File: astcenc_compute_variance.cpp

package info (click to toggle)
astc-encoder 2.1%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 36,948 kB
  • sloc: cpp: 20,204; python: 2,598; makefile: 156; sh: 15
file content (642 lines) | stat: -rw-r--r-- 18,861 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2020 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------

#if !defined(ASTCENC_DECOMPRESS_ONLY)

/**
 * @brief Functions to calculate variance per channel in a NxN footprint.
 *
 * We need N to be parametric, so the routine below uses summed area tables in
 * order to execute in O(1) time independent of how big N is.
 *
 * The addition uses a Brent-Kung-based parallel prefix adder. This uses the
 * prefix tree to first perform a binary reduction, and then distributes the
 * results. This method means that there is no serial dependency between a
 * given element and the next one, and also significantly improves numerical
 * stability allowing us to use floats rather than doubles.
 */

#include "astcenc_internal.h"

#include <cassert>

/**
 * @brief Generate a prefix-sum array using Brent-Kung algorithm.
 *
 * This will take an input array of the form:
 *     v0, v1, v2, ...
 * ... and modify in-place to turn it into a prefix-sum array of the form:
 *     v0, v0+v1, v0+v1+v2, ...
 *
 * @param d      The array to prefix-sum.
 * @param items  The number of items in the array.
 * @param stride The item spacing in the array; i.e. dense arrays should use 1.
 */
static void brent_kung_prefix_sum(
	float4* d,
	size_t items,
	int stride
) {
	if (items < 2)
		return;

	size_t lc_stride = 2;
	size_t log2_stride = 1;

	// The reduction-tree loop
	do {
		size_t step = lc_stride >> 1;
		size_t start = lc_stride - 1;
		size_t iters = items >> log2_stride;

		float4 *da = d + (start * stride);
		ptrdiff_t ofs = -(ptrdiff_t)(step * stride);
		size_t ofs_stride = stride << log2_stride;

		while (iters)
		{
			*da = *da + da[ofs];
			da += ofs_stride;
			iters--;
		}

		log2_stride += 1;
		lc_stride <<= 1;
	} while (lc_stride <= items);

	// The expansion-tree loop
	do {
		log2_stride -= 1;
		lc_stride >>= 1;

		size_t step = lc_stride >> 1;
		size_t start = step + lc_stride - 1;
		size_t iters = (items - step) >> log2_stride;

		float4 *da = d + (start * stride);
		ptrdiff_t ofs = -(ptrdiff_t)(step * stride);
		size_t ofs_stride = stride << log2_stride;

		while (iters)
		{
			*da = *da + da[ofs];
			da += ofs_stride;
			iters--;
		}
	} while (lc_stride > 2);
}

/**
 * @brief Compute averages and variances for a pixel region.
 *
 * The routine computes both in a single pass, using a summed-area table to
 * decouple the running time from the averaging/variance kernel size.
 *
 * @param arg The input parameter structure.
 */
static void compute_pixel_region_variance(
	astcenc_context& ctx,
	const pixel_region_variance_args* arg
) {
	// Unpack the memory structure into local variables
	const astcenc_image* img = arg->img;
	float rgb_power = arg->rgb_power;
	float alpha_power = arg->alpha_power;
	astcenc_swizzle swz = arg->swz;
	int have_z = arg->have_z;

	int size_x = arg->size.r;
	int size_y = arg->size.g;
	int size_z = arg->size.b;

	int src_offset_x = arg->src_offset.r;
	int src_offset_y = arg->src_offset.g;
	int src_offset_z = arg->src_offset.b;

	int dst_offset_x = arg->dst_offset.r;
	int dst_offset_y = arg->dst_offset.g;
	int dst_offset_z = arg->dst_offset.b;

	int avg_var_kernel_radius = arg->avg_var_kernel_radius;
	int alpha_kernel_radius = arg->alpha_kernel_radius;

	float  *input_alpha_averages = ctx.input_alpha_averages;
	float4 *input_averages = ctx.input_averages;
	float4 *input_variances = ctx.input_variances;
	float4 *work_memory = arg->work_memory;

