1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
|
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2020 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
#if !defined(ASTCENC_DECOMPRESS_ONLY)
/**
* @brief Functions for approximate partitioning by kmeans clustering.
*
* Do this in 2 stages:
* 1: basic clustering, a couple of passes just to get a few clusters
* 2: clustering based on line, a few passes until it seems to stabilize.
*
* After clustering is done, we use the clustering result to construct one
* bitmap for each partition. We then scan though the partition table, counting
* how well the bitmaps matched.
*/
#include "astcenc_internal.h"
// for k++ means, we need pseudo-random numbers, however using random numbers
// directly results in unreproducible encoding results. As such, we will
// instead just supply a handful of numbers from random.org, and apply an
// algorithm similar to XKCD #221. (http://xkcd.com/221/)
// cluster the texels using the k++ means clustering initialization algorithm.
static void kpp_initialize(
int xdim,
int ydim,
int zdim,
int partition_count,
const imageblock* blk,
float4* cluster_centers
) {
int texels_per_block = xdim * ydim * zdim;
int cluster_center_samples[4];
// pick a random sample as first center-point.
cluster_center_samples[0] = 145897 /* number from random.org */ % texels_per_block;
int samples_selected = 1;
float distances[MAX_TEXELS_PER_BLOCK];
// compute the distance to the first point.
int sample = cluster_center_samples[0];
float4 center_color = float4(blk->data_r[sample],
blk->data_g[sample],
blk->data_b[sample],
blk->data_a[sample]);
float distance_sum = 0.0f;
for (int i = 0; i < texels_per_block; i++)
{
float4 color = float4(blk->data_r[i],
blk->data_g[i],
blk->data_b[i],
blk->data_a[i]);
float4 diff = color - center_color;
float distance = dot(diff, diff);
distance_sum += distance;
distances[i] = distance;
}
// more numbers from random.org
float cluster_cutoffs[25] = {
0.952312f, 0.206893f, 0.835984f, 0.507813f, 0.466170f,
0.872331f, 0.488028f, 0.866394f, 0.363093f, 0.467905f,
0.812967f, 0.626220f, 0.932770f, 0.275454f, 0.832020f,
0.362217f, 0.318558f, 0.240113f, 0.009190f, 0.983995f,
0.566812f, 0.347661f, 0.731960f, 0.156391f, 0.297786f
};
while (1)
{
// pick a point in a weighted-random fashion.
float summa = 0.0f;
float distance_cutoff = distance_sum * cluster_cutoffs[samples_selected + 5 * partition_count];
for (sample = 0; sample < texels_per_block; sample++)
{
summa += distances[sample];
if (summa >= distance_cutoff)
{
break;
}
}
if (sample >= texels_per_block)
{
sample = texels_per_block - 1;
}
cluster_center_samples[samples_selected] = sample;
samples_selected++;
if (samples_selected >= partition_count)
{
break;
}
// update the distances with the new point.
center_color = float4(blk->data_r[sample],
blk->data_g[sample],
blk->data_b[sample],
blk->data_a[sample]);
distance_sum = 0.0f;
for (int i = 0; i < texels_per_block; i++)
{
float4 color = float4(blk->data_r[i],
blk->data_g[i],
blk->data_b[i],
blk->data_a[i]);
float4 diff = color - center_color;
float distance = dot(diff, diff);
distance = MIN(distance, distances[i]);
distance_sum += distance;
distances[i] = distance;
}
}
// finally, gather up the results.
for (int i = 0; i < partition_count; i++)
{
int center_sample = cluster_center_samples[i];
float4 color = float4(blk->data_r[center_sample],
blk->data_g[center_sample],
blk->data_b[center_sample],
blk->data_a[center_sample]);
cluster_centers[i] = color;
}
}
// basic K-means clustering: given a set of cluster centers,
// assign each texel to a partition
static void basic_kmeans_assign_pass(
int xdim,
int ydim,
int zdim,
int partition_count,
const imageblock* blk,
const float4* cluster_centers,
int* partition_of_texel
) {
int texels_per_block = xdim * ydim * zdim;
float distances[MAX_TEXELS_PER_BLOCK];
int texels_per_partition[4];
texels_per_partition[0] = texels_per_block;
for (int i = 1; i < partition_count; i++)
{
texels_per_partition[i] = 0;
}
for (int i = 0; i < texels_per_block; i++)
{
float4 color = float4(blk->data_r[i],
blk->data_g[i],
blk->data_b[i],
blk->data_a[i]);
float4 diff = color - cluster_centers[0];
float distance = dot(diff, diff);
distances[i] = distance;
partition_of_texel[i] = 0;
}
for (int j = 1; j < partition_count; j++)
{
float4 center_color = cluster_centers[j];
for (int i = 0; i < texels_per_block; i++)
{
float4 color = float4(blk->data_r[i],
blk->data_g[i],
blk->data_b[i],
blk->data_a[i]);
float4 diff = color - center_color;
float distance = dot(diff, diff);
if (distance < distances[i])
{
distances[i] = distance;
texels_per_partition[partition_of_texel[i]]--;
texels_per_partition[j]++;
partition_of_texel[i] = j;
}
}
}
// it is possible to get a situation where one of the partitions ends up
// without any texels. In this case, we assign texel N to partition N;
// this is silly, but ensures that every partition retains at least one texel.
