File: astcenc_weight_align.cpp

package info (click to toggle)
astc-encoder 2.1%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 36,948 kB
  • sloc: cpp: 20,204; python: 2,598; makefile: 156; sh: 15
file content (470 lines) | stat: -rw-r--r-- 16,835 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2020 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------

#if !defined(ASTCENC_DECOMPRESS_ONLY)

/**
 * @brief Functions for angular-sum algorithm for weight alignment.
 *
 * This algorithm works as follows:
 * - we compute a complex number P as (cos s*i, sin s*i) for each weight,
 *   where i is the input value and s is a scaling factor based on the spacing
 *   between the weights.
 * - we then add together complex numbers for all the weights.
 * - we then compute the length and angle of the resulting sum.
 *
 * This should produce the following results:
 * - perfect alignment results in a vector whose length is equal to the sum of
 *   lengths of all inputs
 * - even distribution results in a vector of length 0.
 * - all samples identical results in perfect alignment for every scaling.
 *
 * For each scaling factor within a given set, we compute an alignment factor
 * from 0 to 1. This should then result in some scalings standing out as having
 * particularly good alignment factors; we can use this to produce a set of
 * candidate scale/shift values for various quantization levels; we should then
 * actually try them and see what happens.
 *
 * Assuming N quantization steps, the scaling factor becomes s=2*PI*(N-1); we
 * should probably have about 1 scaling factor for every 1/4 quantization step
 * (perhaps 1/8 for low levels of quantization).
 */

#include "astcenc_internal.h"
#include "astcenc_vecmathlib.h"

#include <stdio.h>
#include <cassert>
#include <cstring>

#if ASTCENC_SIMD_WIDTH <= 4
    #define ANGULAR_STEPS 44
#elif ASTCENC_SIMD_WIDTH == 8
    // AVX code path loops over these tables 8 elements at a time,
    // so make sure to have their size a multiple of 8.
    #define ANGULAR_STEPS 48
#else
    #error Unknown SIMD width
#endif
static_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0, "ANGULAR_STEPS should be multiple of ASTCENC_SIMD_WIDTH");

alignas(ASTCENC_VECALIGN) static const float angular_steppings[ANGULAR_STEPS] = {
	 1.0f, 1.25f, 1.5f, 1.75f,

	 2.0f,  2.5f, 3.0f, 3.5f,
	 4.0f,  4.5f, 5.0f, 5.5f,
	 6.0f,  6.5f, 7.0f, 7.5f,

	 8.0f,  9.0f, 10.0f, 11.0f,
	12.0f, 13.0f, 14.0f, 15.0f,
	16.0f, 17.0f, 18.0f, 19.0f,
	20.0f, 21.0f, 22.0f, 23.0f,
	24.0f, 25.0f, 26.0f, 27.0f,
	28.0f, 29.0f, 30.0f, 31.0f,
	32.0f, 33.0f, 34.0f, 35.0f,
#if ANGULAR_STEPS >= 48
    // This is "redundant" and only used in more-than-4-wide
    // SIMD code paths, to make the steps table size
    // be a multiple of SIMD width. Values are replicated
    // from last entry so that AVX2 and SSE code paths
    // return the same results.
    35.0f, 35.0f, 35.0f, 35.0f,
#endif
};

alignas(ASTCENC_VECALIGN) static float stepsizes[ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) static float stepsizes_sqr[ANGULAR_STEPS];

static int max_angular_steps_needed_for_quant_level[13];

// Store a reduced sin/cos table for 64 possible weight values; this causes
// slight quality loss compared to using sin() and cos() directly. Must be 2^N.
#define SINCOS_STEPS 64

alignas(ASTCENC_VECALIGN) static float sin_table[SINCOS_STEPS][ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) static float cos_table[SINCOS_STEPS][ANGULAR_STEPS];

void prepare_angular_tables()
{
	int max_angular_steps_needed_for_quant_steps[40];
	for (int i = 0; i < ANGULAR_STEPS; i++)
	{
		stepsizes[i] = 1.0f / angular_steppings[i];
		stepsizes_sqr[i] = stepsizes[i] * stepsizes[i];

		for (int j = 0; j < SINCOS_STEPS; j++)
		{
			sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angular_steppings[i] * j));
			cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angular_steppings[i] * j));
		}

		int p = astc::flt2int_rd(angular_steppings[i]) + 1;
		max_angular_steps_needed_for_quant_steps[p] = MIN(i + 1, ANGULAR_STEPS - 1);
	}

