   x'    =  A    + Bx   + Cy    + Dxx   + Exy   +  Fyy   + GxR   + HyR
  //  *   x'x   =  Ax   + Bxx  + Cxy   + Dxxx  + Exxy  +  Fxyy  + GxxR  + HxyR
  //  *   x'y   =  Ay   + Bxy  + Cyy   + Dxxy  + Exyy  +  Fyyy  + GxyR  + HyyR
  //  *   x'xx  =  Axx  + Bxxx + Cxxy  + Dxxxx + Exxxy +  Fxxyy + GxxxR + HxxyR
  //  *   x'xy  =  Axy  + Bxxy + Cxyy  + Dxxxy + Exxyy +  Fxyyy + GxxyR + HxyyR
  //  *   x'yy  =  Ayy  + Bxyy + Cyyy  + Dxxyy + Exyyy +  Fyyyy + GxyyR + HyyyR
  //  *   x'xR  =  AxR  + BxxR + CxyR  + DxxxR + ExxyR +  FxyyR + GxxRR + HxyRR
  //  *   x'yR  =  AyR  + BxyR + CyyR  + DxxyR + ExyyR +  FyyyR + GxyRR + HyyRR
  //  *
  //  * (where we have used 'R' as an abbreviation for (xx + yy))
  //  *
  //  * Now, since we have "nbright" matched pairs, we can take each of
  //  * the above 8 equations and form the sums on both sides, over
  //  * all "nbright" points.  So, if S(x) represents the sum of the quantity
  //  * "x" over all nbright points, and if we let N=nbright, then
  //  *
  //  *  S(x')   =  AN     + BS(x)   + CS(y)   + DS(xx)   + ES(xy)   +  FS(yy)
  //  *                                                + GS(xR)   +  HS(yR)
  //  *  S(x'x)  =  AS(x)  + BS(xx)  + CS(xy)  + DS(xxx)  + ES(xxy)  +  FS(xyy)
  //  *                                                + GS(xxR)  +  HS(xyR)
  //  *  S(x'y)  =  AS(y)  + BS(xy)  + CS(yy)  + DS(xxy)  + ES(xyy)  +  FS(yyy)
  //  *                                                + GS(xyR)  +  HS(yyR)
  //  *  S(x'xx) =  AS(xx) + BS(xxx) + CS(xxy) + DS(xxxx) + ES(xxxy) +  FS(xxyy)
  //  *                                                + GS(xxxR) +  HS(xxyR)
  //  *  S(x'xy) =  AS(xy) + BS(xxy) + CS(xyy) + DS(xxxy) + ES(xxyy) +  FS(xyyy)
  //  *                                                + GS(xxyR) +  HS(xyyR)
  //  *  S(x'yy) =  AS(yy) + BS(xyy) + CS(yyy) + DS(xxyy) + ES(xyyy) +  FS(yyyy)
  //  *                                                + GS(xyyR) +  HS(yyyR)
  //  *  S(x'xR) =  AS(xR) + BS(xxR) + CS(xyR) + DS(xxxR) + ES(xxyR) +  FS(xyyR)
  //  *                                                + GS(xxRR) +  HS(xyRR)
  //  *  S(x'yR) =  AS(yR) + BS(xyR) + CS(yyR) + DS(xxyR) + ES(xyyR) +  FS(yyyR)
  //  *                                                + GS(xyRR) +  HS(yyRR)
  //  *
  //  * At this point, we have a set of 8 equations, and 8 unknowns:
  //  *        A, B, C, D, E, F, G, H
  //  *
  //  * We can write this set of equations as a matrix equation
  //  *
  //  *               b       = M * v
  //  *
  //  * where we KNOW the quantities
  //  *
  //  *  b = ( S(x'), S(x'x), S(x'y), S(x'xx), S(x'xy), S(x'yy), S(x'xR), S(x'rR) )
  //  *
  //  * matr M = [ N      S(x)    S(y)   S(xx)   S(xy)   S(yy)   S(xR)   S(yR)   ]
  //  *          [ S(x)   S(xx)   S(xy)  S(xxx)  S(xxy)  S(xyy)  S(xxR)  S(xyR)  ]
  //  *          [ S(y)   S(xy)   S(yy)  S(xxy)  S(xyy)  S(yyy)  S(xyR)  S(yyR)  ]
  //  *          [ S(xx)  S(xxx)  S(xxy) S(xxxx) S(xxxy) S(xxyy) S(xxxR) S(xxyR) ]
  //  *          [ S(xy)  S(xxy)  S(xyy) S(xxxy) S(xxyy) S(xyyy) S(xxyR) S(xyyR) ]
  //  *          [ S(yy)  S(xyy)  S(yyy) S(xxyy) S(xyyy) S(yyyy) S(xyyR) S(yyyR) ]
  //  *          [ S(xR)  S(xxR)  S(xyR) S(xxxR) S(xxyR) S(xyyR) S(xxRR) S(xyRR) ]
  //  *          [ S(yR)  S(xyR)  S(yyR) S(xxyR) S(xyyR) S(yyyR) S(xyRR) S(yyRR) ]
  //  *
  //  * and we want to FIND the unknown
  //  *
  //  *        vector v = ( A,     B,      C,     D,      E,      F,     G,     H )
  //  *
  //  * So, how to solve this matrix equation?  We use a Gaussian-elimination
  //  * method (see notes in 'gauss_matrix' function).   We solve
  //  * for A, B, C, D, E, F, G, H (and equivalently for I, J, K, L, M, N, O, P),
  //  * then fill in the fields
  //  * of the given TRANS structure argument.
  //  *
  //  * It's possible that the matrix will be singular, and we can't find
  //  * a solution.  In that case, we print an error message and don't touch
  //  * the TRANS' fields.
  //  *
  //  *    [should explain how we make an iterative solution here,
  //  *     but will put in comments later.  MWR ]
  //  *
  //  * RETURN:
  //  *    SH_SUCCESS           if all goes well
  //  *    SH_GENERIC_ERROR     if we can't find a solution
  //  *
  //  * </AUTO>
  //  */


