1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
|
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2020 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
#if !defined(ASTCENC_DECOMPRESS_ONLY)
/**
* @brief Functions for computing color endpoints and texel weights.
*/
#include <cassert>
#include "astcenc_internal.h"
#include "astcenc_vecmathlib.h"
#ifdef DEBUG_CAPTURE_NAN
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <fenv.h>
#endif
static void compute_endpoints_and_ideal_weights_1_component(
const block_size_descriptor* bsd,
const partition_info* pt,
const imageblock* blk,
const error_weight_block* ewb,
endpoints_and_weights* ei,
unsigned int component
) {
int partition_count = pt->partition_count;
ei->ep.partition_count = partition_count;
float lowvalues[4], highvalues[4];
float partition_error_scale[4];
float linelengths_rcp[4];
int texels_per_block = bsd->texel_count;
const float *error_weights;
const float* data_vr = nullptr;
assert(component <= 3);
switch (component)
{
case 0:
error_weights = ewb->texel_weight_r;
data_vr = blk->data_r;
break;
case 1:
error_weights = ewb->texel_weight_g;
data_vr = blk->data_g;
break;
case 2:
error_weights = ewb->texel_weight_b;
data_vr = blk->data_b;
break;
case 3:
error_weights = ewb->texel_weight_a;
data_vr = blk->data_a;
break;
}
for (int i = 0; i < partition_count; i++)
{
lowvalues[i] = 1e10f;
highvalues[i] = -1e10f;
}
for (int i = 0; i < texels_per_block; i++)
{
if (error_weights[i] > 1e-10f)
{
float value = data_vr[i];
int partition = pt->partition_of_texel[i];
if (value < lowvalues[partition])
{
lowvalues[partition] = value;
}
if (value > highvalues[partition])
{
highvalues[partition] = value;
}
}
}
for (int i = 0; i < partition_count; i++)
{
float diff = highvalues[i] - lowvalues[i];
if (diff < 0)
{
lowvalues[i] = 0.0f;
highvalues[i] = 0.0f;
}
if (diff < 1e-7f)
{
diff = 1e-7f;
}
partition_error_scale[i] = diff * diff;
linelengths_rcp[i] = 1.0f / diff;
}
for (int i = 0; i < texels_per_block; i++)
{
float value = data_vr[i];
int partition = pt->partition_of_texel[i];
value -= lowvalues[partition];
value *= linelengths_rcp[partition];
if (value > 1.0f)
{
value = 1.0f;
}
else if (!(value > 0.0f))
{
value = 0.0f;
}
ei->weights[i] = value;
ei->weight_error_scale[i] = partition_error_scale[partition] * error_weights[i];
assert(!astc::isnan(ei->weight_error_scale[i]));
}
for (int i = 0; i < partition_count; i++)
{
ei->ep.endpt0[i] = float4(blk->red_min, blk->green_min, blk->blue_min, blk->alpha_min);
ei->ep.endpt1[i] = float4(blk->red_max, blk->green_max, blk->blue_max, blk->alpha_max);
switch (component)
{
case 0: // red/x
ei->ep.endpt0[i].r = lowvalues[i];
ei->ep.endpt1[i].r = highvalues[i];
break;
case 1: // green/y
ei->ep.endpt0[i].g = lowvalues[i];
ei->ep.endpt1[i].g = highvalues[i];
break;
case 2: // blue/z
ei->ep.endpt0[i].b = lowvalues[i];
ei->ep.endpt1[i].b = highvalues[i];
break;
case 3: // alpha/w
ei->ep.endpt0[i].a = lowvalues[i];
ei->ep.endpt1[i].a = highvalues[i];
break;
}
}
}
static void compute_endpoints_and_ideal_weights_2_components(
const block_size_descriptor* bsd,
const partition_info* pt,
const imageblock* blk,
const error_weight_block * ewb,
endpoints_and_weights* ei,
int component1,
int component2
) {
int partition_count = pt->partition_count;
ei->ep.partition_count = partition_count;
float4 error_weightings[4];
float4 color_scalefactors[4];
float2 scalefactors[4];
const float *error_weights;
const float* data_vr = nullptr;
const float* data_vg = nullptr;
if (component1 == 0 && component2 == 1)
{
error_weights = ewb->texel_weight_rg;
data_vr = blk->data_r;
data_vg = blk->data_g;
}
else if (component1 == 0 && component2 == 2)
{
error_weights = ewb->texel_weight_rb;
data_vr = blk->data_r;
data_vg = blk->data_b;
}
else // (component1 == 1 && component2 == 2)
{
error_weights = ewb->texel_weight_gb;
data_vr = blk->data_g;
data_vg = blk->data_b;
}
int texels_per_block = bsd->texel_count;
compute_partition_error_color_weightings(bsd, ewb, pt, error_weightings, color_scalefactors);
for (int i = 0; i < partition_count; i++)
{
float s1 = 0, s2 = 0;
switch (component1)
{
case 0:
s1 = color_scalefactors[i].r;
break;
case 1:
s1 = color_scalefactors[i].g;
break;
case 2:
s1 = color_scalefactors[i].b;
break;
case 3:
s1 = color_scalefactors[i].a;
break;
}
switch (component2)
{
case 0:
s2 = color_scalefactors[i].r;
break;
case 1:
s2 = color_scalefactors[i].g;
break;
case 2:
s2 = color_scalefactors[i].b;
break;
case 3:
s2 = color_scalefactors[i].a;
break;
}
scalefactors[i] = normalize(float2(s1, s2)) * 1.41421356f;
}
float lowparam[4], highparam[4];
float2 averages[4];
float2 directions[4];
line2 lines[4];
float scale[4];
float length_squared[4];
for (int i = 0; i < partition_count; i++)
{
lowparam[i] = 1e10;
highparam[i] = -1e10;
}
compute_averages_and_directions_2_components(pt, blk, ewb, scalefactors, component1, component2, averages, directions);
for (int i = 0; i < partition_count; i++)
{
float2 egv = directions[i];
if (egv.r + egv.g < 0.0f)
directions[i] = float2(0.0f) - egv;
}
for (int i = 0; i < partition_count; i++)
{
lines[i].a = averages[i];
if (dot(directions[i], directions[i]) == 0.0f)
{
lines[i].b = normalize(float2(1.0f));
}
else
{
lines[i].b = normalize(directions[i]);
}
}
for (int i = 0; i < texels_per_block; i++)
{
if (error_weights[i] > 1e-10f)
{
int partition = pt->partition_of_texel[i];
float2 point = float2(data_vr[i], data_vg[i]) * scalefactors[partition];
line2 l = lines[partition];
float param = dot(point - l.a, l.b);
ei->weights[i] = param;
if (param < lowparam[partition])
{
lowparam[partition] = param;
}
if (param > highparam[partition])
{
highparam[partition] = param;
}
}
else
{
ei->weights[i] = -1e38f;
}
}
float2 lowvalues[4];
float2 highvalues[4];
for (int i = 0; i < partition_count; i++)
{
float length = highparam[i] - lowparam[i];
if (length < 0.0f) // case for when none of the texels had any weight
{
lowparam[i] = 0.0f;
highparam[i] = 1e-7f;
}
// it is possible for a uniform-color partition to produce length=0; this
// causes NaN-production and NaN-propagation later on. Set length to
// a small value to avoid this problem.
