1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2020 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
#if !defined(ASTCENC_DECOMPRESS_ONLY)
/**
* @brief Functions for angular-sum algorithm for weight alignment.
*
* This algorithm works as follows:
* - we compute a complex number P as (cos s*i, sin s*i) for each weight,
* where i is the input value and s is a scaling factor based on the spacing
* between the weights.
* - we then add together complex numbers for all the weights.
* - we then compute the length and angle of the resulting sum.
*
* This should produce the following results:
* - perfect alignment results in a vector whose length is equal to the sum of
* lengths of all inputs
* - even distribution results in a vector of length 0.
* - all samples identical results in perfect alignment for every scaling.
*
* For each scaling factor within a given set, we compute an alignment factor
* from 0 to 1. This should then result in some scalings standing out as having
* particularly good alignment factors; we can use this to produce a set of
* candidate scale/shift values for various quantization levels; we should then
* actually try them and see what happens.
*
* Assuming N quantization steps, the scaling factor becomes s=2*PI*(N-1); we
* should probably have about 1 scaling factor for every 1/4 quantization step
* (perhaps 1/8 for low levels of quantization).
*/
#include "astcenc_internal.h"
#include "astcenc_vecmathlib.h"
#include <stdio.h>
#include <cassert>
#include <cstring>
#if ASTCENC_SIMD_WIDTH <= 4
#define ANGULAR_STEPS 44
#elif ASTCENC_SIMD_WIDTH == 8
// AVX code path loops over these tables 8 elements at a time,
// so make sure to have their size a multiple of 8.
#define ANGULAR_STEPS 48
#else
#error Unknown SIMD width
#endif
static_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0, "ANGULAR_STEPS should be multiple of ASTCENC_SIMD_WIDTH");
alignas(ASTCENC_VECALIGN) static const float angular_steppings[ANGULAR_STEPS] = {
1.0f, 1.25f, 1.5f, 1.75f,
2.0f, 2.5f, 3.0f, 3.5f,
4.0f, 4.5f, 5.0f, 5.5f,
6.0f, 6.5f, 7.0f, 7.5f,
8.0f, 9.0f, 10.0f, 11.0f,
12.0f, 13.0f, 14.0f, 15.0f,
16.0f, 17.0f, 18.0f, 19.0f,
20.0f, 21.0f, 22.0f, 23.0f,
24.0f, 25.0f, 26.0f, 27.0f,
28.0f, 29.0f, 30.0f, 31.0f,
32.0f, 33.0f, 34.0f, 35.0f,
#if ANGULAR_STEPS >= 48
// This is "redundant" and only used in more-than-4-wide
// SIMD code paths, to make the steps table size
// be a multiple of SIMD width. Values are replicated
// from last entry so that AVX2 and SSE code paths
// return the same results.
35.0f, 35.0f, 35.0f, 35.0f,
#endif
};
alignas(ASTCENC_VECALIGN) static float stepsizes[ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) static float stepsizes_sqr[ANGULAR_STEPS];
static int max_angular_steps_needed_for_quant_level[13];
// Store a reduced sin/cos table for 64 possible weight values; this causes
// slight quality loss compared to using sin() and cos() directly. Must be 2^N.
#define SINCOS_STEPS 64
alignas(ASTCENC_VECALIGN) static float sin_table[SINCOS_STEPS][ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) static float cos_table[SINCOS_STEPS][ANGULAR_STEPS];
void prepare_angular_tables()
{
int max_angular_steps_needed_for_quant_steps[40];
for (int i = 0; i < ANGULAR_STEPS; i++)
{
stepsizes[i] = 1.0f / angular_steppings[i];
stepsizes_sqr[i] = stepsizes[i] * stepsizes[i];
for (int j = 0; j < SINCOS_STEPS; j++)
{
sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angular_steppings[i] * j));
cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angular_steppings[i] * j));
}
int p = astc::flt2int_rd(angular_steppings[i]) + 1;
max_angular_steps_needed_for_quant_steps[p] = MIN(i + 1, ANGULAR_STEPS - 1);
}
// yes, the next-to-last entry is supposed to have the value 33. This because under
// ASTC, the 32-weight mode leaves a double-sized hole in the middle of the
// weight space, so we are better off matching 33 weights than 32.