function Calc_Trans_Cubic(stars_reference: TStarArray; // First array of s_star structure we match the output TRANS takes their coords into those of array B
                          stars_distorted: TStarArray; // Second array of s_star structure we match
                          out trans: TTrans; // Transfer coefficients for starsA positions to starsB positions
                          out err_mess : string   // any error message
                           ): boolean; //succes

var
  matrix      : Tmatrix;
  vector      : Tsolutionvector;//array[0..9] of Double;
  s1,
  s2          : s_star;
  sumx2,
  sumx2x1,
  sumx2y1,
  sumx2x1sq,
  sumx2x1y1,
  sumx2y1sq,
  sumx2x1cu,
  sumx2x1sqy1,
  sumx2x1y1sq,
  sumx2y1cu,
  sumy2,
  sumy2x1,
  sumy2y1,
  sumy2x1sq,
  sumy2x1y1,
  sumy2y1sq,
  sumy2x1cu,
  sumy2x1sqy1,
  sumy2x1y1sq,
  sumy2y1cu,
  sum,
  sumx1,
  sumy1,
  sumx1sq,
  sumx1y1,
  sumy1sq,
  sumx1cu,
  sumx1sqy1,
  sumx1y1sq,
  sumy1cu,
  sumx1qu,
  sumx1cuy1,
  sumx1sqy1sq,
  sumx1y1cu,
  sumy1qu,
  sumx1pe,
  sumx1quy1,
  sumx1cuy1sq,
  sumx1sqy1cu,
  sumx1y1qu,
  sumy1pe,
  sumx1he,
  sumx1pey1,
  sumx1quy1sq,
  sumx1cuy1cu,
  sumx1sqy1qu,
  sumx1y1pe,
  sumy1he     : Double;
  r,c,i       : integer;
begin
   // in variable names below, a '1' refers to coordinate of star s1 (which appear on both sides of the matrix equation)
   //                      and a '2' refers to coordinate of star s2 (which appears only on left hand side of matrix equation)

   err_mess:=''; //clear message;
   if length(stars_reference) <10 {AT_MATCH_REQUIRE_CUBIC} then begin err_mess:='Calc_Trans_Cubic: Not enough equations.'; exit(false); end;