if (length < 1e-7f)
{
length = 1e-7f;
}
length_squared[i] = length * length;
scale[i] = 1.0f / length;
float2 ep0 = lines[i].a + lines[i].b * lowparam[i];
float2 ep1 = lines[i].a + lines[i].b * highparam[i];
ep0.r /= scalefactors[i].r;
ep0.g /= scalefactors[i].g;
ep1.r /= scalefactors[i].r;
ep1.g /= scalefactors[i].g;
lowvalues[i] = ep0;
highvalues[i] = ep1;
}
for (int i = 0; i < partition_count; i++)
{
ei->ep.endpt0[i] = float4(blk->red_min, blk->green_min, blk->blue_min, blk->alpha_min);
ei->ep.endpt1[i] = float4(blk->red_max, blk->green_max, blk->blue_max, blk->alpha_max);
float2 ep0 = lowvalues[i];
float2 ep1 = highvalues[i];
switch (component1)
{
case 0:
ei->ep.endpt0[i].r = ep0.r;
ei->ep.endpt1[i].r = ep1.r;
break;
case 1:
ei->ep.endpt0[i].g = ep0.r;
ei->ep.endpt1[i].g = ep1.r;
break;
case 2:
ei->ep.endpt0[i].b = ep0.r;
ei->ep.endpt1[i].b = ep1.r;
break;
case 3:
ei->ep.endpt0[i].a = ep0.r;
ei->ep.endpt1[i].a = ep1.r;
break;
}
switch (component2)
{
case 0:
ei->ep.endpt0[i].r = ep0.g;
ei->ep.endpt1[i].r = ep1.g;
break;
case 1:
ei->ep.endpt0[i].g = ep0.g;
ei->ep.endpt1[i].g = ep1.g;
break;
case 2:
ei->ep.endpt0[i].b = ep0.g;
ei->ep.endpt1[i].b = ep1.g;
break;
case 3:
ei->ep.endpt0[i].a = ep0.g;
ei->ep.endpt1[i].a = ep1.g;
break;
}
}
for (int i = 0; i < texels_per_block; i++)
{
int partition = pt->partition_of_texel[i];
float idx = (ei->weights[i] - lowparam[partition]) * scale[partition];
if (idx > 1.0f)
{
idx = 1.0f;
}
else if (!(idx > 0.0f))
{
idx = 0.0f;
}
ei->weights[i] = idx;
ei->weight_error_scale[i] = length_squared[partition] * error_weights[i];
assert(!astc::isnan(ei->weight_error_scale[i]));
}
}
static void compute_endpoints_and_ideal_weights_3_components(
const block_size_descriptor* bsd,
const partition_info* pt,
const imageblock* blk,
const error_weight_block* ewb,
endpoints_and_weights* ei,
int omittedComponent
) {
int partition_count = pt->partition_count;
ei->ep.partition_count = partition_count;
float4 error_weightings[4];
float4 color_scalefactors[4];
float3 scalefactors[4];
int texels_per_block = bsd->texel_count;
const float *error_weights;
const float* data_vr = nullptr;
const float* data_vg = nullptr;
const float* data_vb = nullptr;
if (omittedComponent == 0)
{
error_weights = ewb->texel_weight_gba;
data_vr = blk->data_g;
data_vg = blk->data_b;
data_vb = blk->data_a;
}
else if (omittedComponent == 1)
{
error_weights = ewb->texel_weight_rba;
data_vr = blk->data_r;
data_vg = blk->data_b;
data_vb = blk->data_a;
}
else if (omittedComponent == 2)
{
error_weights = ewb->texel_weight_rga;
data_vr = blk->data_r;
data_vg = blk->data_g;
data_vb = blk->data_a;
}
else
{
error_weights = ewb->texel_weight_rgb;
data_vr = blk->data_r;
data_vg = blk->data_g;
data_vb = blk->data_b;
}
compute_partition_error_color_weightings(bsd, ewb, pt, error_weightings, color_scalefactors);
for (int i = 0; i < partition_count; i++)
{
float s1 = 0, s2 = 0, s3 = 0;
switch (omittedComponent)
{
case 0:
s1 = color_scalefactors[i].g;
s2 = color_scalefactors[i].b;
s3 = color_scalefactors[i].a;
break;
case 1:
s1 = color_scalefactors[i].r;
s2 = color_scalefactors[i].b;
s3 = color_scalefactors[i].a;
break;
case 2:
s1 = color_scalefactors[i].r;
s2 = color_scalefactors[i].g;
s3 = color_scalefactors[i].a;
break;
case 3:
s1 = color_scalefactors[i].r;
s2 = color_scalefactors[i].g;
s3 = color_scalefactors[i].b;
break;
}
scalefactors[i] = normalize(float3(s1, s2, s3)) * 1.73205080f;
}
float lowparam[4], highparam[4];
float3 averages[4];
float3 directions[4];
line3 lines[4];
float scale[4];
float length_squared[4];
for (int i = 0; i < partition_count; i++)
{
lowparam[i] = 1e10f;
highparam[i] = -1e10f;
}
compute_averages_and_directions_3_components(pt, blk, ewb, scalefactors, omittedComponent, averages, directions);
for (int i = 0; i < partition_count; i++)
{
float3 direc = directions[i];
if (direc.r + direc.g + direc.b < 0.0f)
{
directions[i] = float3(0.0f) - direc;
}
}
for (int i = 0; i < partition_count; i++)
{
lines[i].a = averages[i];
if (dot(directions[i], directions[i]) == 0.0f)
{
lines[i].b = normalize(float3(1.0f));
}
else
{
lines[i].b = normalize(directions[i]);
}
}
for (int i = 0; i < texels_per_block; i++)
{
if (error_weights[i] > 1e-10f)
{
int partition = pt->partition_of_texel[i];
float3 point = float3(data_vr[i], data_vg[i], data_vb[i]) * scalefactors[partition];
line3 l = lines[partition];
float param = dot(point - l.a, l.b);
ei->weights[i] = param;
if (param < lowparam[partition])
{
lowparam[partition] = param;
}
if (param > highparam[partition])
{
highparam[partition] = param;
}
}
else
{
ei->weights[i] = -1e38f;
}
}
float3 lowvalues[4];
float3 highvalues[4];
for (int i = 0; i < partition_count; i++)
{
float length = highparam[i] - lowparam[i];
if (length < 0) // case for when none of the texels had any weight
{
lowparam[i] = 0.0f;
highparam[i] = 1e-7f;
}
// it is possible for a uniform-color partition to produce length=0; this
// causes NaN-production and NaN-propagation later on. Set length to
// a small value to avoid this problem.