	// Compute memory sizes and dimensions that we need
	int kernel_radius = MAX(avg_var_kernel_radius, alpha_kernel_radius);
	int kerneldim = 2 * kernel_radius + 1;
	int kernel_radius_xy = kernel_radius;
	int kernel_radius_z = have_z ? kernel_radius : 0;

	int padsize_x = size_x + kerneldim;
	int padsize_y = size_y + kerneldim;
	int padsize_z = size_z + (have_z ? kerneldim : 0);
	int sizeprod = padsize_x * padsize_y * padsize_z;

	int zd_start = have_z ? 1 : 0;
	int are_powers_1 = (rgb_power == 1.0f) && (alpha_power == 1.0f);

	float4 *varbuf1 = work_memory;
	float4 *varbuf2 = work_memory + sizeprod;

	// Scaling factors to apply to Y and Z for accesses into the work buffers
	int yst = padsize_x;
	int zst = padsize_x * padsize_y;

	// Scaling factors to apply to Y and Z for accesses into result buffers
	int ydt = img->dim_x;
	int zdt = img->dim_x * img->dim_y;

	// Macros to act as accessor functions for the work-memory
	#define VARBUF1(z, y, x) varbuf1[z * zst + y * yst + x]
	#define VARBUF2(z, y, x) varbuf2[z * zst + y * yst + x]

	// Load N and N^2 values into the work buffers
	if (img->data_type == ASTCENC_TYPE_U8)
	{
		uint8_t*** data8 = static_cast<uint8_t***>(img->data);

		// Swizzle data structure 4 = ZERO, 5 = ONE
		uint8_t data[6];
		data[ASTCENC_SWZ_0] = 0;
		data[ASTCENC_SWZ_1] = 255;

		for (int z = zd_start; z < padsize_z; z++)
		{
			int z_src = (z - zd_start) + src_offset_z - kernel_radius_z;
			for (int y = 1; y < padsize_y; y++)
			{
				int y_src = (y - 1) + src_offset_y - kernel_radius_xy;
				for (int x = 1; x < padsize_x; x++)
				{
					int x_src = (x - 1) + src_offset_x - kernel_radius_xy;
					data[0] = data8[z_src][y_src][4 * x_src + 0];
					data[1] = data8[z_src][y_src][4 * x_src + 1];
					data[2] = data8[z_src][y_src][4 * x_src + 2];
					data[3] = data8[z_src][y_src][4 * x_src + 3];

					uint8_t r = data[swz.r];
					uint8_t g = data[swz.g];
					uint8_t b = data[swz.b];
					uint8_t a = data[swz.a];

					float4 d = float4 (r * (1.0f / 255.0f),
					                   g * (1.0f / 255.0f),
					                   b * (1.0f / 255.0f),
					                   a * (1.0f / 255.0f));

					if (!are_powers_1)
					{
						d.r = powf(MAX(d.r, 1e-6f), rgb_power);
						d.g = powf(MAX(d.g, 1e-6f), rgb_power);
						d.b = powf(MAX(d.b, 1e-6f), rgb_power);
						d.a = powf(MAX(d.a, 1e-6f), alpha_power);
					}

					VARBUF1(z, y, x) = d;
					VARBUF2(z, y, x) = d * d;
				}
			}
		}
	}
	else if (img->data_type == ASTCENC_TYPE_F16)
	{
		uint16_t*** data16 = static_cast<uint16_t***>(img->data);