   // if_assert(trans.order = AT_TRANS_CUBIC)=false then begin result:=0; exit; end;
   // allocate a matrix we'll need for this function

  SetLength(matrix, 10, 10); // Assuming a 10x10 matrix

  // First, we consider the coefficients x00,x10,x01,x20,x11,x02,x30,x21,x12,x03 in the trans.
  // We form the sums that make up the elements of matrix M
  sum := 0.0;
  sumx1 := 0.0;
  sumy1 := 0.0;
  sumx1sq := 0.0;
  sumx1y1 := 0.0;
  sumy1sq := 0.0;
  sumx1cu := 0.0;
  sumx1sqy1 := 0.0;
  sumx1y1sq := 0.0;
  sumy1cu := 0.0;
  sumx1qu := 0.0;
  sumx1cuy1 := 0.0;
  sumx1sqy1sq := 0.0;
  sumx1y1cu := 0.0;
  sumy1qu := 0.0;
  sumx1pe := 0.0;
  sumx1quy1 := 0.0;
  sumx1cuy1sq := 0.0;
  sumx1sqy1cu := 0.0;
  sumx1y1qu := 0.0;
  sumy1pe := 0.0;
  sumx1he := 0.0;
  sumx1pey1 := 0.0;
  sumx1quy1sq := 0.0;
  sumx1cuy1cu := 0.0;
  sumx1sqy1qu := 0.0;
  sumx1y1pe := 0.0;
  sumy1he := 0.0;
  sumx2 := 0.0;
  sumx2x1 := 0.0;
  sumx2y1 := 0.0;
  sumx2x1sq := 0.0;
  sumx2x1y1 := 0.0;
  sumx2y1sq := 0.0;
  sumx2x1cu := 0.0;
  sumx2x1sqy1 := 0.0;
  sumx2x1y1sq := 0.0;
  sumx2y1cu := 0.0;
  sumy2 := 0.0;
  sumy2x1 := 0.0;
  sumy2y1 := 0.0;
  sumy2x1sq := 0.0;
  sumy2x1y1 := 0.0;
  sumy2y1sq := 0.0;
  sumy2x1cu := 0.0;
  sumy2x1sqy1 := 0.0;
  sumy2x1y1sq := 0.0;
  sumy2y1cu := 0.0;
  for i := 0 to min(length(stars_reference)-1,length(stars_distorted)-1) do //take the minimum of the two array for the case one list is longer. Should not happen normally.
  begin
    sumx2        := sumx2       + stars_distorted[i].x;
    sumx2x1      := sumx2x1     + (stars_distorted[i].x * stars_reference[i].x);
    sumx2y1      := sumx2y1     + (stars_distorted[i].x * stars_reference[i].y);
    sumx2x1sq    := sumx2x1sq   + (stars_distorted[i].x * stars_reference[i].x * stars_reference[i].x);
    sumx2x1y1    := sumx2x1y1   + (stars_distorted[i].x * stars_reference[i].x * stars_reference[i].y);
    sumx2y1sq    := sumx2y1sq   + (stars_distorted[i].x * stars_reference[i].y * stars_reference[i].y);
    sumx2x1cu    := sumx2x1cu   + (stars_distorted[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x);
    sumx2x1sqy1  := sumx2x1sqy1 + (stars_distorted[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y);
    sumx2x1y1sq  := sumx2x1y1sq + (stars_distorted[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y);
    sumx2y1cu    := sumx2y1cu   + (stars_distorted[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
    sumy2        := sumy2       + stars_distorted[i].y;
    sumy2x1      := sumy2x1     + (stars_distorted[i].y * stars_reference[i].x);
    sumy2y1      := sumy2y1     + (stars_distorted[i].y * stars_reference[i].y);
    sumy2x1sq    := sumy2x1sq   + (stars_distorted[i].y * stars_reference[i].x * stars_reference[i].x);
    sumy2x1y1    := sumy2x1y1   + (stars_distorted[i].y * stars_reference[i].x * stars_reference[i].y);
    sumy2y1sq    := sumy2y1sq   + (stars_distorted[i].y * stars_reference[i].y * stars_reference[i].y);