if (length < 1e-7f)
{
length = 1e-7f;
}
length_squared[i] = length * length;
scale[i] = 1.0f / length;
float3 ep0 = lines[i].a + lines[i].b * lowparam[i];
float3 ep1 = lines[i].a + lines[i].b * highparam[i];
ep0.r /= scalefactors[i].r;
ep0.g /= scalefactors[i].g;
ep0.b /= scalefactors[i].b;
ep1.r /= scalefactors[i].r;
ep1.g /= scalefactors[i].g;
ep1.b /= scalefactors[i].b;
lowvalues[i] = ep0;
highvalues[i] = ep1;
}
for (int i = 0; i < partition_count; i++)
{
ei->ep.endpt0[i] = float4(blk->red_min, blk->green_min, blk->blue_min, blk->alpha_min);
ei->ep.endpt1[i] = float4(blk->red_max, blk->green_max, blk->blue_max, blk->alpha_max);
float3 ep0 = lowvalues[i];
float3 ep1 = highvalues[i];
switch (omittedComponent)
{
case 0:
ei->ep.endpt0[i].g = ep0.r;
ei->ep.endpt0[i].b = ep0.g;
ei->ep.endpt0[i].a = ep0.b;
ei->ep.endpt1[i].g = ep1.r;
ei->ep.endpt1[i].b = ep1.g;
ei->ep.endpt1[i].a = ep1.b;
break;
case 1:
ei->ep.endpt0[i].r = ep0.r;
ei->ep.endpt0[i].b = ep0.g;
ei->ep.endpt0[i].a = ep0.b;
ei->ep.endpt1[i].r = ep1.r;
ei->ep.endpt1[i].b = ep1.g;
ei->ep.endpt1[i].a = ep1.b;
break;
case 2:
ei->ep.endpt0[i].r = ep0.r;
ei->ep.endpt0[i].g = ep0.g;
ei->ep.endpt0[i].a = ep0.b;
ei->ep.endpt1[i].r = ep1.r;
ei->ep.endpt1[i].g = ep1.g;
ei->ep.endpt1[i].a = ep1.b;
break;
case 3:
ei->ep.endpt0[i].r = ep0.r;
ei->ep.endpt0[i].g = ep0.g;
ei->ep.endpt0[i].b = ep0.b;
ei->ep.endpt1[i].r = ep1.r;
ei->ep.endpt1[i].g = ep1.g;
ei->ep.endpt1[i].b = ep1.b;
break;
}
}
for (int i = 0; i < texels_per_block; i++)
{
int partition = pt->partition_of_texel[i];
float idx = (ei->weights[i] - lowparam[partition]) * scale[partition];
if (idx > 1.0f)
{
idx = 1.0f;
}
else if (!(idx > 0.0f))
{
idx = 0.0f;
}
ei->weights[i] = idx;
ei->weight_error_scale[i] = length_squared[partition] * error_weights[i];
assert(!astc::isnan(ei->weight_error_scale[i]));
}
}
static void compute_endpoints_and_ideal_weights_rgba(
const block_size_descriptor* bsd,
const partition_info* pt,
const imageblock* blk,
const error_weight_block* ewb,
endpoints_and_weights* ei
) {
const float *error_weights = ewb->texel_weight;
int partition_count = pt->partition_count;
float lowparam[4], highparam[4];
for (int i = 0; i < partition_count; i++)
{
lowparam[i] = 1e10;
highparam[i] = -1e10;
}
float4 averages[4];
float4 directions_rgba[4];
line4 lines[4];
float scale[4];
float length_squared[4];
float4 error_weightings[4];
float4 color_scalefactors[4];
float4 scalefactors[4];
int texels_per_block = bsd->texel_count;
compute_partition_error_color_weightings(bsd, ewb, pt, error_weightings, color_scalefactors);
for (int i = 0; i < partition_count; i++)
{
scalefactors[i] = normalize(color_scalefactors[i]) * 2.0f;
}
compute_averages_and_directions_rgba(pt, blk, ewb, scalefactors, averages, directions_rgba);
// if the direction-vector ends up pointing from light to dark, FLIP IT!
// this will make the first endpoint the darkest one.
for (int i = 0; i < partition_count; i++)
{
float4 direc = directions_rgba[i];
if (direc.r + direc.g + direc.b < 0.0f)
{
directions_rgba[i] = float4(0.0f) - direc;
}
}
for (int i = 0; i < partition_count; i++)
{
lines[i].a = averages[i];
if (dot(directions_rgba[i], directions_rgba[i]) == 0.0f)
{
lines[i].b = normalize(float4(1.0f));
}
else
{
lines[i].b = normalize(directions_rgba[i]);
}
}
for (int i = 0; i < texels_per_block; i++)
{
if (error_weights[i] > 1e-10f)
{
int partition = pt->partition_of_texel[i];
float4 point = float4(blk->data_r[i], blk->data_g[i], blk->data_b[i], blk->data_a[i]) * scalefactors[partition];
line4 l = lines[partition];
float param = dot(point - l.a, l.b);
ei->weights[i] = param;
if (param < lowparam[partition])
{
lowparam[partition] = param;
}
if (param > highparam[partition])
{
highparam[partition] = param;
}
}
else
{
ei->weights[i] = -1e38f;
}
}
for (int i = 0; i < partition_count; i++)
{
float length = highparam[i] - lowparam[i];
if (length < 0)
{
lowparam[i] = 0.0f;
highparam[i] = 1e-7f;
}
// it is possible for a uniform-color partition to produce length=0; this
// causes NaN-production and NaN-propagation later on. Set length to
// a small value to avoid this problem.