	// yes, the next-to-last entry is supposed to have the value 33. This because under
	// ASTC, the 32-weight mode leaves a double-sized hole in the middle of the
	// weight space, so we are better off matching 33 weights than 32.
	static const int steps_of_level[] = { 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 33, 36 };

	for (int i = 0; i < 13; i++)
	{
		max_angular_steps_needed_for_quant_level[i] = max_angular_steps_needed_for_quant_steps[steps_of_level[i]];
	}
}

// function to compute angular sums; then, from the
// angular sums, compute alignment factor and offset.

static void compute_angular_offsets(
	int samplecount,
	const float* samples,
	const float* sample_weights,
	int max_angular_steps,
	float* offsets
) {
	alignas(ASTCENC_VECALIGN) float anglesum_x[ANGULAR_STEPS];
	alignas(ASTCENC_VECALIGN) float anglesum_y[ANGULAR_STEPS];
	std::memset(anglesum_x, 0, max_angular_steps*sizeof(anglesum_x[0]));
	std::memset(anglesum_y, 0, max_angular_steps*sizeof(anglesum_y[0]));

	// compute the angle-sums.
	for (int i = 0; i < samplecount; i++)
	{
		float sample = samples[i];
		float sample_weight = sample_weights[i];
		if32 p;
		p.f = (sample * (SINCOS_STEPS - 1.0f)) + 12582912.0f;
		unsigned int isample = p.u & (SINCOS_STEPS - 1);

		const float *sinptr = sin_table[isample];
		const float *cosptr = cos_table[isample];

		vfloat sample_weightv(sample_weight);
		for (int j = 0; j < max_angular_steps; j += ASTCENC_SIMD_WIDTH) // arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max
		{
			vfloat cp = loada(&cosptr[j]);
			vfloat sp = loada(&sinptr[j]);
			vfloat ax = loada(&anglesum_x[j]) + cp * sample_weightv;
			vfloat ay = loada(&anglesum_y[j]) + sp * sample_weightv;
			store(ax, &anglesum_x[j]);
			store(ay, &anglesum_y[j]);
		}
	}

	// post-process the angle-sums
	vfloat mult = vfloat(1.0f / (2.0f * astc::PI));
	for (int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH) // arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max
	{
		vfloat angle = atan2(loada(&anglesum_y[i]), loada(&anglesum_x[i]));
		vfloat ofs = angle * (loada(&stepsizes[i]) * mult);
		store(ofs, &offsets[i]);
	}
}

// for a given step-size and a given offset, compute the
// lowest and highest weight that results from quantizing using the stepsize & offset.
// also, compute the resulting error.

static void compute_lowest_and_highest_weight(
	int samplecount,
	const float *samples,
	const float *sample_weights,
	int max_angular_steps,
	int max_quantization_steps,
	const float *offsets,
	int32_t * lowest_weight,
	int32_t * weight_span,
	float *error,
	float *cut_low_weight_error,
	float *cut_high_weight_error
) {
	// Arrays are always multiple of SIMD width (ANGULAR_STEPS), so this is safe even if overshoot max
	for (int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH)
	{
		vint minidx(128);
		vint maxidx(-128);
		vfloat errval = vfloat::zero();
		vfloat cut_low_weight_err = vfloat::zero();
		vfloat cut_high_weight_err = vfloat::zero();
		vfloat rcp_stepsize = loada(&angular_steppings[sp]);
		vfloat offset = loada(&offsets[sp]);
		vfloat scaled_offset = rcp_stepsize * offset;
		for (int j = 0; j < samplecount; ++j)
		{
			vfloat wt = load1a(&sample_weights[j]);
			vfloat sval = load1a(&samples[j]) * rcp_stepsize - scaled_offset;
			vfloat svalrte = round(sval);
			vint idxv = floatToInt(svalrte);
			vfloat dif = sval - svalrte;
			vfloat dwt = dif * wt;
			errval = errval + dwt * dif;

			// Reset tracker on min hit.
			vmask mask = idxv < minidx;
			minidx = select(minidx, idxv, mask);
			cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask);

			// Accumulate on min hit.
			mask = idxv == minidx;
			minidx = select(minidx, idxv, mask);
			vfloat accum = cut_low_weight_err + wt - vfloat(2.0f) * dwt;
			cut_low_weight_err = select(cut_low_weight_err, accum, mask);

			// Reset tracker on max hit.
			mask = idxv > maxidx;
			maxidx = select(maxidx, idxv, mask);
			cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask);