    sumy2x1cu    := sumy2x1cu   + (stars_distorted[i].y * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x);
    sumy2x1sqy1  := sumy2x1sqy1 + (stars_distorted[i].y * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y);
    sumy2x1y1sq  := sumy2x1y1sq + (stars_distorted[i].y * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y);
    sumy2y1cu    := sumy2y1cu   + (stars_distorted[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
    { elements of the matrix }
    sum    := sum   + 1.0;
    sumx1  := sumx1 + stars_reference[i].x;
    sumy1  := sumy1 + stars_reference[i].y;
    sumx1sq  := sumx1sq + (stars_reference[i].x * stars_reference[i].x);
    sumx1y1  := sumx1y1 + (stars_reference[i].x * stars_reference[i].y);
    sumy1sq  := sumy1sq + (stars_reference[i].y * stars_reference[i].y);
    sumx1cu    := sumx1cu   + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x);
    sumx1sqy1  := sumx1sqy1 + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].y);
    sumx1y1sq  := sumx1y1sq + (stars_reference[i].x * stars_reference[i].y * stars_reference[i].y);
    sumy1cu    := sumy1cu   + (stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
    sumx1qu      := sumx1qu     + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x);
    sumx1cuy1    := sumx1cuy1   + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y);
    sumx1sqy1sq  := sumx1sqy1sq + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y);
    sumx1y1cu    := sumx1y1cu   + (stars_reference[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
    sumy1qu      := sumy1qu     + (stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
    sumx1pe      := sumx1pe     + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x);
    sumx1quy1    := sumx1quy1   + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y);
    sumx1cuy1sq  := sumx1cuy1sq + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y);
    sumx1sqy1cu  := sumx1sqy1cu + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
    sumx1y1qu    := sumx1y1qu   + (stars_reference[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
    sumy1pe      := sumy1pe     + (stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
    sumx1he      := sumx1he     + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x);
    sumx1pey1    := sumx1pey1   + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y);
    sumx1quy1sq  := sumx1quy1sq + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y);
    sumx1cuy1cu  := sumx1cuy1cu + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
    sumx1sqy1qu  := sumx1sqy1qu + (stars_reference[i].x * stars_reference[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
    sumx1y1pe    := sumx1y1pe   + (stars_reference[i].x * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
    sumy1he      := sumy1he     + (stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y * stars_reference[i].y);
  end;