		// Swizzle data structure 4 = ZERO, 5 = ONE (in FP16)
		uint16_t data[6];
		data[ASTCENC_SWZ_0] = 0;
		data[ASTCENC_SWZ_1] = 0x3C00;

		for (int z = zd_start; z < padsize_z; z++)
		{
			int z_src = (z - zd_start) + src_offset_z - kernel_radius_z;

			for (int y = 1; y < padsize_y; y++)
			{
				int y_src = (y - 1) + src_offset_y - kernel_radius_xy;
				for (int x = 1; x < padsize_x; x++)
				{
					int x_src = (x - 1) + src_offset_x - kernel_radius_xy;
					data[0] = data16[z_src][y_src][4 * x_src];
					data[1] = data16[z_src][y_src][4 * x_src + 1];
					data[2] = data16[z_src][y_src][4 * x_src + 2];
					data[3] = data16[z_src][y_src][4 * x_src + 3];

					uint16_t r = data[swz.r];
					uint16_t g = data[swz.g];
					uint16_t b = data[swz.b];
					uint16_t a = data[swz.a];

					float4 d = float4(sf16_to_float(r),
					                  sf16_to_float(g),
					                  sf16_to_float(b),
					                  sf16_to_float(a));

					if (!are_powers_1)
					{
						d.r = powf(MAX(d.r, 1e-6f), rgb_power);
						d.g = powf(MAX(d.g, 1e-6f), rgb_power);
						d.b = powf(MAX(d.b, 1e-6f), rgb_power);
						d.a = powf(MAX(d.a, 1e-6f), alpha_power);
					}

					VARBUF1(z, y, x) = d;
					VARBUF2(z, y, x) = d * d;
				}
			}
		}
	}
	else // if (img->data_type == ASTCENC_TYPE_F32)
	{
		assert(img->data_type == ASTCENC_TYPE_F32);
		float*** data32 = static_cast<float***>(img->data);

		// Swizzle data structure 4 = ZERO, 5 = ONE (in FP16)
		float data[6];
		data[ASTCENC_SWZ_0] = 0.0f;
		data[ASTCENC_SWZ_1] = 1.0f;

		for (int z = zd_start; z < padsize_z; z++)
		{
			int z_src = (z - zd_start) + src_offset_z - kernel_radius_z;

			for (int y = 1; y < padsize_y; y++)
			{
				int y_src = (y - 1) + src_offset_y - kernel_radius_xy;
				for (int x = 1; x < padsize_x; x++)
				{
					int x_src = (x - 1) + src_offset_x - kernel_radius_xy;
					data[0] = data32[z_src][y_src][4 * x_src    ];
					data[1] = data32[z_src][y_src][4 * x_src + 1];
					data[2] = data32[z_src][y_src][4 * x_src + 2];
					data[3] = data32[z_src][y_src][4 * x_src + 3];

					float r = data[swz.r];
					float g = data[swz.g];
					float b = data[swz.b];
					float a = data[swz.a];

					float4 d = float4(r, g, b, a);

					if (!are_powers_1)
					{
						d.r = powf(MAX(d.r, 1e-6f), rgb_power);
						d.g = powf(MAX(d.g, 1e-6f), rgb_power);
						d.b = powf(MAX(d.b, 1e-6f), rgb_power);
						d.a = powf(MAX(d.a, 1e-6f), alpha_power);
					}

					VARBUF1(z, y, x) = d;
					VARBUF2(z, y, x) = d * d;
				}
			}
		}
	}

	// Pad with an extra layer of 0s; this forms the edge of the SAT tables
	float4 vbz = float4(0.0f);
	for (int z = 0; z < padsize_z; z++)
	{
		for (int y = 0; y < padsize_y; y++)
		{
			VARBUF1(z, y, 0) = vbz;
			VARBUF2(z, y, 0) = vbz;
		}

		for (int x = 0; x < padsize_x; x++)
		{
			VARBUF1(z, 0, x) = vbz;
			VARBUF2(z, 0, x) = vbz;
		}
	}

	if (have_z)
	{
		for (int y = 0; y < padsize_y; y++)
		{
			for (int x = 0; x < padsize_x; x++)
			{
				VARBUF1(0, y, x) = vbz;
				VARBUF2(0, y, x) = vbz;
			}
		}
	}