// Reassigning a texel in this manner may cause another partition to go empty,
// so if we actually did a reassignment, we run the whole loop over again.
int problem_case;
do
{
problem_case = 0;
for (int i = 0; i < partition_count; i++)
{
if (texels_per_partition[i] == 0)
{
texels_per_partition[partition_of_texel[i]]--;
texels_per_partition[i]++;
partition_of_texel[i] = i;
problem_case = 1;
}
}
}
while (problem_case != 0);
}
// basic k-means clustering: given a set of cluster assignments
// for the texels, find the center position of each cluster.
static void basic_kmeans_update(
int xdim,
int ydim,
int zdim,
int partition_count,
const imageblock* blk,
const int* partition_of_texel,
float4* cluster_centers
) {
int texels_per_block = xdim * ydim * zdim;
float4 color_sum[4];
int weight_sum[4];
for (int i = 0; i < partition_count; i++)
{
color_sum[i] = float4(0.0f, 0.0f, 0.0f, 0.0f);
weight_sum[i] = 0;
}
// first, find the center-of-gravity in each cluster
for (int i = 0; i < texels_per_block; i++)
{
float4 color = float4(blk->data_r[i],
blk->data_g[i],
blk->data_b[i],
blk->data_a[i]);
int part = partition_of_texel[i];
color_sum[part] = color_sum[part] + color;
weight_sum[part]++;
}
for (int i = 0; i < partition_count; i++)
{
cluster_centers[i] = color_sum[i] * (1.0f / weight_sum[i]);
}
}
// compute the bit-mismatch for a partitioning in 2-partition mode
static inline int partition_mismatch2(
uint64_t a0,
uint64_t a1,
uint64_t b0,
uint64_t b1
) {
int v1 = astc::popcount(a0 ^ b0) + astc::popcount(a1 ^ b1);
int v2 = astc::popcount(a0 ^ b1) + astc::popcount(a1 ^ b0);
return MIN(v1, v2);
}
// compute the bit-mismatch for a partitioning in 3-partition mode
static inline int partition_mismatch3(
uint64_t a0,
uint64_t a1,
uint64_t a2,
uint64_t b0,
uint64_t b1,
uint64_t b2
) {
int p00 = astc::popcount(a0 ^ b0);
int p01 = astc::popcount(a0 ^ b1);
int p02 = astc::popcount(a0 ^ b2);
int p10 = astc::popcount(a1 ^ b0);
int p11 = astc::popcount(a1 ^ b1);
int p12 = astc::popcount(a1 ^ b2);
int p20 = astc::popcount(a2 ^ b0);
int p21 = astc::popcount(a2 ^ b1);
int p22 = astc::popcount(a2 ^ b2);
int s0 = p11 + p22;
int s1 = p12 + p21;
int v0 = MIN(s0, s1) + p00;
int s2 = p10 + p22;
int s3 = p12 + p20;
int v1 = MIN(s2, s3) + p01;
int s4 = p10 + p21;
int s5 = p11 + p20;
int v2 = MIN(s4, s5) + p02;
if (v1 < v0)
v0 = v1;
if (v2 < v0)
v0 = v2;
return v0;
}
static inline int MIN3(
int a,
int b,
int c
) {
int d = MIN(a, b);
return MIN(c, d);
}
// compute the bit-mismatch for a partitioning in 4-partition mode
static inline int partition_mismatch4(
uint64_t a0,
uint64_t a1,
uint64_t a2,
uint64_t a3,
uint64_t b0,
uint64_t b1,
uint64_t b2,
uint64_t b3
) {
int p00 = astc::popcount(a0 ^ b0);
int p01 = astc::popcount(a0 ^ b1);
int p02 = astc::popcount(a0 ^ b2);
int p03 = astc::popcount(a0 ^ b3);
int p10 = astc::popcount(a1 ^ b0);
int p11 = astc::popcount(a1 ^ b1);
int p12 = astc::popcount(a1 ^ b2);
int p13 = astc::popcount(a1 ^ b3);
int p20 = astc::popcount(a2 ^ b0);
int p21 = astc::popcount(a2 ^ b1);
int p22 = astc::popcount(a2 ^ b2);
int p23 = astc::popcount(a2 ^ b3);
int p30 = astc::popcount(a3 ^ b0);
int p31 = astc::popcount(a3 ^ b1);
int p32 = astc::popcount(a3 ^ b2);
int p33 = astc::popcount(a3 ^ b3);
int mx23 = MIN(p22 + p33, p23 + p32);
int mx13 = MIN(p21 + p33, p23 + p31);
int mx12 = MIN(p21 + p32, p22 + p31);
int mx03 = MIN(p20 + p33, p23 + p30);
int mx02 = MIN(p20 + p32, p22 + p30);
int mx01 = MIN(p21 + p30, p20 + p31);
