1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2020 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
/**
* @brief Functions for converting between symbolic and physical encodings.
*/
#include "astcenc_internal.h"
#include <assert.h>
// routine to write up to 8 bits
static inline void write_bits(
int value,
int bitcount,
int bitoffset,
uint8_t* ptr
) {
int mask = (1 << bitcount) - 1;
value &= mask;
ptr += bitoffset >> 3;
bitoffset &= 7;
value <<= bitoffset;
mask <<= bitoffset;
mask = ~mask;
ptr[0] &= mask;
ptr[0] |= value;
ptr[1] &= mask >> 8;
ptr[1] |= value >> 8;
}
// routine to read up to 8 bits
static inline int read_bits(
int bitcount,
int bitoffset,
const uint8_t* ptr
) {
int mask = (1 << bitcount) - 1;
ptr += bitoffset >> 3;
bitoffset &= 7;
int value = ptr[0] | (ptr[1] << 8);
value >>= bitoffset;
value &= mask;
return value;
}
static inline int bitrev8(int p)
{
p = ((p & 0xF) << 4) | ((p >> 4) & 0xF);
p = ((p & 0x33) << 2) | ((p >> 2) & 0x33);
p = ((p & 0x55) << 1) | ((p >> 1) & 0x55);
return p;
}
void symbolic_to_physical(
const block_size_descriptor& bsd,
const symbolic_compressed_block& scb,
physical_compressed_block& pcb
) {
if (scb.block_mode == -2)
{
// UNORM16 constant-color block.
// This encodes separate constant-color blocks. There is currently
// no attempt to coalesce them into larger void-extents.
static const uint8_t cbytes[8] = { 0xFC, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
for (int i = 0; i < 8; i++)
{
pcb.data[i] = cbytes[i];
}
for (int i = 0; i < 4; i++)
{
pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF;
pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF;
}
return;
}
if (scb.block_mode == -1)
{
// FP16 constant-color block.
// This encodes separate constant-color blocks. There is currently
// no attempt to coalesce them into larger void-extents.
static const uint8_t cbytes[8] = { 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
for (int i = 0; i < 8; i++)
{
pcb.data[i] = cbytes[i];
}
for (int i = 0; i < 4; i++)
{
pcb.data[2 * i + 8] = scb.constant_color[i] & 0xFF;
pcb.data[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF;
}
return;
}
int partition_count = scb.partition_count;
// first, compress the weights. They are encoded as an ordinary
// integer-sequence, then bit-reversed
uint8_t weightbuf[16];
for (int i = 0; i < 16; i++)
{
weightbuf[i] = 0;
}
const decimation_table *const *ixtab2 = bsd.decimation_tables;
const int packed_index = bsd.block_mode_to_packed[scb.block_mode];
assert(packed_index >= 0 && packed_index < bsd.block_mode_packed_count);
const block_mode& bm = bsd.block_modes_packed[packed_index];
int weight_count = ixtab2[bm.decimation_mode]->num_weights;
int weight_quantization_method = bm.quantization_mode;
int is_dual_plane = bm.is_dual_plane;
int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count;
int bits_for_weights = compute_ise_bitcount(real_weight_count,
(quantization_method) weight_quantization_method);
if (is_dual_plane)
{
uint8_t weights[64];
for (int i = 0; i < weight_count; i++)
{
weights[2 * i] = scb.plane1_weights[i];
weights[2 * i + 1] = scb.plane2_weights[i];
}
encode_ise(weight_quantization_method, real_weight_count, weights, weightbuf, 0);
}
else
{
encode_ise(weight_quantization_method, weight_count, scb.plane1_weights, weightbuf, 0);
}
for (int i = 0; i < 16; i++)
{
pcb.data[i] = bitrev8(weightbuf[15 - i]);
}
write_bits(scb.block_mode, 11, 0, pcb.data);
write_bits(partition_count - 1, 2, 11, pcb.data);
int below_weights_pos = 128 - bits_for_weights;
// encode partition index and color endpoint types for blocks with
// 2 or more partitions.
if (partition_count > 1)
{
write_bits(scb.partition_index, 6, 13, pcb.data);
write_bits(scb.partition_index >> 6, PARTITION_BITS - 6, 19, pcb.data);
if (scb.color_formats_matched)
{
write_bits(scb.color_formats[0] << 2, 6, 13 + PARTITION_BITS, pcb.data);
}
else
{
// go through the selected endpoint type classes for each partition
// in order to determine the lowest class present.