  // Now turn these sums into a matrix and a vector
  // For the matrix, we fill the lower triangle and then transpose for the upper one rows 0-9 - column 0
  matrix[0][0] := sum;
  matrix[1][0] := sumx1;
  matrix[2][0] := sumy1;
  matrix[3][0] := sumx1sq;
  matrix[4][0] := sumx1y1;
  matrix[5][0] := sumy1sq;
  matrix[6][0] := sumx1cu;
  matrix[7][0] := sumx1sqy1;
  matrix[8][0] := sumx1y1sq;
  matrix[9][0] := sumy1cu;
  //rows 1-9 - column 1
  matrix[1][1] := sumx1sq;
  matrix[2][1] := sumx1y1;
  matrix[3][1] := sumx1cu;
  matrix[4][1] := sumx1sqy1;
  matrix[5][1] := sumx1y1sq;
  matrix[6][1] := sumx1qu;
  matrix[7][1] := sumx1cuy1;
  matrix[8][1] := sumx1sqy1sq;
  matrix[9][1] := sumx1y1cu;
  //rows 2-9 - column 2
  matrix[2][2] := sumy1sq;
  matrix[3][2] := sumx1sqy1;
  matrix[4][2] := sumx1y1sq;
  matrix[5][2] := sumy1cu;
  matrix[6][2] := sumx1cuy1;
  matrix[7][2] := sumx1sqy1sq;
  matrix[8][2] := sumx1y1cu;
  matrix[9][2] := sumy1qu;
  //rows 3-9 - column 3
  matrix[3][3] := sumx1qu;
  matrix[4][3] := sumx1cuy1;
  matrix[5][3] := sumx1sqy1sq;
  matrix[6][3] := sumx1pe;
  matrix[7][3] := sumx1quy1;
  matrix[8][3] := sumx1cuy1sq;
  matrix[9][3] := sumx1sqy1cu;
  //rows 4-9 - column 4
  matrix[4][4] := sumx1sqy1sq;
  matrix[5][4] := sumx1y1cu;
  matrix[6][4] := sumx1quy1;
  matrix[7][4] := sumx1cuy1sq;
  matrix[8][4] := sumx1sqy1cu;
  matrix[9][4] := sumx1y1qu;
  //rows 5-9 - column 5
  matrix[5][5] := sumy1qu;
  matrix[6][5] := sumx1cuy1sq;
  matrix[7][5] := sumx1sqy1cu;
  matrix[8][5] := sumx1y1qu;
  matrix[9][5] := sumy1pe;
  //rows 6-9 - column 6
  matrix[6][6] := sumx1he;
  matrix[7][6] := sumx1pey1;
  matrix[8][6] := sumx1quy1sq;
  matrix[9][6] := sumx1cuy1cu;
  //rows 7-9 - column 7
  matrix[7][7] := sumx1quy1sq;
  matrix[8][7] := sumx1cuy1cu;
  matrix[9][7] := sumx1sqy1qu;
  //rows 8-9 - column 8
  matrix[8][8] := sumx1sqy1qu;
  matrix[9][8] := sumx1y1pe;
  //rows 9 - column 9
  matrix[9][9] := sumy1he;
  // and we transpose
  for r := 0 to 8 do begin
    for c := r + 1 to 9 do begin
      matrix[r][c] := matrix[c][r];
    end;
  end;
  vector[0] := sumx2;
  vector[1] := sumx2x1;
  vector[2] := sumx2y1;
  vector[3] := sumx2x1sq;
  vector[4] := sumx2x1y1;
  vector[5] := sumx2y1sq;
  vector[6] := sumx2x1cu;
  vector[7] := sumx2x1sqy1;
  vector[8] := sumx2x1y1sq;
  vector[9] := sumx2y1cu;
  //Writeln('before calling solution routines for ABCDEFGHIJ, here's matrix');

  // and now call the Gaussian-elimination routines to solve the matrix.
  // The solution for TRANS coefficients A, B, C, D, E, F, I, J will be placed
  // into the elements on 'vector" after "gauss_matrix' finishes.
  if gauss_matrix(matrix, 10, vector,err_mess)=false then
  begin
    err_mess:=err_mess+', Calc_trans_cubic: can not solve for coeffs A,B,C,D,E,F,G,H,I,J';
    exit(false);
  end;
  //Writeln('after calling solution routines, here's matrix');

  trans.x00 := vector[0];
  trans.x10 := vector[1];
  trans.x01 := vector[2];
  trans.x20 := vector[3];
  trans.x11 := vector[4];
  trans.x02 := vector[5];
  trans.x30 := vector[6];
  trans.x21 := vector[7];
  trans.x12 := vector[8];
  trans.x03 := vector[9];

