File: astcenc_mathlib.h

package info (click to toggle)
astc-encoder 2.1%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 36,948 kB
  • sloc: cpp: 20,204; python: 2,598; makefile: 156; sh: 15
file content (633 lines) | stat: -rw-r--r-- 14,819 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2020 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------

/*
 * This module implements a variety of mathematical data types and library
 * functions used by the codec.
 */

#ifndef ASTC_MATHLIB_H_INCLUDED
#define ASTC_MATHLIB_H_INCLUDED

#include <cassert>
#include <cstdint>
#include <cmath>

#if ASTCENC_SSE != 0 || ASTCENC_AVX != 0
	#include <immintrin.h>
#endif

/* ============================================================================
  Fast math library; note that many of the higher-order functions in this set
  use approximations which are less accurate, but faster, than <cmath> standard
  library equivalents.

  Note: Many of these are not necessarily faster than simple C versions when
  used on a single scalar value, but are included for testing purposes as most
  have an option based on SSE intrinsics and therefore provide an obvious route
  to future vectorization.
============================================================================ */

// These are namespaced to avoid colliding with C standard library functions.
namespace astc
{

static const float PI          = 3.14159265358979323846f;
static const float PI_OVER_TWO = 1.57079632679489661923f;

/**
 * @brief Fast approximation of log2(x)
 *
 * This does not produce correct results for special cases such as
 * zero/inf/nan/denormal/negative inputs:
 *
 *   * Any negative, zero, or denormal will get clamped to smallest-normal,
 *     resulting in a logarithm of -126.
 *   * +Inf and +NaN get treated as an extension of largest-finite values,
 *     which should result in a logarithm value between 128 and 129.
 */
float log2(float val);

/**
 * @brief SP float absolute value.
 *
 * @param val The value to make absolute.
 *
 * @return The absolute value.
 */
static inline float fabs(float val)
{
	return std::fabs(val);
}

/**
 * @brief SP float min.
 *
 * @param valA The first value to compare.
 * @param valB The second value to compare.
 *
 * @return The smallest value.
 */
static inline float fmin(float p, float q)
{
	return p < q ? p : q;
}

/**
 * @brief SP float max.
 *
 * @param valA The first value to compare.
 * @param valB The second value to compare.
 *
 * @return The largest value.
 */
static inline float fmax(float p, float q)
{
	return q < p ? p : q;
}

/**
 * @brief Test if a float value is a nan.
 *
 * @param val The value test.
 *
 * @return Zero is not a NaN, non-zero otherwise.
 */
static inline int isnan(float val)
{
	return val != val;
}

/**
 * @brief Clamp a float value between 0.0f and 1.0f.
 *
 * NaNs are turned into 0.0f.
 *
 * @param val The value clamp.
 *
 * @return The clamped value.
 */
static inline float clamp1f(float val)
{
	// Do not reorder these, correct NaN handling relies on the fact that
	// any comparison with NaN returns false so will fall-though to the 0.0f.
	if (val > 1.0f) return 1.0f;
	if (val > 0.0f) return val;
	return 0.0f;
}

/**
 * @brief Clamp a float value between 0.0f and 255.0f.
 *
 * NaNs are turned into 0.0f.
 *
 * @param val The value clamp.
 *
 * @return The clamped value.
 */
static inline float clamp255f(float val)
{
	// Do not reorder these, correct NaN handling relies on the fact that
	// any comparison with NaN returns false so will fall-though to the 0.0f.
	if (val > 255.0f) return 255.0f;
	if (val > 0.0f) return val;
	return 0.0f;
}

/**
 * @brief Clamp a float value between 0.0f and 65504.0f.
 *
 * NaNs are turned into 0.0f.
 *
 * @param val The value to clamp
 *
 * @return The clamped value
 */
static inline float clamp64Kf(float val)
{
	// Do not reorder these, correct NaN handling relies on the fact that
	// any comparison with NaN returns false so will fall-though to the 0.0f.
	if (val > 65504.0f) return 65504.0f;
	if (val > 0.0f) return val;
	return 0.0f;
}