static const int steps_of_level[] = { 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 33, 36 };
for (int i = 0; i < 13; i++)
{
max_angular_steps_needed_for_quant_level[i] = max_angular_steps_needed_for_quant_steps[steps_of_level[i]];
}
}
// function to compute angular sums; then, from the
// angular sums, compute alignment factor and offset.
static void compute_angular_offsets(
int samplecount,
const float* samples,
const float* sample_weights,
int max_angular_steps,
float* offsets
) {
alignas(ASTCENC_VECALIGN) float anglesum_x[ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) float anglesum_y[ANGULAR_STEPS];
std::memset(anglesum_x, 0, max_angular_steps*sizeof(anglesum_x[0]));
std::memset(anglesum_y, 0, max_angular_steps*sizeof(anglesum_y[0]));
// compute the angle-sums.
for (int i = 0; i < samplecount; i++)
{
float sample = samples[i];
float sample_weight = sample_weights[i];
if32 p;
p.f = (sample * (SINCOS_STEPS - 1.0f)) + 12582912.0f;
unsigned int isample = p.u & (SINCOS_STEPS - 1);
const float *sinptr = sin_table[isample];
const float *cosptr = cos_table[isample];
vfloat sample_weightv(sample_weight);
for (int j = 0; j < max_angular_steps; j += ASTCENC_SIMD_WIDTH) // arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max
{
vfloat cp = loada(&cosptr[j]);
vfloat sp = loada(&sinptr[j]);
vfloat ax = loada(&anglesum_x[j]) + cp * sample_weightv;
vfloat ay = loada(&anglesum_y[j]) + sp * sample_weightv;
store(ax, &anglesum_x[j]);
store(ay, &anglesum_y[j]);
}
}
// post-process the angle-sums
vfloat mult = vfloat(1.0f / (2.0f * astc::PI));
for (int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH) // arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max
{
vfloat angle = atan2(loada(&anglesum_y[i]), loada(&anglesum_x[i]));
vfloat ofs = angle * (loada(&stepsizes[i]) * mult);
store(ofs, &offsets[i]);
}
}
// for a given step-size and a given offset, compute the
// lowest and highest weight that results from quantizing using the stepsize & offset.
// also, compute the resulting error.
static void compute_lowest_and_highest_weight(
int samplecount,
const float *samples,
const float *sample_weights,
int max_angular_steps,
int max_quantization_steps,
const float *offsets,
int32_t * lowest_weight,
int32_t * weight_span,
float *error,
float *cut_low_weight_error,
float *cut_high_weight_error
) {
// Arrays are always multiple of SIMD width (ANGULAR_STEPS), so this is safe even if overshoot max
for (int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH)
{
vint minidx(128);
vint maxidx(-128);
vfloat errval = vfloat::zero();
vfloat cut_low_weight_err = vfloat::zero();
vfloat cut_high_weight_err = vfloat::zero();
vfloat rcp_stepsize = loada(&angular_steppings[sp]);
vfloat offset = loada(&offsets[sp]);
vfloat scaled_offset = rcp_stepsize * offset;
for (int j = 0; j < samplecount; ++j)
{
vfloat wt = load1a(&sample_weights[j]);
vfloat sval = load1a(&samples[j]) * rcp_stepsize - scaled_offset;
vfloat svalrte = round(sval);
vint idxv = floatToInt(svalrte);
vfloat dif = sval - svalrte;
vfloat dwt = dif * wt;
errval = errval + dwt * dif;
// Reset tracker on min hit.
vmask mask = idxv < minidx;
minidx = select(minidx, idxv, mask);
cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask);
// Accumulate on min hit.
mask = idxv == minidx;
minidx = select(minidx, idxv, mask);
vfloat accum = cut_low_weight_err + wt - vfloat(2.0f) * dwt;
cut_low_weight_err = select(cut_low_weight_err, accum, mask);
// Reset tracker on max hit.
mask = idxv > maxidx;
maxidx = select(maxidx, idxv, mask);
cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask);
// Accumulate on max hit.