  // Okay, now we solve for TRANS coefficients y00,y10,y01,y20,y11,y02,y30,y21,y12,y03
  // using the * set of equations that relates y' to (x,y)

  //rows 0-9 - column 0
  matrix[0][0] := sum;
  matrix[1][0] := sumx1;
  matrix[2][0] := sumy1;
  matrix[3][0] := sumx1sq;
  matrix[4][0] := sumx1y1;
  matrix[5][0] := sumy1sq;
  matrix[6][0] := sumx1cu;
  matrix[7][0] := sumx1sqy1;
  matrix[8][0] := sumx1y1sq;
  matrix[9][0] := sumy1cu;
  //rows 1-9 - column 1
  matrix[1][1] := sumx1sq;
  matrix[2][1] := sumx1y1;
  matrix[3][1] := sumx1cu;
  matrix[4][1] := sumx1sqy1;
  matrix[5][1] := sumx1y1sq;
  matrix[6][1] := sumx1qu;
  matrix[7][1] := sumx1cuy1;
  matrix[8][1] := sumx1sqy1sq;
  matrix[9][1] := sumx1y1cu;
  //rows 2-9 - column 2
  matrix[2][2] := sumy1sq;
  matrix[3][2] := sumx1sqy1;
  matrix[4][2] := sumx1y1sq;
  matrix[5][2] := sumy1cu;
  matrix[6][2] := sumx1cuy1;
  matrix[7][2] := sumx1sqy1sq;
  matrix[8][2] := sumx1y1cu;
  matrix[9][2] := sumy1qu;
  //rows 3-9 - column 3
  matrix[3][3] := sumx1qu;
  matrix[4][3] := sumx1cuy1;
  matrix[5][3] := sumx1sqy1sq;
  matrix[6][3] := sumx1pe;
  matrix[7][3] := sumx1quy1;
  matrix[8][3] := sumx1cuy1sq;
  matrix[9][3] := sumx1sqy1cu;
  //rows 4-9 - column 4
  matrix[4][4] := sumx1sqy1sq;
  matrix[5][4] := sumx1y1cu;
  matrix[6][4] := sumx1quy1;
  matrix[7][4] := sumx1cuy1sq;
  matrix[8][4] := sumx1sqy1cu;
  matrix[9][4] := sumx1y1qu;
  //rows 5-9 - column 5
  matrix[5][5] := sumy1qu;
  matrix[6][5] := sumx1cuy1sq;
  matrix[7][5] := sumx1sqy1cu;
  matrix[8][5] := sumx1y1qu;
  matrix[9][5] := sumy1pe;
  //rows 6-9 - column 6
  matrix[6][6] := sumx1he;
  matrix[7][6] := sumx1pey1;
  matrix[8][6] := sumx1quy1sq;
  matrix[9][6] := sumx1cuy1cu;
  //rows 7-9 - column 7
  matrix[7][7] := sumx1quy1sq;
  matrix[8][7] := sumx1cuy1cu;
  matrix[9][7] := sumx1sqy1qu;
  //rows 8-9 - column 8
  matrix[8][8] := sumx1sqy1qu;
  matrix[9][8] := sumx1y1pe;
  //rows 9 - column 9
  matrix[9][9] := sumy1he;
  // and we transpose
  for r := 0 to 8 do begin
    for c := r + 1 to 9 do begin
      matrix[r][c] := matrix[c][r];
    end;
  end;
  vector[0] := sumy2;
  vector[1] := sumy2x1;
  vector[2] := sumy2y1;
  vector[3] := sumy2x1sq;
  vector[4] := sumy2x1y1;
  vector[5] := sumy2y1sq;
  vector[6] := sumy2x1cu;
  vector[7] := sumy2x1sqy1;
  vector[8] := sumy2x1y1sq;
  vector[9] := sumy2y1cu;