	// Generate summed-area tables for N and N^2; this is done in-place, using
	// a Brent-Kung parallel-prefix based algorithm to minimize precision loss
	for (int z = zd_start; z < padsize_z; z++)
	{
		for (int y = 1; y < padsize_y; y++)
		{
			brent_kung_prefix_sum(&(VARBUF1(z, y, 1)), padsize_x - 1, 1);
			brent_kung_prefix_sum(&(VARBUF2(z, y, 1)), padsize_x - 1, 1);
		}
	}

	for (int z = zd_start; z < padsize_z; z++)
	{
		for (int x = 1; x < padsize_x; x++)
		{
			brent_kung_prefix_sum(&(VARBUF1(z, 1, x)), padsize_y - 1, yst);
			brent_kung_prefix_sum(&(VARBUF2(z, 1, x)), padsize_y - 1, yst);
		}
	}

	if (have_z)
	{
		for (int y = 1; y < padsize_y; y++)
		{
			for (int x = 1; x < padsize_x; x++)
			{
				brent_kung_prefix_sum(&(VARBUF1(1, y, x)), padsize_z - 1, zst);
				brent_kung_prefix_sum(&(VARBUF2(1, y, x)), padsize_z - 1, zst);
			}
		}
	}

	int avg_var_kdim = 2 * avg_var_kernel_radius + 1;
	int alpha_kdim = 2 * alpha_kernel_radius + 1;

	// Compute a few constants used in the variance-calculation.
	float avg_var_samples;
	float alpha_rsamples;
	float mul1;

	if (have_z)
	{
		avg_var_samples = (float)(avg_var_kdim * avg_var_kdim * avg_var_kdim);
		alpha_rsamples = 1.0f / (float)(alpha_kdim * alpha_kdim * alpha_kdim);
	}
	else
	{
		avg_var_samples = (float)(avg_var_kdim * avg_var_kdim);
		alpha_rsamples = 1.0f / (float)(alpha_kdim * alpha_kdim);
	}

	float avg_var_rsamples = 1.0f / avg_var_samples;
	if (avg_var_samples == 1)
	{
		mul1 = 1.0f;
	}
	else
	{
		mul1 = 1.0f / (float)(avg_var_samples * (avg_var_samples - 1));
	}

	float mul2 = avg_var_samples * mul1;

	// Use the summed-area tables to compute variance for each neighborhood
	if (have_z)
	{
		for (int z = 0; z < size_z; z++)
		{
			int z_src = z + kernel_radius_z;
			int z_dst = z + dst_offset_z;
			for (int y = 0; y < size_y; y++)
			{
				int y_src = y + kernel_radius_xy;
				int y_dst = y + dst_offset_y;

				for (int x = 0; x < size_x; x++)
				{
					int x_src = x + kernel_radius_xy;
					int x_dst = x + dst_offset_x;

					int x_low  = x_src - alpha_kernel_radius;
					int x_high = x_src + alpha_kernel_radius + 1;
					int y_low  = y_src - alpha_kernel_radius;
					int y_high = y_src + alpha_kernel_radius + 1;
					int z_low  = z_src - alpha_kernel_radius;
					int z_high = z_src + alpha_kernel_radius + 1;

					// Summed-area table lookups for alpha average
					float vasum = (  VARBUF1(z_high, y_low,  x_low).a
					               - VARBUF1(z_high, y_low,  x_high).a
					               - VARBUF1(z_high, y_high, x_low).a
					               + VARBUF1(z_high, y_high, x_high).a) -
					              (  VARBUF1(z_low,  y_low,  x_low).a
					               - VARBUF1(z_low,  y_low,  x_high).a
					               - VARBUF1(z_low,  y_high, x_low).a
					               + VARBUF1(z_low,  y_high, x_high).a);

					int out_index = z_dst * zdt + y_dst * ydt + x_dst;
					input_alpha_averages[out_index] = (vasum * alpha_rsamples);

					x_low  = x_src - avg_var_kernel_radius;
					x_high = x_src + avg_var_kernel_radius + 1;
					y_low  = y_src - avg_var_kernel_radius;
					y_high = y_src + avg_var_kernel_radius + 1;
					z_low  = z_src - avg_var_kernel_radius;
					z_high = z_src + avg_var_kernel_radius + 1;