if (length < 1e-7f)
{
length = 1e-7f;
}
length_squared[i] = length * length;
scale[i] = 1.0f / length;
float4 ep0 = lines[i].a + lines[i].b * lowparam[i];
float4 ep1 = lines[i].a + lines[i].b * highparam[i];
ep0.r /= scalefactors[i].r;
ep0.g /= scalefactors[i].g;
ep0.b /= scalefactors[i].b;
ep0.a /= scalefactors[i].a;
ep1.r /= scalefactors[i].r;
ep1.g /= scalefactors[i].g;
ep1.b /= scalefactors[i].b;
ep1.a /= scalefactors[i].a;
ei->ep.endpt0[i] = ep0;
ei->ep.endpt1[i] = ep1;
}
for (int i = 0; i < texels_per_block; i++)
{
int partition = pt->partition_of_texel[i];
float idx = (ei->weights[i] - lowparam[partition]) * scale[partition];
if (idx > 1.0f)
{
idx = 1.0f;
}
else if (!(idx > 0.0f))
{
idx = 0.0f;
}
ei->weights[i] = idx;
ei->weight_error_scale[i] = error_weights[i] * length_squared[partition];
assert(!astc::isnan(ei->weight_error_scale[i]));
}
}
/*
For a given partitioning, compute: for each partition, the ideal endpoint colors;
these define a color line for the partition. for each pixel, the ideal position of the pixel on the partition's
color line. for each pixel, the length of the color line.
These data allow us to assess the error introduced by removing and quantizing the per-pixel weights.
*/
void compute_endpoints_and_ideal_weights_1_plane(
const block_size_descriptor* bsd,
const partition_info* pt,
const imageblock* blk,
const error_weight_block* ewb,
endpoints_and_weights* ei
) {
int uses_alpha = imageblock_uses_alpha(blk);
if (uses_alpha)
{
compute_endpoints_and_ideal_weights_rgba(bsd, pt, blk, ewb, ei);
}
else
{
compute_endpoints_and_ideal_weights_3_components(bsd, pt, blk, ewb, ei, 3);
}
}
void compute_endpoints_and_ideal_weights_2_planes(
const block_size_descriptor* bsd,
const partition_info* pt,
const imageblock* blk,
const error_weight_block* ewb,
int separate_component,
endpoints_and_weights* ei1,
endpoints_and_weights* ei2
) {
int uses_alpha = imageblock_uses_alpha(blk);
switch (separate_component)
{
case 0: // separate weights for red
if (uses_alpha == 1)
{
compute_endpoints_and_ideal_weights_3_components(bsd, pt, blk, ewb, ei1, 0);
}
else
{
compute_endpoints_and_ideal_weights_2_components(bsd, pt, blk, ewb, ei1, 1, 2);
}
compute_endpoints_and_ideal_weights_1_component(bsd, pt, blk, ewb, ei2, 0);
break;
case 1: // separate weights for green
if (uses_alpha == 1)
{
compute_endpoints_and_ideal_weights_3_components(bsd, pt, blk, ewb, ei1, 1);
}
else
{
compute_endpoints_and_ideal_weights_2_components(bsd, pt, blk, ewb, ei1, 0, 2);
}
compute_endpoints_and_ideal_weights_1_component(bsd, pt, blk, ewb, ei2, 1);
break;
case 2: // separate weights for blue
if (uses_alpha == 1)
{
compute_endpoints_and_ideal_weights_3_components(bsd, pt, blk, ewb, ei1, 2);
}
else
{
compute_endpoints_and_ideal_weights_2_components(bsd, pt, blk, ewb, ei1, 0, 1);
}
compute_endpoints_and_ideal_weights_1_component(bsd, pt, blk, ewb, ei2, 2);
break;
case 3: // separate weights for alpha
assert(uses_alpha != 0);
compute_endpoints_and_ideal_weights_3_components(bsd, pt, blk, ewb, ei1, 3);
compute_endpoints_and_ideal_weights_1_component(bsd, pt, blk, ewb, ei2, 3);
break;
}
}
/*
After having computed ideal weights for the case where a weight exists for
every texel, we want to compute the ideal weights for the case where weights
exist only for some texels.
We do this with a steepest-descent grid solver; this works as follows:
* First, for each actual weight, perform a weighted averaging based on the
texels affected by the weight.
* Then, set step size to <some initial value>
* Then, repeat:
1: First, compute for each weight how much the error will change
if we change the weight by an infinitesimal amount.
2: This produces a vector that points the direction we should step in.
Normalize this vector.
3: Perform a step
4: Check if the step actually improved the error. If it did, perform
another step in the same direction; repeat until error no longer
improves. If the *first* step did not improve error, then we halve
the step size.
5: If the step size dropped down below <some threshold value>,
then we quit, else we go back to #1.
Subroutines: one routine to apply a step and compute the step's effect on
the error one routine to compute the error change of an infinitesimal
weight change
Data structures needed:
For every decimation pattern, we need:
* For each weight, a list of <texel, weight> tuples that tell which texels
the weight influences.
* For each texel, a list of <texel, weight> tuples that tell which weights
go into a given texel.
*/
static float compute_value_of_texel_flt(
int texel_to_get,
const decimation_table* it,
const float* weights
) {
const uint8_t *texel_weights = it->texel_weights[texel_to_get];
const float *texel_weights_float = it->texel_weights_float[texel_to_get];
return (weights[texel_weights[0]] * texel_weights_float[0] +
weights[texel_weights[1]] * texel_weights_float[1]) +
(weights[texel_weights[2]] * texel_weights_float[2] +
weights[texel_weights[3]] * texel_weights_float[3]);
}
static inline float compute_error_of_texel(
const endpoints_and_weights * eai,
int texel_to_get,
const decimation_table* it,
const float *weights
) {
float current_value = compute_value_of_texel_flt(texel_to_get, it, weights);
float valuedif = current_value - eai->weights[texel_to_get];
return valuedif * valuedif * eai->weight_error_scale[texel_to_get];
}
float compute_error_of_weight_set(
const endpoints_and_weights* eai,
const decimation_table* it,
const float* weights
) {
int texel_count = it->num_texels;
float error_summa = 0.0;
for (int i = 0; i < texel_count; i++)
{
error_summa += compute_error_of_texel(eai, i, it, weights);
}
return error_summa;
}
/*
Given a complete weight set and a decimation table, try to
compute the optimal weight set (assuming infinite precision)
given the selected decimation table.