/**
 * @brief Clamp an integer between two specified limits.
 *
 * @param val The value clamp.
 *
 * @return The clamped value.
 */
static inline int clampi(int val, int low, int high)
{
	if (val < low) return low;
	if (val > high) return high;
	return val;
}

/**
 * @brief SP float round-to-nearest.
 *
 * @param val The value to round.
 *
 * @return The rounded value.
 */
static inline float flt_rte(float val)
{
	return std::floor(val + 0.5f);
}

/**
 * @brief SP float round-down.
 *
 * @param val The value to round.
 *
 * @return The rounded value.
 */
static inline float flt_rd(float val)
{
	return std::floor(val);
}

/**
 * @brief SP float round-to-nearest and convert to integer.
 *
 * @param val The value to round.
 *
 * @return The rounded value.
 */
static inline int flt2int_rtn(float val)
{

	return (int)(val + 0.5f);
}

/**
 * @brief SP float round down and convert to integer.
 *
 * @param val The value to round.
 *
 * @return The rounded value.
 */
static inline int flt2int_rd(float val)
{
	return (int)(val);
}

/**
 * @brief Population bit count.
 *
 * @param val The value to count.
 *
 * @return The number of 1 bits.
 */
static inline int popcount(uint64_t p)
{
#if ASTCENC_POPCNT >= 1
	return (int)_mm_popcnt_u64(p);
#else
	uint64_t mask1 = 0x5555555555555555ULL;
	uint64_t mask2 = 0x3333333333333333ULL;
	uint64_t mask3 = 0x0F0F0F0F0F0F0F0FULL;
	p -= (p >> 1) & mask1;
	p = (p & mask2) + ((p >> 2) & mask2);
	p += p >> 4;
	p &= mask3;
	p *= 0x0101010101010101ULL;
	p >>= 56;
	return (int)p;
#endif
}

/**
 * @brief Fast approximation of 1.0 / sqrt(val).
 *
 * @param val The input value.
 *
 * @return The approximated result.
 */
static inline float rsqrt(float val)
{
	return 1.0f / std::sqrt(val);
}

/**
 * @brief Fast approximation of sqrt(val).
 *
 * @param val The input value.
 *
 * @return The approximated result.
 */
static inline float sqrt(float val)
{
	return std::sqrt(val);
}

/**
 * @brief Log base 2, linearized from 2^-14.
 *
 * @param val The value to log2.
 *
 * @return The approximated result.
 */
static inline float xlog2(float val)
{
	if (val >= 0.00006103515625f)
	{
		return astc::log2(val);
	}

	// Linearized region
	return -15.44269504088896340735f + val * 23637.11554992477646609062f;
}

/**
 * @brief Initialize the seed structure for a random number generator.
 *
 * Important note: For the purposes of ASTC we want sets of random numbers to
 * use the codec, but we want the same seed value across instances and threads
 * to ensure that image output is stable across compressor runs and across
 * platforms. Every PRNG created by this call will therefore return the same
 * sequence of values ...
 *
 * @param state The state structure to initialize.
 */
void rand_init(uint64_t state[2]);

/**
 * @brief Return the next random number from the generator.
 *
 * This RNG is an implementation of the "xoroshoro-128+ 1.0" PRNG, based on the
 * public-domain implementation given by David Blackman & Sebastiano Vigna at
 * http://vigna.di.unimi.it/xorshift/xoroshiro128plus.c
 *
 * @param state The state structure to use/update.
 */
uint64_t rand(uint64_t state[2]);

}

/* ============================================================================
  Utility vector template classes with basic operations
============================================================================ */

template <typename T> class vtype2
{
public:
	// Data storage
	T r, g;

	// Default constructor
	vtype2() {}

	// Initialize from 1 scalar
	vtype2(T p) : r(p), g(p) {}

	// Initialize from N scalars
	vtype2(T p, T q) : r(p), g(q) {}

	// Initialize from another vector
	vtype2(const vtype2 & p) : r(p.r), g(p.g) {}

	// Assignment operator
	vtype2& operator=(const vtype2 &s) {
		this->r = s.r;
		this->g = s.g;
		return *this;
	}
};