					// Summed-area table lookups for RGBA average and variance
					float4 v1sum = (  VARBUF1(z_high, y_low,  x_low)
					                - VARBUF1(z_high, y_low,  x_high)
					                - VARBUF1(z_high, y_high, x_low)
					                + VARBUF1(z_high, y_high, x_high)) -
					               (  VARBUF1(z_low,  y_low,  x_low)
					                - VARBUF1(z_low,  y_low,  x_high)
					                - VARBUF1(z_low,  y_high, x_low)
					                + VARBUF1(z_low,  y_high, x_high));

					float4 v2sum = (  VARBUF2(z_high, y_low,  x_low)
					                - VARBUF2(z_high, y_low,  x_high)
					                - VARBUF2(z_high, y_high, x_low)
					                + VARBUF2(z_high, y_high, x_high)) -
					               (  VARBUF2(z_low,  y_low,  x_low)
					                - VARBUF2(z_low,  y_low,  x_high)
					                - VARBUF2(z_low,  y_high, x_low)
					                + VARBUF2(z_low,  y_high, x_high));

					// Compute and emit the average
					float4 avg = v1sum * avg_var_rsamples;
					input_averages[out_index] = avg;

					// Compute and emit the actual variance
					float4 variance = mul2 * v2sum - mul1 * (v1sum * v1sum);
					input_variances[out_index] = variance;
				}
			}
		}
	}
	else
	{
		for (int y = 0; y < size_y; y++)
		{
			int y_src = y + kernel_radius_xy;
			int y_dst = y + dst_offset_y;

			for (int x = 0; x < size_x; x++)
			{
				int x_src = x + kernel_radius_xy;
				int x_dst = x + dst_offset_x;

				int x_low  = x_src - alpha_kernel_radius;
				int x_high = x_src + alpha_kernel_radius + 1;
				int y_low  = y_src - alpha_kernel_radius;
				int y_high = y_src + alpha_kernel_radius + 1;

				// Summed-area table lookups for alpha average
				float vasum = VARBUF1(0, y_low,  x_low).a
				            - VARBUF1(0, y_low,  x_high).a
				            - VARBUF1(0, y_high, x_low).a
				            + VARBUF1(0, y_high, x_high).a;

				int out_index = y_dst * ydt + x_dst;
				input_alpha_averages[out_index] = (vasum * alpha_rsamples);

				x_low  = x_src - avg_var_kernel_radius;
				x_high = x_src + avg_var_kernel_radius + 1;
				y_low  = y_src - avg_var_kernel_radius;
				y_high = y_src + avg_var_kernel_radius + 1;

				// summed-area table lookups for RGBA average and variance
				float4 v1sum = VARBUF1(0, y_low,  x_low)
				             - VARBUF1(0, y_low,  x_high)
				             - VARBUF1(0, y_high, x_low)
				             + VARBUF1(0, y_high, x_high);

				float4 v2sum = VARBUF2(0, y_low,  x_low)
				             - VARBUF2(0, y_low,  x_high)
				             - VARBUF2(0, y_high, x_low)
				             + VARBUF2(0, y_high, x_high);

				// Compute and emit the average
				float4 avg = v1sum * avg_var_rsamples;
				input_averages[out_index] = avg;