			// Accumulate on max hit.
			mask = idxv == maxidx;
			accum = cut_high_weight_err + wt + vfloat(2.0f) * dwt;
			cut_high_weight_err = select(cut_high_weight_err, accum, mask);
		}

		// Write out min weight and weight span; clamp span to a usable range
		vint span = maxidx - minidx + vint(1);
		span = min(span, vint(max_quantization_steps + 3));
		span = max(span, vint(2));
		store(minidx, &lowest_weight[sp]);
		store(span, &weight_span[sp]);

		// The cut_(lowest/highest)_weight_error indicate the error that
		// results from  forcing samples that should have had the weight value
		// one step (up/down).
		vfloat errscale = loada(&stepsizes_sqr[sp]);
		store(errval * errscale, &error[sp]);
		store(cut_low_weight_err * errscale, &cut_low_weight_error[sp]);
		store(cut_high_weight_err * errscale, &cut_high_weight_error[sp]);
	}
}

// main function for running the angular algorithm.
static void compute_angular_endpoints_for_quantization_levels(
	int samplecount,
	const float* samples,
	const float* sample_weights,
	int max_quantization_level,
	float low_value[12],
	float high_value[12]
) {
	static const int quantization_steps_for_level[13] = { 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 33, 36 };

	int max_quantization_steps = quantization_steps_for_level[max_quantization_level + 1];

	alignas(ASTCENC_VECALIGN) float angular_offsets[ANGULAR_STEPS];
	int max_angular_steps = max_angular_steps_needed_for_quant_level[max_quantization_level];
	compute_angular_offsets(samplecount, samples, sample_weights, max_angular_steps, angular_offsets);

	alignas(ASTCENC_VECALIGN) int32_t lowest_weight[ANGULAR_STEPS];
	alignas(ASTCENC_VECALIGN) int32_t weight_span[ANGULAR_STEPS];
	alignas(ASTCENC_VECALIGN) float error[ANGULAR_STEPS];
	alignas(ASTCENC_VECALIGN) float cut_low_weight_error[ANGULAR_STEPS];
	alignas(ASTCENC_VECALIGN) float cut_high_weight_error[ANGULAR_STEPS];

	compute_lowest_and_highest_weight(samplecount, samples, sample_weights,
	                                  max_angular_steps, max_quantization_steps,
	                                  angular_offsets, lowest_weight, weight_span, error,
	                                  cut_low_weight_error, cut_high_weight_error);

	// for each quantization level, find the best error terms.
	float best_errors[40];
	int best_scale[40];
	uint8_t cut_low_weight[40];
	for (int i = 0; i < (max_quantization_steps + 4); i++)
	{
		best_scale[i] = -1;	// Indicates no solution found
		best_errors[i] = 1e30f;
		cut_low_weight[i] = 0;
	}

	for (int i = 0; i < max_angular_steps; i++)
	{
		int idx_span = weight_span[i];

		if (best_errors[idx_span] > error[i])
		{
			best_errors[idx_span] = error[i];
			best_scale[idx_span] = i;
			cut_low_weight[idx_span] = 0;
		}

		float error_cut_low = error[i] + cut_low_weight_error[i];
		float error_cut_high = error[i] + cut_high_weight_error[i];
		float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i];

		if (best_errors[idx_span - 1] > error_cut_low)
		{
			best_errors[idx_span - 1] = error_cut_low;
			best_scale[idx_span - 1] = i;
			cut_low_weight[idx_span - 1] = 1;
		}

		if (best_errors[idx_span - 1] > error_cut_high)
		{
			best_errors[idx_span - 1] = error_cut_high;
			best_scale[idx_span - 1] = i;
			cut_low_weight[idx_span - 1] = 0;
		}

		if (best_errors[idx_span - 2] > error_cut_low_high)
		{
			best_errors[idx_span - 2] = error_cut_low_high;
			best_scale[idx_span - 2] = i;
			cut_low_weight[idx_span - 2] = 1;
		}

	}

	// if we got a better error-value for a low sample count than for a high one,
	// use the low sample count error value for the higher sample count as well.
	for (int i = 3; i <= max_quantization_steps; i++)
	{
		if (best_errors[i] > best_errors[i - 1])
		{
			best_errors[i] = best_errors[i - 1];
			best_scale[i] = best_scale[i - 1];
			cut_low_weight[i] = cut_low_weight[i - 1];
		}
	}

	for (int i = 0; i <= max_quantization_level; i++)
	{
		int q = quantization_steps_for_level[i];
		int bsi = best_scale[q];