int low_class = 4;
for (int i = 0; i < partition_count; i++)
{
int class_of_format = scb.color_formats[i] >> 2;
if (class_of_format < low_class)
{
low_class = class_of_format;
}
}
if (low_class == 3)
{
low_class = 2;
}
int encoded_type = low_class + 1;
int bitpos = 2;
for (int i = 0; i < partition_count; i++)
{
int classbit_of_format = (scb.color_formats[i] >> 2) - low_class;
encoded_type |= classbit_of_format << bitpos;
bitpos++;
}
for (int i = 0; i < partition_count; i++)
{
int lowbits_of_format = scb.color_formats[i] & 3;
encoded_type |= lowbits_of_format << bitpos;
bitpos += 2;
}
int encoded_type_lowpart = encoded_type & 0x3F;
int encoded_type_highpart = encoded_type >> 6;
int encoded_type_highpart_size = (3 * partition_count) - 4;
int encoded_type_highpart_pos = 128 - bits_for_weights - encoded_type_highpart_size;
write_bits(encoded_type_lowpart, 6, 13 + PARTITION_BITS, pcb.data);
write_bits(encoded_type_highpart, encoded_type_highpart_size, encoded_type_highpart_pos, pcb.data);
below_weights_pos -= encoded_type_highpart_size;
}
}
else
{
write_bits(scb.color_formats[0], 4, 13, pcb.data);
}
// in dual-plane mode, encode the color component of the second plane of weights
if (is_dual_plane)
{
write_bits(scb.plane2_color_component, 2, below_weights_pos - 2, pcb.data);
}
// finally, encode the color bits
// first, get hold of all the color components to encode
uint8_t values_to_encode[32];
int valuecount_to_encode = 0;
for (int i = 0; i < scb.partition_count; i++)
{
int vals = 2 * (scb.color_formats[i] >> 2) + 2;
for (int j = 0; j < vals; j++)
{
values_to_encode[j + valuecount_to_encode] = scb.color_values[i][j];
}
valuecount_to_encode += vals;
}
// then, encode an ISE based on them.
encode_ise(scb.color_quantization_level, valuecount_to_encode, values_to_encode, pcb.data, (scb.partition_count == 1 ? 17 : 19 + PARTITION_BITS));
}
void physical_to_symbolic(
const block_size_descriptor& bsd,
const physical_compressed_block& pcb,
symbolic_compressed_block& scb
) {
uint8_t bswapped[16];
scb.error_block = 0;
// get hold of the decimation tables.
const decimation_table *const *ixtab2 = bsd.decimation_tables;
// extract header fields
int block_mode = read_bits(11, 0, pcb.data);
if ((block_mode & 0x1FF) == 0x1FC)
{
// void-extent block!
// check what format the data has
if (block_mode & 0x200)
{
scb.block_mode = -1; // floating-point
}
else
{
scb.block_mode = -2; // unorm16.
}
scb.partition_count = 0;
for (int i = 0; i < 4; i++)
{
scb.constant_color[i] = pcb.data[2 * i + 8] | (pcb.data[2 * i + 9] << 8);
}
// additionally, check that the void-extent
if (bsd.zdim == 1)
{
// 2D void-extent
int rsvbits = read_bits(2, 10, pcb.data);
if (rsvbits != 3)
{
scb.error_block = 1;
}
int vx_low_s = read_bits(8, 12, pcb.data) | (read_bits(5, 12 + 8, pcb.data) << 8);
int vx_high_s = read_bits(8, 25, pcb.data) | (read_bits(5, 25 + 8, pcb.data) << 8);
int vx_low_t = read_bits(8, 38, pcb.data) | (read_bits(5, 38 + 8, pcb.data) << 8);
int vx_high_t = read_bits(8, 51, pcb.data) | (read_bits(5, 51 + 8, pcb.data) << 8);
int all_ones = vx_low_s == 0x1FFF && vx_high_s == 0x1FFF && vx_low_t == 0x1FFF && vx_high_t == 0x1FFF;
if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t) && !all_ones)
{
scb.error_block = 1;
}
}
else
{
// 3D void-extent
int vx_low_s = read_bits(9, 10, pcb.data);
int vx_high_s = read_bits(9, 19, pcb.data);
int vx_low_t = read_bits(9, 28, pcb.data);
int vx_high_t = read_bits(9, 37, pcb.data);
int vx_low_p = read_bits(9, 46, pcb.data);
int vx_high_p = read_bits(9, 55, pcb.data);
int all_ones = vx_low_s == 0x1FF && vx_high_s == 0x1FF && vx_low_t == 0x1FF && vx_high_t == 0x1FF && vx_low_p == 0x1FF && vx_high_p == 0x1FF;
if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t || vx_low_p >= vx_high_p) && !all_ones)
{
scb.error_block = 1;
}
}
return;
}
const int packed_index = bsd.block_mode_to_packed[block_mode];
if (packed_index < 0)
{
scb.error_block = 1;
return;
}