mask = idxv == maxidx;
accum = cut_high_weight_err + wt + vfloat(2.0f) * dwt;
cut_high_weight_err = select(cut_high_weight_err, accum, mask);
}
// Write out min weight and weight span; clamp span to a usable range
vint span = maxidx - minidx + vint(1);
span = min(span, vint(max_quantization_steps + 3));
span = max(span, vint(2));
store(minidx, &lowest_weight[sp]);
store(span, &weight_span[sp]);
// The cut_(lowest/highest)_weight_error indicate the error that
// results from forcing samples that should have had the weight value
// one step (up/down).
vfloat errscale = loada(&stepsizes_sqr[sp]);
store(errval * errscale, &error[sp]);
store(cut_low_weight_err * errscale, &cut_low_weight_error[sp]);
store(cut_high_weight_err * errscale, &cut_high_weight_error[sp]);
}
}
// main function for running the angular algorithm.
static void compute_angular_endpoints_for_quantization_levels(
int samplecount,
const float* samples,
const float* sample_weights,
int max_quantization_level,
float low_value[12],
float high_value[12]
) {
static const int quantization_steps_for_level[13] = { 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 33, 36 };
int max_quantization_steps = quantization_steps_for_level[max_quantization_level + 1];
alignas(ASTCENC_VECALIGN) float angular_offsets[ANGULAR_STEPS];
int max_angular_steps = max_angular_steps_needed_for_quant_level[max_quantization_level];
compute_angular_offsets(samplecount, samples, sample_weights, max_angular_steps, angular_offsets);
alignas(ASTCENC_VECALIGN) int32_t lowest_weight[ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) int32_t weight_span[ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) float error[ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) float cut_low_weight_error[ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) float cut_high_weight_error[ANGULAR_STEPS];
compute_lowest_and_highest_weight(samplecount, samples, sample_weights,
max_angular_steps, max_quantization_steps,
angular_offsets, lowest_weight, weight_span, error,
cut_low_weight_error, cut_high_weight_error);
// for each quantization level, find the best error terms.
float best_errors[40];
int best_scale[40];
uint8_t cut_low_weight[40];
for (int i = 0; i < (max_quantization_steps + 4); i++)
{
best_scale[i] = -1; // Indicates no solution found
best_errors[i] = 1e30f;
cut_low_weight[i] = 0;
}
for (int i = 0; i < max_angular_steps; i++)
{
int idx_span = weight_span[i];
if (best_errors[idx_span] > error[i])
{
best_errors[idx_span] = error[i];
best_scale[idx_span] = i;
cut_low_weight[idx_span] = 0;
}
float error_cut_low = error[i] + cut_low_weight_error[i];
float error_cut_high = error[i] + cut_high_weight_error[i];
float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i];
if (best_errors[idx_span - 1] > error_cut_low)
{
best_errors[idx_span - 1] = error_cut_low;
best_scale[idx_span - 1] = i;
cut_low_weight[idx_span - 1] = 1;
}
if (best_errors[idx_span - 1] > error_cut_high)
{
best_errors[idx_span - 1] = error_cut_high;
best_scale[idx_span - 1] = i;
cut_low_weight[idx_span - 1] = 0;
}
if (best_errors[idx_span - 2] > error_cut_low_high)
{
best_errors[idx_span - 2] = error_cut_low_high;
best_scale[idx_span - 2] = i;
cut_low_weight[idx_span - 2] = 1;
}
}
// if we got a better error-value for a low sample count than for a high one,
// use the low sample count error value for the higher sample count as well.
for (int i = 3; i <= max_quantization_steps; i++)
{
if (best_errors[i] > best_errors[i - 1])
{
best_errors[i] = best_errors[i - 1];
best_scale[i] = best_scale[i - 1];
cut_low_weight[i] = cut_low_weight[i - 1];
}
}
for (int i = 0; i <= max_quantization_level; i++)
{
int q = quantization_steps_for_level[i];
int bsi = best_scale[q];
// Did we find anything?