*/
void compute_ideal_weights_for_decimation_table(
const endpoints_and_weights* eai,
const decimation_table* it,
float* weight_set,
float* weights
) {
int texels_per_block = it->num_texels;
int weight_count = it->num_weights;
// perform a shortcut in the case of a complete decimation table
if (texels_per_block == weight_count)
{
for (int i = 0; i < it->num_texels; i++)
{
int texel = it->weight_texel[i][0];
weight_set[i] = eai->weights[texel];
weights[i] = eai->weight_error_scale[texel];
}
return;
}
// if the shortcut is not available, we will instead compute a simple estimate
// and perform a single iteration of refinement on that estimate.
float infilled_weights[MAX_TEXELS_PER_BLOCK];
// compute an initial average for each weight.
for (int i = 0; i < weight_count; i++)
{
int texel_count = it->weight_num_texels[i];
float weight_weight = 1e-10f; // to avoid 0/0 later on
float initial_weight = 0.0f;
for (int j = 0; j < texel_count; j++)
{
int texel = it->weight_texel[i][j];
float weight = it->weights_flt[i][j];
float contrib_weight = weight * eai->weight_error_scale[texel];
weight_weight += contrib_weight;
initial_weight += eai->weights[texel] * contrib_weight;
}
weights[i] = weight_weight;
weight_set[i] = initial_weight / weight_weight; // this is the 0/0 that is to be avoided.
}
for (int i = 0; i < texels_per_block; i++)
{
const uint8_t *texel_weights = it->texel_weights[i];
const float *texel_weights_float = it->texel_weights_float[i];
infilled_weights[i] = (weight_set[texel_weights[0]] * texel_weights_float[0]
+ weight_set[texel_weights[1]] * texel_weights_float[1])
+ (weight_set[texel_weights[2]] * texel_weights_float[2]
+ weight_set[texel_weights[3]] * texel_weights_float[3]);
}
constexpr float stepsize = 0.25f;
constexpr float ch0_scale = 4.0f * (stepsize * stepsize * (1.0f / (TEXEL_WEIGHT_SUM * TEXEL_WEIGHT_SUM)));
constexpr float ch1_scale = -2.0f * (stepsize * (2.0f / TEXEL_WEIGHT_SUM));
constexpr float chd_scale = (ch1_scale / ch0_scale) * stepsize;
for (int i = 0; i < weight_count; i++)
{
float weight_val = weight_set[i];
const uint8_t *weight_texel_ptr = it->weight_texel[i];
const float *weights_ptr = it->weights_flt[i];
// compute the two error changes that can occur from perturbing the current index.
int num_weights = it->weight_num_texels[i];
float error_change0 = 1e-10f; // done in order to ensure that this value isn't 0, in order to avoid a possible divide by zero later.
float error_change1 = 0.0f;
for (int k = 0; k < num_weights; k++)
{
uint8_t weight_texel = weight_texel_ptr[k];
float weights2 = weights_ptr[k];
float scale = eai->weight_error_scale[weight_texel] * weights2;
float old_weight = infilled_weights[weight_texel];
float ideal_weight = eai->weights[weight_texel];
error_change0 += weights2 * scale;
error_change1 += (old_weight - ideal_weight) * scale;
}
float step = (error_change1 * chd_scale) / error_change0;
// clamp the step-value.
if (step < -stepsize)
{
step = -stepsize;
}
else if (step > stepsize)
{
step = stepsize;
}
// update the weight
weight_set[i] = weight_val + step;
}
}
/*
For a decimation table, try to compute an optimal weight set, assuming
that the weights are quantized and subject to a transfer function.
We do this as follows:
First, we take the initial weights and quantize them. This is our initial estimate.
Then, go through the weights one by one; try to perturb then up and down one weight at a
time; apply any perturbations that improve overall error
Repeat until we have made a complete processing pass over all weights without
triggering any perturbations *OR* we have run 4 full passes.
*/
void compute_ideal_quantized_weights_for_decimation_table(
const decimation_table* it,
float low_bound,
float high_bound,
const float* weight_set_in,
float* weight_set_out,
uint8_t* quantized_weight_set,
int quantization_level
) {
int weight_count = it->num_weights;
const quantization_and_transfer_table *qat = &(quant_and_xfer_tables[quantization_level]);
static const int quant_levels[12] = { 2,3,4,5,6,8,10,12,16,20,24,32 };
float quant_level_m1 = (float)(quant_levels[quantization_level] - 1);
// Quantize the weight set using both the specified low/high bounds
// and the standard 0..1 weight bounds.
/*
TODO: WTF issue that we need to examine some time
*/
if (!((high_bound - low_bound) > 0.5f))
{
low_bound = 0.0f;
high_bound = 1.0f;
}
float rscale = high_bound - low_bound;
float scale = 1.0f / rscale;
float scaled_low_bound = low_bound * scale;
rscale *= 1.0f / 64.0f;
int i = 0;
#if ASTCENC_SIMD_WIDTH > 1
// SIMD loop; process weights in SIMD width batches while we can.
int clipped_weight_count = weight_count & ~(ASTCENC_SIMD_WIDTH-1);
vfloat scalev(scale);
vfloat scaled_low_boundv(scaled_low_bound);
vfloat quant_level_m1v(quant_level_m1);
vfloat rscalev(rscale);
vfloat low_boundv(low_bound);
for (/*Vector loop */; i < clipped_weight_count; i += ASTCENC_SIMD_WIDTH)
{
vfloat ix = loada(&weight_set_in[i]) * scalev - scaled_low_boundv;
ix = saturate(ix); // upper bound must be smaller than 1 to avoid an array overflow below.
// look up the two closest indexes and return the one that was closest.
vfloat ix1 = ix * quant_level_m1v;
vint weight = floatToInt(ix1);
vint weight1 = weight+vint(1);
vfloat ixl = gatherf(qat->unquantized_value_unsc, weight);
vfloat ixh = gatherf(qat->unquantized_value_unsc, weight1);
vmask mask = ixl + ixh < vfloat(128.0f) * ix;
weight = select(weight, weight1, mask);
ixl = select(ixl, ixh, mask);
// Invert the weight-scaling that was done initially
store(ixl * rscalev + low_boundv, &weight_set_out[i]);
vint scm = gatheri(qat->scramble_map, weight);
vint scn = pack_low_bytes(scm);
store_nbytes(scn, &quantized_weight_set[i]);
}
#endif // #if ASTCENC_SIMD_WIDTH > 1
// Process remaining weights in a scalar way.
for (/* Loop tail */; i < weight_count; i++)
{
float ix = (weight_set_in[i] * scale) - scaled_low_bound;
if (ix < 0.0f)
{
ix = 0.0f;
}
if (ix > 1.0f) // upper bound must be smaller than 1 to avoid an array overflow below.