  //  And now call the Gaussian-elimination routines to solve the matrix.
  if gauss_matrix(matrix, 10, vector,err_mess)=false then
  begin
    err_mess:=err_mess+', Calc_trans_cubic: Can not solve for coeffs y00,y10,y01,y20,y11,y02,y30,y21,y12,y03';
    exit(false);
  end;
  //Writeln('after  calling solution routines, here's matrix');
  //  const   A,K  00
  //  x;      B,L  10
  //  y;      C,M  01
  //  x*x;    D,N  20
  //  x*y;    E,O  11
  //  y*y;    F,P  02
  //  x*x*x;  G,Q  30
  //  x*x*y;  H,R  21
  //  x*y*y;  I,S  12
  //  y*y*y;  J,T  03

  trans.y00 := vector[0];
  trans.y10 := vector[1];
  trans.y01 := vector[2];
  trans.y20 := vector[3];
  trans.y11 := vector[4];
  trans.y02 := vector[5];
  trans.y30 := vector[6];
  trans.y21 := vector[7];
  trans.y12 := vector[8];
  trans.y03 := vector[9];
  //free_matrix(matrix, 10);//Not required in FPC
  Result :=true;
end;



   // TEST PROGRAM FOR DEVELOPMENT ONLY ==================================================================================
{
procedure rotate(rot,x,y :double;var  x2,y2:double);//rotate a vector point, angle seen from y-axis, counter clockwise
var
  sin_rot, cos_rot :double;
begin
  sincos(rot, sin_rot, cos_rot);
  x2:=x * + sin_rot + y*cos_rot;//ROTATION MOON AROUND CENTER OF PLANET
  y2:=x * - cos_rot + y*sin_rot;//SEE PRISMA WIS VADEMECUM BLZ 68
end;

var
  b : TVector;
  i,j,k, count                                 : Integer;
  x,y,x2,y2,testx,testy, maxerrorX,maxerrorY,correction,errorposX,errorposY: Double;

  distorted,reference,ideal:  TStarArray;
  trans:  TTrans;
  sss : string;
  f: textfile;


begin
  count:=0;
  setlength(distorted,50);
  setlength(reference,50);
//  setlength(ideal,10000);
  for j:=1 to +10 do
  begin
    for i:=1 to +10 do
    begin
      //x:=j*150;//image 3000x3000
      //y:=i*150;

      reference[count].x:=i;//reference X
      reference[count].y:=j;//reference X

      distorted[count].x:=i+1000+i*i*0.00001+i*j*0.00002+j*j*0.00003+i*i*i*0.00004+i*i*j*0.00005+i*j*j*0.00006+j*j*j*0.00007;
      distorted[count].y:=j+1000+i*i*0.00008+i*j*0.00009+j*j*0.00010+i*i*i*0.00011+i*i*j*0.00012+i*j*j*0.00013+j*j*j*0.00014;
      inc(count);
      if count>=length(distorted) then break;
    end;
    if count>=length(distorted) then break;
  end;
  setlength(distorted,count);
  setlength(reference,count);



 //TESTING ============


   if Calc_Trans_Cubic(reference, // First array of s_star structure we match the output TRANS takes their coords into those of array B
                       distorted, // Second array of s_star structure we match
                      trans, // Place solved coefficients into this  existing structure's fields
                      sss
                       )=false

   then
     beep  //failure
   else
   //succes

    beep;
// const   A,K
//  x;      B,L
//  y;      C,M
//  x*x;    D,N
//  x*y;    E,O
//  y*y;    F,P
//  x*x*x;  G,Q
//  x*x*y;  H,R
//  x*y*y;  I,S
//  y*y*y;  J,T

    // log_to_file( 'c:\temp\test.txt',floattostr(reference[i].x)+#9+floattostr(reference[i].y)+#9+floattostr(testX)+#9+floattostr(testY));
   beep;
   }
end.