// TODO: Can we do better than bsi = 0 here. We should at least
// propagate an error (and move the printf into the CLI).
if (bsi < 0)
{
printf("WARNING: Unable to find encoding within specified error limit\n");
bsi = 0;
}
float stepsize = stepsizes[bsi];
int lwi = lowest_weight[bsi] + cut_low_weight[q];
int hwi = lwi + q - 1;
float offset = angular_offsets[bsi];
low_value[i] = offset + lwi * stepsize;
high_value[i] = offset + hwi * stepsize;
}
}
// helper functions that will compute ideal angular-endpoints
// for a given set of weights and a given block size descriptors
void compute_angular_endpoints_1plane(
float mode_cutoff,
const block_size_descriptor* bsd,
const float* decimated_quantized_weights,
const float* decimated_weights,
float low_value[MAX_WEIGHT_MODES],
float high_value[MAX_WEIGHT_MODES]
) {
float low_values[MAX_DECIMATION_MODES][12];
float high_values[MAX_DECIMATION_MODES][12];
for (int i = 0; i < MAX_DECIMATION_MODES; i++)
{
// TODO: Do this at build time and cache the result
int samplecount = bsd->decimation_mode_samples[i];
int quant_mode = bsd->decimation_mode_maxprec_1plane[i];
float percentile = bsd->decimation_mode_percentile[i];
int permit_encode = bsd->permit_encode[i];
if (permit_encode == 0 || samplecount < 1 || quant_mode < 0 || percentile > mode_cutoff)
{
continue;
}
compute_angular_endpoints_for_quantization_levels(samplecount,
decimated_quantized_weights + i * MAX_WEIGHTS_PER_BLOCK,
decimated_weights + i * MAX_WEIGHTS_PER_BLOCK, quant_mode, low_values[i], high_values[i]);
}
for (int i = 0, ni = bsd->block_mode_packed_count; i < ni; ++i)
{
const block_mode& bm = bsd->block_modes_packed[i];
if (bm.is_dual_plane != 0 || bm.percentile > mode_cutoff)
{
continue;
}
int quant_mode = bm.quantization_mode;
int decim_mode = bm.decimation_mode;
low_value[i] = low_values[decim_mode][quant_mode];
high_value[i] = high_values[decim_mode][quant_mode];
}
}
void compute_angular_endpoints_2planes(
float mode_cutoff,
const block_size_descriptor* bsd,
const float* decimated_quantized_weights,
const float* decimated_weights,
float low_value1[MAX_WEIGHT_MODES],
float high_value1[MAX_WEIGHT_MODES],
float low_value2[MAX_WEIGHT_MODES],
float high_value2[MAX_WEIGHT_MODES]
) {
float low_values1[MAX_DECIMATION_MODES][12];
float high_values1[MAX_DECIMATION_MODES][12];
float low_values2[MAX_DECIMATION_MODES][12];
float high_values2[MAX_DECIMATION_MODES][12];
for (int i = 0; i < MAX_DECIMATION_MODES; i++)
{
// TODO: Do this at build time and cache the result
int samplecount = bsd->decimation_mode_samples[i];
int quant_mode = bsd->decimation_mode_maxprec_2planes[i];
float percentile = bsd->decimation_mode_percentile[i];
int permit_encode = bsd->permit_encode[i];
if (permit_encode == 0 || samplecount < 1 || quant_mode < 0 || percentile > mode_cutoff)
{
continue;
}
compute_angular_endpoints_for_quantization_levels(samplecount,
decimated_quantized_weights + 2 * i * MAX_WEIGHTS_PER_BLOCK,
decimated_weights + 2 * i * MAX_WEIGHTS_PER_BLOCK, quant_mode, low_values1[i], high_values1[i]);
compute_angular_endpoints_for_quantization_levels(samplecount,
decimated_quantized_weights + (2 * i + 1) * MAX_WEIGHTS_PER_BLOCK,
decimated_weights + (2 * i + 1) * MAX_WEIGHTS_PER_BLOCK, quant_mode, low_values2[i], high_values2[i]);
}
for (int i = 0, ni = bsd->block_mode_packed_count; i < ni; ++i)
{
const block_mode& bm = bsd->block_modes_packed[i];
if (bm.is_dual_plane != 1 || bm.percentile > mode_cutoff)
{
continue;
}
int quant_mode = bm.quantization_mode;
int decim_mode = bm.decimation_mode;
low_value1[i] = low_values1[decim_mode][quant_mode];
high_value1[i] = high_values1[decim_mode][quant_mode];
low_value2[i] = low_values2[decim_mode][quant_mode];
high_value2[i] = high_values2[decim_mode][quant_mode];
}
}
#endif
|