assert(packed_index >= 0 && packed_index < bsd.block_mode_packed_count);
const struct block_mode& bm = bsd.block_modes_packed[packed_index];
int weight_count = ixtab2[bm.decimation_mode]->num_weights;
int weight_quantization_method = bm.quantization_mode;
int is_dual_plane = bm.is_dual_plane;
int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count;
int partition_count = read_bits(2, 11, pcb.data) + 1;
scb.block_mode = block_mode;
scb.partition_count = partition_count;
for (int i = 0; i < 16; i++)
{
bswapped[i] = bitrev8(pcb.data[15 - i]);
}
int bits_for_weights = compute_ise_bitcount(real_weight_count,
(quantization_method) weight_quantization_method);
int below_weights_pos = 128 - bits_for_weights;
if (is_dual_plane)
{
uint8_t indices[64];
decode_ise(weight_quantization_method, real_weight_count, bswapped, indices, 0);
for (int i = 0; i < weight_count; i++)
{
scb.plane1_weights[i] = indices[2 * i];
scb.plane2_weights[i] = indices[2 * i + 1];
}
}
else
{
decode_ise(weight_quantization_method, weight_count, bswapped, scb.plane1_weights, 0);
}
if (is_dual_plane && partition_count == 4)
{
scb.error_block = 1;
}
scb.color_formats_matched = 0;
// then, determine the format of each endpoint pair
int color_formats[4];
int encoded_type_highpart_size = 0;
if (partition_count == 1)
{
color_formats[0] = read_bits(4, 13, pcb.data);
scb.partition_index = 0;
}
else
{
encoded_type_highpart_size = (3 * partition_count) - 4;
below_weights_pos -= encoded_type_highpart_size;
int encoded_type = read_bits(6, 13 + PARTITION_BITS, pcb.data) | (read_bits(encoded_type_highpart_size, below_weights_pos, pcb.data) << 6);
int baseclass = encoded_type & 0x3;
if (baseclass == 0)
{
for (int i = 0; i < partition_count; i++)
{
color_formats[i] = (encoded_type >> 2) & 0xF;
}
below_weights_pos += encoded_type_highpart_size;
scb.color_formats_matched = 1;
encoded_type_highpart_size = 0;
}
else
{
int bitpos = 2;
baseclass--;
for (int i = 0; i < partition_count; i++)
{
color_formats[i] = (((encoded_type >> bitpos) & 1) + baseclass) << 2;
bitpos++;
}
for (int i = 0; i < partition_count; i++)
{
color_formats[i] |= (encoded_type >> bitpos) & 3;
bitpos += 2;
}
}
scb.partition_index = read_bits(6, 13, pcb.data) | (read_bits(PARTITION_BITS - 6, 19, pcb.data) << 6);
}
for (int i = 0; i < partition_count; i++)
{
scb.color_formats[i] = color_formats[i];
}
// then, determine the number of integers we need to unpack for the endpoint pairs
int color_integer_count = 0;
for (int i = 0; i < partition_count; i++)
{
int endpoint_class = color_formats[i] >> 2;
color_integer_count += (endpoint_class + 1) * 2;
}
if (color_integer_count > 18)
{
scb.error_block = 1;
}
// then, determine the color endpoint format to use for these integers
static const int color_bits_arr[5] = { -1, 115 - 4, 113 - 4 - PARTITION_BITS, 113 - 4 - PARTITION_BITS, 113 - 4 - PARTITION_BITS };
int color_bits = color_bits_arr[partition_count] - bits_for_weights - encoded_type_highpart_size;
if (is_dual_plane)
{
color_bits -= 2;
}
if (color_bits < 0)
{
color_bits = 0;
}
int color_quantization_level = quantization_mode_table[color_integer_count >> 1][color_bits];
scb.color_quantization_level = color_quantization_level;
if (color_quantization_level < 4)
{
scb.error_block = 1;
}
// then unpack the integer-bits
uint8_t values_to_decode[32];
decode_ise(color_quantization_level, color_integer_count, pcb.data, values_to_decode, (partition_count == 1 ? 17 : 19 + PARTITION_BITS));
// and distribute them over the endpoint types
int valuecount_to_decode = 0;
for (int i = 0; i < partition_count; i++)
{
int vals = 2 * (color_formats[i] >> 2) + 2;
for (int j = 0; j < vals; j++)
{
scb.color_values[i][j] = values_to_decode[j + valuecount_to_decode];
}
valuecount_to_decode += vals;
}
// get hold of color component for second-plane in the case of dual plane of weights.
if (is_dual_plane)
{
scb.plane2_color_component = read_bits(2, below_weights_pos - 2, pcb.data);
}
}
|