{
ix = 1.0f;
}
// look up the two closest indexes and return the one that was closest.
float ix1 = ix * quant_level_m1;
int weight = (int)ix1;
float ixl = qat->unquantized_value_unsc[weight];
float ixh = qat->unquantized_value_unsc[weight + 1];
if (ixl + ixh < 128.0f * ix)
{
weight++;
ixl = ixh;
}
// Invert the weight-scaling that was done initially
weight_set_out[i] = (ixl * rscale) + low_bound;
quantized_weight_set[i] = (uint8_t)qat->scramble_map[weight];
}
}
static inline float4 compute_rgbovec(
float4 rgba_weight_sum,
float3 weight_weight_sum,
float red_sum,
float green_sum,
float blue_sum,
float psum,
float qsum
) {
// Compute the rgb+offset for HDR endpoint mode #7. Since the matrix needed
// has a regular structure, we can simplify the inverse calculation. This
// gives us ~24 multiplications, down from 96 for a generic inverse
// mat[0] = float4(rgba_ws.x, 0.0f, 0.0f, wght_ws.x);
// mat[1] = float4( 0.0f, rgba_ws.y, 0.0f, wght_ws.y);
// mat[2] = float4( 0.0f, 0.0f, rgba_ws.z, wght_ws.z);
// mat[3] = float4(wght_ws.x, wght_ws.y, wght_ws.z, psum);
// mat = invert(mat);
float X = rgba_weight_sum.r;
float Y = rgba_weight_sum.g;
float Z = rgba_weight_sum.b;
float P = weight_weight_sum.r;
float Q = weight_weight_sum.g;
float R = weight_weight_sum.b;
float S = psum;
float PP = P * P;
float QQ = Q * Q;
float RR = R * R;
float SZmRR = S * Z - RR;
float DT = SZmRR * Y - Z * QQ;
float YP = Y * P;
float QX = Q * X;
float YX = Y * X;
float mZYP = -Z * YP;
float mZQX = -Z * QX;
float mRYX = -R * YX;
float ZQP = Z * Q * P;
float RYP = R * YP;
float RQX = R * QX;
// Compute the reciprocal of matrix determinant.
float rdet = 1.0f / (DT * X + mZYP * P);
// Actually compute the adjugate matrix, not the inverse, and apply the
// multiplication by 1/det to the vector separately.
float4 mat0 = float4(DT, ZQP, RYP, mZYP);
float4 mat1 = float4(ZQP, SZmRR * X - Z * PP, RQX, mZQX);
float4 mat2 = float4(RYP, RQX, (S * Y - QQ) * X - Y * PP, mRYX);
float4 mat3 = float4(mZYP, mZQX, mRYX, Z * YX);
float4 vect = float4(red_sum, green_sum, blue_sum, qsum) * rdet;
#ifdef DEBUG_CAPTURE_NAN
fedisableexcept(FE_DIVBYZERO | FE_INVALID);
#endif
return float4(dot(mat0, vect),
dot(mat1, vect),
dot(mat2, vect),
dot(mat3, vect));
}
/* for a given weight set, we wish to recompute the colors so that they are optimal for a particular weight set. */
void recompute_ideal_colors(
int weight_quantization_mode,
endpoints* ep, // contains the endpoints we wish to update
float4* rgbs_vectors, // used to return RGBS-vectors for endpoint mode #6
float4* rgbo_vectors, // used to return RGBO-vectors for endpoint mode #7
const uint8_t* weight_set8, // the current set of weight values
const uint8_t* plane2_weight_set8, // nullptr if plane 2 is not actually used.
int plane2_color_component, // color component for 2nd plane of weights; -1 if the 2nd plane of weights is not present
const partition_info* pi,
const decimation_table* it,
const imageblock* pb, // picture-block containing the actual data.
const error_weight_block* ewb
) {
const quantization_and_transfer_table *qat = &(quant_and_xfer_tables[weight_quantization_mode]);
float weight_set[MAX_WEIGHTS_PER_BLOCK];
float plane2_weight_set[MAX_WEIGHTS_PER_BLOCK];
for (int i = 0; i < it->num_weights; i++)
{
weight_set[i] = qat->unquantized_value[weight_set8[i]] * (1.0f / 64.0f);
}
if (plane2_weight_set8)
{
for (int i = 0; i < it->num_weights; i++)
{
plane2_weight_set[i] = qat->unquantized_value[plane2_weight_set8[i]] * (1.0f / 64.0f);
}
}
int partition_count = pi->partition_count;
for (int i = 0; i < partition_count; i++)
{
float4 rgba_sum = float4(1e-17f);
float4 rgba_weight_sum = float4(1e-17f);
int texelcount = pi->texels_per_partition[i];
const uint8_t *texel_indexes = pi->texels_of_partition[i];
for (int j = 0; j < texelcount; j++)
{
int tix = texel_indexes[j];
float4 rgba = float4(pb->data_r[tix], pb->data_g[tix], pb->data_b[tix], pb->data_a[tix]);
float4 error_weight = float4(ewb->texel_weight_r[tix], ewb->texel_weight_g[tix], ewb->texel_weight_b[tix], ewb->texel_weight_a[tix]);
rgba_sum = rgba_sum + (rgba * error_weight);
rgba_weight_sum = rgba_weight_sum + error_weight;
}
float3 scale_direction = normalize(float3(
rgba_sum.r * (1.0f / rgba_weight_sum.r),
rgba_sum.g * (1.0f / rgba_weight_sum.g),
rgba_sum.b * (1.0f / rgba_weight_sum.b)));
float scale_max = 0.0f;
float scale_min = 1e10f;
float wmin1 = 1.0f;
float wmax1 = 0.0f;
float wmin2 = 1.0f;
float wmax2 = 0.0f;
float4 left_sum = float4(0.0f);
float4 middle_sum = float4(0.0f);
float4 right_sum = float4(0.0f);
float4 left2_sum = float4(0.0f);
float4 middle2_sum = float4(0.0f);
float4 right2_sum = float4(0.0f);
float3 lmrs_sum = float3(0.0f);
float4 color_vec_x = float4(0.0f);
float4 color_vec_y = float4(0.0f);
float2 scale_vec = float2(0.0f);
float3 weight_weight_sum = float3(1e-17f);
float psum = 1e-17f;
// FIXME: the loop below has too many responsibilities, making it inefficient.
for (int j = 0; j < texelcount; j++)
{
int tix = texel_indexes[j];
float4 rgba = float4(pb->data_r[tix], pb->data_g[tix], pb->data_b[tix], pb->data_a[tix]);
float4 color_weight = float4(ewb->texel_weight_r[tix], ewb->texel_weight_g[tix], ewb->texel_weight_b[tix], ewb->texel_weight_a[tix]);
float3 color_weight3 = float3(color_weight.r, color_weight.g, color_weight.b);
float3 rgb = float3(rgba.r, rgba.g, rgba.b);
// FIXME: move this calculation out to the color block.