int v0 = p00 + MIN3(p11 + mx23, p12 + mx13, p13 + mx12);
int v1 = p01 + MIN3(p10 + mx23, p12 + mx03, p13 + mx02);
int v2 = p02 + MIN3(p11 + mx03, p10 + mx13, p13 + mx01);
int v3 = p03 + MIN3(p11 + mx02, p12 + mx01, p10 + mx12);
int x0 = MIN(v0, v1);
int x1 = MIN(v2, v3);
return MIN(x0, x1);
}
static void count_partition_mismatch_bits(
const block_size_descriptor* bsd,
int partition_count,
const uint64_t bitmaps[4],
int bitcounts[PARTITION_COUNT]
) {
const partition_info *pi = get_partition_table(bsd, partition_count);
if (partition_count == 2)
{
uint64_t bm0 = bitmaps[0];
uint64_t bm1 = bitmaps[1];
for (int i = 0; i < PARTITION_COUNT; i++)
{
if (pi->partition_count == 2)
{
bitcounts[i] = partition_mismatch2(bm0, bm1, pi->coverage_bitmaps[0], pi->coverage_bitmaps[1]);
}
else
{
bitcounts[i] = 255;
}
pi++;
}
}
else if (partition_count == 3)
{
uint64_t bm0 = bitmaps[0];
uint64_t bm1 = bitmaps[1];
uint64_t bm2 = bitmaps[2];
for (int i = 0; i < PARTITION_COUNT; i++)
{
if (pi->partition_count == 3)
{
bitcounts[i] = partition_mismatch3(bm0, bm1, bm2, pi->coverage_bitmaps[0], pi->coverage_bitmaps[1], pi->coverage_bitmaps[2]);
}
else
{
bitcounts[i] = 255;
}
pi++;
}
}
else if (partition_count == 4)
{
uint64_t bm0 = bitmaps[0];
uint64_t bm1 = bitmaps[1];
uint64_t bm2 = bitmaps[2];
uint64_t bm3 = bitmaps[3];
for (int i = 0; i < PARTITION_COUNT; i++)
{
if (pi->partition_count == 4)
{
bitcounts[i] = partition_mismatch4(bm0, bm1, bm2, bm3, pi->coverage_bitmaps[0], pi->coverage_bitmaps[1], pi->coverage_bitmaps[2], pi->coverage_bitmaps[3]);
}
else
{
bitcounts[i] = 255;
}
pi++;
}
}
}
// counting-sort on the mismatch-bits, thereby
// sorting the partitions into an ordering.
static void get_partition_ordering_by_mismatch_bits(
const int mismatch_bits[PARTITION_COUNT],
int partition_ordering[PARTITION_COUNT]
) {
int mscount[256];
for (int i = 0; i < 256; i++)
{
mscount[i] = 0;
}
for (int i = 0; i < PARTITION_COUNT; i++)
{
mscount[mismatch_bits[i]]++;
}
int summa = 0;
for (int i = 0; i < 256; i++)
{
int cnt = mscount[i];
mscount[i] = summa;
summa += cnt;
}
for (int i = 0; i < PARTITION_COUNT; i++)
{
int idx = mscount[mismatch_bits[i]]++;
partition_ordering[idx] = i;
}
}
void kmeans_compute_partition_ordering(
const block_size_descriptor* bsd,
int partition_count,
const imageblock* blk,
int* ordering
) {
float4 cluster_centers[4];
int partition_of_texel[MAX_TEXELS_PER_BLOCK];
// 3 passes of plain k-means partitioning
for (int i = 0; i < 3; i++)
{
if (i == 0)
{
kpp_initialize(bsd->xdim, bsd->ydim, bsd->zdim, partition_count, blk, cluster_centers);
}
else
{
basic_kmeans_update(bsd->xdim, bsd->ydim, bsd->zdim, partition_count, blk, partition_of_texel, cluster_centers);
}
basic_kmeans_assign_pass(bsd->xdim, bsd->ydim, bsd->zdim, partition_count, blk, cluster_centers, partition_of_texel);
}
// at this point, we have a near-ideal partitioning.
// construct bitmaps
uint64_t bitmaps[4];
for (int i = 0; i < 4; i++)
{
bitmaps[i] = 0ULL;
}
int texels_to_process = bsd->texelcount_for_bitmap_partitioning;
for (int i = 0; i < texels_to_process; i++)
{
int idx = bsd->texels_for_bitmap_partitioning[i];
bitmaps[partition_of_texel[idx]] |= 1ULL << i;
}
int bitcounts[PARTITION_COUNT];
// for each entry in the partition table, count bits of partition-mismatch.
count_partition_mismatch_bits(bsd, partition_count, bitmaps, bitcounts);
// finally, sort the partitions by bits-of-partition-mismatch
get_partition_ordering_by_mismatch_bits(bitcounts, ordering);
}
#endif
|