				// Compute and emit the actual variance
				float4 variance = mul2 * v2sum - mul1 * (v1sum * v1sum);
				input_variances[out_index] = variance;
			}
		}
	}
}

void compute_averages_and_variances(
	astcenc_context& ctx,
	const avg_var_args &ag
) {
	pixel_region_variance_args arg = ag.arg;
	arg.work_memory = new float4[ag.work_memory_size];

	int size_x = ag.img_size.r;
	int size_y = ag.img_size.g;
	int size_z = ag.img_size.b;

	int step_x = ag.blk_size.r;
	int step_y = ag.blk_size.g;
	int step_z = ag.blk_size.b;

	int padding_xy = arg.img->dim_pad;
	int padding_z = arg.have_z ? padding_xy : 0;

	int y_tasks = (size_y + step_y - 1) / step_y;

	// All threads run this processing loop until there is no work remaining
	while (true)
	{
		unsigned int count;
		unsigned int base = ctx.manage_avg_var.get_task_assignment(1, count);
		if (!count)
		{
			break;
		}

		assert(count == 1);
		int z = (base / (y_tasks)) * step_z;
		int y = (base - (z * y_tasks)) * step_y;

		arg.size.b = MIN(step_z, size_z - z);
		arg.dst_offset.b = z;
		arg.src_offset.b = z + padding_z;

		arg.size.g = MIN(step_y, size_y - y);
		arg.dst_offset.g = y;
		arg.src_offset.g = y + padding_xy;

		for (int x = 0; x < size_x; x += step_x)
		{
			arg.size.r = MIN(step_x, size_x - x);
			arg.dst_offset.r = x;
			arg.src_offset.r = x + padding_xy;
			compute_pixel_region_variance(ctx, &arg);
		}

		ctx.manage_avg_var.complete_task_assignment(count);
	}

	delete[] arg.work_memory;
}

/* Public function, see header file for detailed documentation */
unsigned int init_compute_averages_and_variances(
	astcenc_image& img,
	float rgb_power,
	float alpha_power,
	int avg_var_kernel_radius,
	int alpha_kernel_radius,
	astcenc_swizzle swz,
	pixel_region_variance_args& arg,
	avg_var_args& ag
) {
	int size_x = img.dim_x;
	int size_y = img.dim_y;
	int size_z = img.dim_z;

	// Compute maximum block size and from that the working memory buffer size
	int kernel_radius = MAX(avg_var_kernel_radius, alpha_kernel_radius);
	int kerneldim = 2 * kernel_radius + 1;

	int have_z = (size_z > 1);
	int max_blk_size_xy = have_z ? 16 : 32;
	int max_blk_size_z = MIN(size_z, have_z ? 16 : 1);

	int max_padsize_xy = max_blk_size_xy + kerneldim;
	int max_padsize_z = max_blk_size_z + (have_z ? kerneldim : 0);

	// Perform block-wise averages-and-variances calculations across the image
	// Initialize fields which are not populated until later
	arg.size = int3(0, 0, 0);
	arg.src_offset = int3(0, 0, 0);
	arg.dst_offset = int3(0, 0, 0);
	arg.work_memory = nullptr;

	arg.img = &img;
	arg.rgb_power = rgb_power;
	arg.alpha_power = alpha_power;
	arg.swz = swz;
	arg.have_z = have_z;
	arg.avg_var_kernel_radius = avg_var_kernel_radius;
	arg.alpha_kernel_radius = alpha_kernel_radius;

	ag.arg = arg;
	ag.img_size = int3(size_x, size_y, size_z);
	ag.blk_size = int3(max_blk_size_xy, max_blk_size_xy, max_blk_size_z);
	ag.work_memory_size = 2 * max_padsize_xy * max_padsize_xy * max_padsize_z;

	// The parallel task count
	int z_tasks = (size_z + max_blk_size_z - 1) / max_blk_size_z;
	int y_tasks = (size_y + max_blk_size_xy - 1) / max_blk_size_xy;
	return z_tasks * y_tasks;
}

#endif