// Vector by vector addition
template <typename T>
vtype2<T> operator+(vtype2<T> p, vtype2<T> q) {
	return vtype2<T> { p.r + q.r, p.g + q.g };
}

// Vector by vector subtraction
template <typename T>
vtype2<T> operator-(vtype2<T> p, vtype2<T> q) {
	return vtype2<T> { p.r - q.r, p.g - q.g };
}

// Vector by vector multiplication operator
template <typename T>
vtype2<T> operator*(vtype2<T> p, vtype2<T> q) {
	return vtype2<T> { p.r * q.r, p.g * q.g };
}

// Vector by scalar multiplication operator
template <typename T>
vtype2<T> operator*(vtype2<T> p, T q) {
	return vtype2<T> { p.r * q, p.g * q };
}

// Scalar by vector multiplication operator
template <typename T>
vtype2<T> operator*(T p, vtype2<T> q){
	return vtype2<T> { p * q.r, p * q.g };
}

template <typename T> class vtype3
{
public:
	// Data storage
	T r, g, b;

	// Default constructor
	vtype3() {}

	// Initialize from 1 scalar
	vtype3(T p) : r(p), g(p), b(p) {}

	// Initialize from N scalars
	vtype3(T p, T q, T s) : r(p), g(q), b(s) {}

	// Initialize from another vector
	vtype3(const vtype3 & p) : r(p.r), g(p.g), b(p.b) {}

	// Assignment operator
	vtype3& operator=(const vtype3 &s) {
		this->r = s.r;
		this->g = s.g;
		this->b = s.b;
		return *this;
	}
};

// Vector by vector addition
template <typename T>
vtype3<T> operator+(vtype3<T> p, vtype3<T> q) {
	return vtype3<T> { p.r + q.r, p.g + q.g, p.b + q.b };
}

// Vector by vector subtraction
template <typename T>
vtype3<T> operator-(vtype3<T> p, vtype3<T> q) {
	return vtype3<T> { p.r - q.r, p.g - q.g, p.b - q.b };
}

// Vector by vector multiplication operator
template <typename T>
vtype3<T> operator*(vtype3<T> p, vtype3<T> q) {
	return vtype3<T> { p.r * q.r, p.g * q.g, p.b * q.b };
}

// Vector by scalar multiplication operator
template <typename T>
vtype3<T> operator*(vtype3<T> p, T q) {
	return vtype3<T> { p.r * q, p.g * q, p.b * q };
}

// Scalar by vector multiplication operator
template <typename T>
vtype3<T> operator*(T p, vtype3<T> q){
	return vtype3<T> { p * q.r, p * q.g, p * q.b };
}

template <typename T> class alignas(16) vtype4
{
public:
	// Data storage
	T r, g, b, a;

	// Default constructor
	vtype4() {}

	// Initialize from 1 scalar
	vtype4(T p) : r(p), g(p), b(p), a(p) {}

	// Initialize from N scalars
	vtype4(T p, T q, T s, T t) : r(p), g(q), b(s), a(t) {}

	// Initialize from another vector
	vtype4(const vtype4 & p) : r(p.r), g(p.g), b(p.b), a(p.a) {}

	// Assignment operator
	vtype4& operator=(const vtype4 &s) {
		this->r = s.r;
		this->g = s.g;
		this->b = s.b;
		this->a = s.a;
		return *this;
	}
};

// Vector by vector addition
template <typename T>
vtype4<T> operator+(vtype4<T> p, vtype4<T> q) {
	return vtype4<T> { p.r + q.r, p.g + q.g, p.b + q.b, p.a + q.a };
}

// Vector by vector subtraction
template <typename T>
vtype4<T> operator-(vtype4<T> p, vtype4<T> q) {
	return vtype4<T> { p.r - q.r, p.g - q.g, p.b - q.b, p.a - q.a };
}

// Vector by vector multiplication operator
template <typename T>
vtype4<T> operator*(vtype4<T> p, vtype4<T> q) {
	return vtype4<T> { p.r * q.r, p.g * q.g, p.b * q.b, p.a * q.a };
}