float ls_weight = (color_weight.r + color_weight.g + color_weight.b);
const uint8_t *texel_weights = it->texel_weights[tix];
const float *texel_weights_float = it->texel_weights_float[tix];
float idx0 = (weight_set[texel_weights[0]] * texel_weights_float[0]
+ weight_set[texel_weights[1]] * texel_weights_float[1])
+ (weight_set[texel_weights[2]] * texel_weights_float[2]
+ weight_set[texel_weights[3]] * texel_weights_float[3]);
float om_idx0 = 1.0f - idx0;
if (idx0 > wmax1)
{
wmax1 = idx0;
}
if (idx0 < wmin1)
{
wmin1 = idx0;
}
float scale = dot(scale_direction, rgb);
if (scale < scale_min)
{
scale_min = scale;
}
if (scale > scale_max)
{
scale_max = scale;
}
float4 left = color_weight * (om_idx0 * om_idx0);
float4 middle = color_weight * (om_idx0 * idx0);
float4 right = color_weight * (idx0 * idx0);
float3 lmrs = float3(om_idx0 * om_idx0,
om_idx0 * idx0,
idx0 * idx0) * ls_weight;
left_sum = left_sum + left;
middle_sum = middle_sum + middle;
right_sum = right_sum + right;
lmrs_sum = lmrs_sum + lmrs;
float idx1 = 0.0f;
float om_idx1 = 0.0f;
if (plane2_weight_set8)
{
idx1 = (plane2_weight_set[texel_weights[0]] * texel_weights_float[0]
+ plane2_weight_set[texel_weights[1]] * texel_weights_float[1])
+ (plane2_weight_set[texel_weights[2]] * texel_weights_float[2]
+ plane2_weight_set[texel_weights[3]] * texel_weights_float[3]);
om_idx1 = 1.0f - idx1;
if (idx1 > wmax2)
{
wmax2 = idx1;
}
if (idx1 < wmin2)
{
wmin2 = idx1;
}
float4 left2 = color_weight * (om_idx1 * om_idx1);
float4 middle2 = color_weight * (om_idx1 * idx1);
float4 right2 = color_weight * (idx1 * idx1);
left2_sum = left2_sum + left2;
middle2_sum = middle2_sum + middle2;
right2_sum = right2_sum + right2;
}
float4 color_idx = float4((plane2_color_component == 0) ? idx1 : idx0,
(plane2_color_component == 1) ? idx1 : idx0,
(plane2_color_component == 2) ? idx1 : idx0,
(plane2_color_component == 3) ? idx1 : idx0);
float3 color_idx3 = float3(color_idx.r, color_idx.g, color_idx.b);
float4 cwprod = color_weight * rgba;
float4 cwiprod = cwprod * color_idx;
color_vec_y = color_vec_y + cwiprod;
color_vec_x = color_vec_x + (cwprod - cwiprod);
scale_vec = scale_vec + float2(om_idx0, idx0) * (ls_weight * scale);
weight_weight_sum = weight_weight_sum + (color_weight3 * color_idx3);
psum += dot(color_weight3 * color_idx3, color_idx3);
}
// calculations specific to mode #7, the HDR RGB-scale mode.
// FIXME: Can we skip this for LDR textures?
float red_sum = color_vec_x.r + color_vec_y.r;
float green_sum = color_vec_x.g + color_vec_y.g;
float blue_sum = color_vec_x.b + color_vec_y.b;
float qsum = color_vec_y.r + color_vec_y.g + color_vec_y.b;
#ifdef DEBUG_CAPTURE_NAN
fedisableexcept(FE_DIVBYZERO | FE_INVALID);
#endif
float4 rgbovec = compute_rgbovec(rgba_weight_sum, weight_weight_sum,
red_sum, green_sum, blue_sum, psum, qsum);
rgbo_vectors[i] = rgbovec;
// We will occasionally get a failure due to the use of a singular
// (non-invertible) matrix. Record whether such a failure has taken
// place; if it did, compute rgbo_vectors[] with a different method
// later on.
float chkval = dot(rgbovec, rgbovec);
int rgbo_fail = chkval != chkval;
// Initialize the luminance and scale vectors with a reasonable
// default, just in case the subsequent calculation blows up.
#ifdef DEBUG_CAPTURE_NAN
fedisableexcept(FE_DIVBYZERO | FE_INVALID);
#endif
float scalediv = scale_min * (1.0f / MAX(scale_max, 1e-10f));
if (!(scalediv > 0.0f))
{
scalediv = 0.0f; // set to zero if scalediv is negative, or NaN.
}
if (scalediv > 1.0f)
{
scalediv = 1.0f;
}
#ifdef DEBUG_CAPTURE_NAN
feenableexcept(FE_DIVBYZERO | FE_INVALID);
#endif
float3 sds = scale_direction * scale_max;
rgbs_vectors[i] = float4(sds.r, sds.g, sds.b, scalediv);
if (wmin1 >= wmax1 * 0.999f)
{
// if all weights in the partition were equal, then just take average
// of all colors in the partition and use that as both endpoint colors.
float4 avg = (color_vec_x + color_vec_y) *
float4(1.0f / rgba_weight_sum.r,
1.0f / rgba_weight_sum.g,
1.0f / rgba_weight_sum.b,
1.0f / rgba_weight_sum.a);
if (plane2_color_component != 0 && avg.r == avg.r)
{
ep->endpt0[i].r = ep->endpt1[i].r = avg.r;
}
if (plane2_color_component != 1 && avg.g == avg.g)
{
ep->endpt0[i].g = ep->endpt1[i].g = avg.g;
}
if (plane2_color_component != 2 && avg.b == avg.b)
{
ep->endpt0[i].b = ep->endpt1[i].b = avg.b;
}
if (plane2_color_component != 3 && avg.a == avg.a)
{
ep->endpt0[i].a = ep->endpt1[i].a = avg.a;
}
rgbs_vectors[i] = float4(sds.r, sds.g, sds.b, 1.0f);
}
else
{
// otherwise, complete the analytic calculation of ideal-endpoint-values
// for the given set of texel weights and pixel colors.
#ifdef DEBUG_CAPTURE_NAN
fedisableexcept(FE_DIVBYZERO | FE_INVALID);
#endif
float4 color_det1 = (left_sum * right_sum) - (middle_sum * middle_sum);
float4 color_rdet1 = float4(1.0f / color_det1.r,
1.0f / color_det1.g,
1.0f / color_det1.b,
1.0f / color_det1.a );
float ls_det1 = (lmrs_sum.r * lmrs_sum.b) - (lmrs_sum.g * lmrs_sum.g);
float ls_rdet1 = 1.0f / ls_det1;
float4 color_mss1 = (left_sum * left_sum)
+ (2.0f * middle_sum * middle_sum)
+ (right_sum * right_sum);
float ls_mss1 = (lmrs_sum.r * lmrs_sum.r)
+ (2.0f * lmrs_sum.g * lmrs_sum.g)
+ (lmrs_sum.b * lmrs_sum.b);
float4 ep0 = (right_sum * color_vec_x - middle_sum * color_vec_y) * color_rdet1;
float4 ep1 = (left_sum * color_vec_y - middle_sum * color_vec_x) * color_rdet1;
float scale_ep0 = (lmrs_sum.b * scale_vec.r - lmrs_sum.g * scale_vec.g) * ls_rdet1;
float scale_ep1 = (lmrs_sum.r * scale_vec.g - lmrs_sum.g * scale_vec.r) * ls_rdet1;
if (plane2_color_component != 0 && fabsf(color_det1.r) > (color_mss1.r * 1e-4f) && ep0.r == ep0.r && ep1.r == ep1.r)
{
ep->endpt0[i].r = ep0.r;
ep->endpt1[i].r = ep1.r;
}
if (plane2_color_component != 1 && fabsf(color_det1.g) > (color_mss1.g * 1e-4f) && ep0.g == ep0.g && ep1.g == ep1.g)
{
ep->endpt0[i].g = ep0.g;
ep->endpt1[i].g = ep1.g;
}
if (plane2_color_component != 2 && fabsf(color_det1.b) > (color_mss1.b * 1e-4f) && ep0.b == ep0.b && ep1.b == ep1.b)
{
ep->endpt0[i].b = ep0.b;
ep->endpt1[i].b = ep1.b;
}
if (plane2_color_component != 3 && fabsf(color_det1.a) > (color_mss1.a * 1e-4f) && ep0.a == ep0.a && ep1.a == ep1.a)
{
ep->endpt0[i].a = ep0.a;
ep->endpt1[i].a = ep1.a;
}
if (fabsf(ls_det1) > (ls_mss1 * 1e-4f) && scale_ep0 == scale_ep0 && scale_ep1 == scale_ep1 && scale_ep0 < scale_ep1)
{
float scalediv2 = scale_ep0 * (1.0f / scale_ep1);
float3 sdsm = scale_direction * scale_ep1;
rgbs_vectors[i] = float4(sdsm.r, sdsm.g, sdsm.b, scalediv2);
}
#ifdef DEBUG_CAPTURE_NAN
feenableexcept(FE_DIVBYZERO | FE_INVALID);
#endif
}
if (plane2_weight_set8)
{
if (wmin2 >= wmax2 * 0.999f)
{
// if all weights in the partition were equal, then just take average
// of all colors in the partition and use that as both endpoint colors.
float4 avg = (color_vec_x + color_vec_y)
* float4(1.0f / rgba_weight_sum.r,
1.0f / rgba_weight_sum.g,
1.0f / rgba_weight_sum.b,
1.0f / rgba_weight_sum.a);
if (plane2_color_component == 0 && avg.r == avg.r)
{
ep->endpt0[i].r = ep->endpt1[i].r = avg.r;
}
if (plane2_color_component == 1 && avg.g == avg.g)
{
ep->endpt0[i].g = ep->endpt1[i].g = avg.g;
}
if (plane2_color_component == 2 && avg.b == avg.b)
{
ep->endpt0[i].b = ep->endpt1[i].b = avg.b;
}
if (plane2_color_component == 3 && avg.a == avg.a)
{
ep->endpt0[i].a = ep->endpt1[i].a = avg.a;
}
}
else
{
#ifdef DEBUG_CAPTURE_NAN
fedisableexcept(FE_DIVBYZERO | FE_INVALID);
#endif
// otherwise, complete the analytic calculation of ideal-endpoint-values
// for the given set of texel weights and pixel colors.
float4 color_det2 = (left2_sum * right2_sum) - (middle2_sum * middle2_sum);
float4 color_rdet2 = float4(1.0f / color_det2.r,
1.0f / color_det2.g,
1.0f / color_det2.b,
1.0f / color_det2.a);
float4 color_mss2 = (left2_sum * left2_sum)
+ (2.0f * middle2_sum * middle2_sum)
+ (right2_sum * right2_sum);
float4 ep0 = (right2_sum * color_vec_x - middle2_sum * color_vec_y) * color_rdet2;
float4 ep1 = (left2_sum * color_vec_y - middle2_sum * color_vec_x) * color_rdet2;
if (plane2_color_component == 0 && fabsf(color_det2.r) > (color_mss2.r * 1e-4f) && ep0.r == ep0.r && ep1.r == ep1.r)
{
ep->endpt0[i].r = ep0.r;
ep->endpt1[i].r = ep1.r;
}
if (plane2_color_component == 1 && fabsf(color_det2.g) > (color_mss2.g * 1e-4f) && ep0.g == ep0.g && ep1.g == ep1.g)
{
ep->endpt0[i].g = ep0.g;
ep->endpt1[i].g = ep1.g;
}
if (plane2_color_component == 2 && fabsf(color_det2.b) > (color_mss2.b * 1e-4f) && ep0.b == ep0.b && ep1.b == ep1.b)
{
ep->endpt0[i].b = ep0.b;
ep->endpt1[i].b = ep1.b;
}
if (plane2_color_component == 3 && fabsf(color_det2.a) > (color_mss2.a * 1e-4f) && ep0.a == ep0.a && ep1.a == ep1.a)
{
ep->endpt0[i].a = ep0.a;
ep->endpt1[i].a = ep1.a;
}
#ifdef DEBUG_CAPTURE_NAN
feenableexcept(FE_DIVBYZERO | FE_INVALID);
#endif
}
}
// if the calculation of an RGB-offset vector failed, try to compute
// a somewhat-sensible value anyway
if (rgbo_fail)
{
float4 v0 = ep->endpt0[i];
float4 v1 = ep->endpt1[i];
float avgdif = ((v1.r - v0.r) + (v1.g - v0.g) + (v1.b - v0.b)) * (1.0f / 3.0f);
if (avgdif <= 0.0f)
{
avgdif = 0.0f;
}
float4 avg = (v0 + v1) * 0.5f;
float4 ep0 = avg - float4(avgdif, avgdif, avgdif, avgdif) * 0.5f;
rgbo_vectors[i] = float4(ep0.r, ep0.g, ep0.b, avgdif);
}
}
}
#endif
|