// Vector by scalar multiplication operator
template <typename T>
vtype4<T> operator*(vtype4<T> p, T q) {
	return vtype4<T> { p.r * q, p.g * q, p.b * q, p.a * q };
}

// Scalar by vector multiplication operator
template <typename T>
vtype4<T> operator*(T p, vtype4<T> q){
	return vtype4<T> { p * q.r, p * q.g, p * q.b, p * q.a };
}

typedef vtype2<float>        float2;
typedef vtype3<float>        float3;
typedef vtype4<float>        float4;
typedef vtype3<int>          int3;
typedef vtype4<int>          int4;
typedef vtype4<unsigned int> uint4;

static inline float dot(float2 p, float2 q)  { return p.r * q.r + p.g * q.g; }
static inline float dot(float3 p, float3 q)  { return p.r * q.r + p.g * q.g + p.b * q.b; }
static inline float dot(float4 p, float4 q)  {
#if (ASTCENC_SSE >= 42) && (ASTCENC_ISA_INVARIANCE == 0)
	__m128 pv = _mm_load_ps((float*)&p);
	__m128 qv = _mm_load_ps((float*)&q);
	__m128 t  = _mm_dp_ps(pv, qv, 0xFF);
	return _mm_cvtss_f32(t);
#else
	return p.r * q.r + p.g * q.g + p.b * q.b  + p.a * q.a;
#endif
}

static inline float2 normalize(float2 p) { return p * astc::rsqrt(dot(p, p)); }
static inline float3 normalize(float3 p) { return p * astc::rsqrt(dot(p, p)); }
static inline float4 normalize(float4 p) { return p * astc::rsqrt(dot(p, p)); }

static inline float4 sqrt(float4 p) {
	float4 r;
#if ASTCENC_SSE >= 20
	__m128 pv = _mm_load_ps((float*)&p);
	__m128 t  = _mm_sqrt_ps(pv);
	_mm_store_ps((float*)&r, t);
#else
	r.r = std::sqrt(p.r);
	r.g = std::sqrt(p.g);
	r.b = std::sqrt(p.b);
	r.a = std::sqrt(p.a);
#endif
	return r;
}

#ifndef MIN
	#define MIN(x,y) ((x)<(y)?(x):(y))
#endif

#ifndef MAX
	#define MAX(x,y) ((x)>(y)?(x):(y))
#endif

/* ============================================================================
  Softfloat library with fp32 and fp16 conversion functionality.
============================================================================ */
typedef union if32_
{
	uint32_t u;
	int32_t s;
	float f;
} if32;

uint32_t clz32(uint32_t p);

/*	sized soft-float types. These are mapped to the sized integer
    types of C99, instead of C's floating-point types; this is because
    the library needs to maintain exact, bit-level control on all
    operations on these data types. */
typedef uint16_t sf16;
typedef uint32_t sf32;

/* the five rounding modes that IEEE-754r defines */
typedef enum
{
	SF_UP = 0,				/* round towards positive infinity */
	SF_DOWN = 1,			/* round towards negative infinity */
	SF_TOZERO = 2,			/* round towards zero */
	SF_NEARESTEVEN = 3,		/* round toward nearest value; if mid-between, round to even value */
	SF_NEARESTAWAY = 4		/* round toward nearest value; if mid-between, round away from zero */
} roundmode;

/* narrowing float->float conversions */
sf16 sf32_to_sf16(sf32, roundmode);

/* widening float->float conversions */
sf32 sf16_to_sf32(sf16);

sf16 float_to_sf16(float, roundmode);

float sf16_to_float(sf16);


/*********************************
  Declaration of line types
*********************************/
// parametric line, 2D: The line is given by line = a + b * t.

struct line2
{
	float2 a;
	float2 b;
};

// parametric line, 3D
struct line3
{
	float3 a;
	float3 b;
};

struct line4
{
	float4 a;
	float4 b;
};


struct processed_line2
{
	float2 amod;
	float2 bs;
	float2 bis;
};

struct processed_line3
{
	float3 amod;
	float3 bs;
	float3 bis;
};

struct processed_line4
{
	float4 amod;
	float4 bs;
	float4 bis;
};

#endif