		// Did we find anything?
		// TODO: Can we do better than bsi = 0 here. We should at least
		// propagate an error (and move the printf into the CLI).
		if (bsi < 0)
		{
			printf("WARNING: Unable to find encoding within specified error limit\n");
			bsi = 0;
		}

		float stepsize = stepsizes[bsi];
		int lwi = lowest_weight[bsi] + cut_low_weight[q];
		int hwi = lwi + q - 1;
		float offset = angular_offsets[bsi];

		low_value[i] = offset + lwi * stepsize;
		high_value[i] = offset + hwi * stepsize;
	}
}

// helper functions that will compute ideal angular-endpoints
// for a given set of weights and a given block size descriptors
void compute_angular_endpoints_1plane(
	float mode_cutoff,
	const block_size_descriptor* bsd,
	const float* decimated_quantized_weights,
	const float* decimated_weights,
	float low_value[MAX_WEIGHT_MODES],
	float high_value[MAX_WEIGHT_MODES]
) {
	float low_values[MAX_DECIMATION_MODES][12];
	float high_values[MAX_DECIMATION_MODES][12];

	for (int i = 0; i < MAX_DECIMATION_MODES; i++)
	{
		// TODO: Do this at build time and cache the result
		int samplecount = bsd->decimation_mode_samples[i];
		int quant_mode = bsd->decimation_mode_maxprec_1plane[i];
		float percentile = bsd->decimation_mode_percentile[i];
		int permit_encode = bsd->permit_encode[i];
		if (permit_encode == 0 || samplecount < 1 || quant_mode < 0 || percentile > mode_cutoff)
		{
			continue;
		}

		compute_angular_endpoints_for_quantization_levels(samplecount,
		                                                  decimated_quantized_weights + i * MAX_WEIGHTS_PER_BLOCK,
		                                                  decimated_weights + i * MAX_WEIGHTS_PER_BLOCK, quant_mode, low_values[i], high_values[i]);
	}

	for (int i = 0, ni = bsd->block_mode_packed_count; i < ni; ++i)
	{
		const block_mode& bm = bsd->block_modes_packed[i];
		if (bm.is_dual_plane != 0 || bm.percentile > mode_cutoff)
		{
			continue;
		}

		int quant_mode = bm.quantization_mode;
		int decim_mode = bm.decimation_mode;

		low_value[i] = low_values[decim_mode][quant_mode];
		high_value[i] = high_values[decim_mode][quant_mode];
	}
}

void compute_angular_endpoints_2planes(
	float mode_cutoff,
	const block_size_descriptor* bsd,
	const float* decimated_quantized_weights,
	const float* decimated_weights,
	float low_value1[MAX_WEIGHT_MODES],
	float high_value1[MAX_WEIGHT_MODES],
	float low_value2[MAX_WEIGHT_MODES],
	float high_value2[MAX_WEIGHT_MODES]
) {
	float low_values1[MAX_DECIMATION_MODES][12];
	float high_values1[MAX_DECIMATION_MODES][12];
	float low_values2[MAX_DECIMATION_MODES][12];
	float high_values2[MAX_DECIMATION_MODES][12];

	for (int i = 0; i < MAX_DECIMATION_MODES; i++)
	{
		// TODO: Do this at build time and cache the result
		int samplecount = bsd->decimation_mode_samples[i];
		int quant_mode = bsd->decimation_mode_maxprec_2planes[i];
		float percentile = bsd->decimation_mode_percentile[i];
		int permit_encode = bsd->permit_encode[i];

		if (permit_encode == 0 || samplecount < 1 || quant_mode < 0 || percentile > mode_cutoff)
		{
			continue;
		}

		compute_angular_endpoints_for_quantization_levels(samplecount,
		                                                  decimated_quantized_weights + 2 * i * MAX_WEIGHTS_PER_BLOCK,
		                                                  decimated_weights + 2 * i * MAX_WEIGHTS_PER_BLOCK, quant_mode, low_values1[i], high_values1[i]);

		compute_angular_endpoints_for_quantization_levels(samplecount,
		                                                  decimated_quantized_weights + (2 * i + 1) * MAX_WEIGHTS_PER_BLOCK,
		                                                  decimated_weights + (2 * i + 1) * MAX_WEIGHTS_PER_BLOCK, quant_mode, low_values2[i], high_values2[i]);
	}

	for (int i = 0, ni = bsd->block_mode_packed_count; i < ni; ++i)
	{
		const block_mode& bm = bsd->block_modes_packed[i];
		if (bm.is_dual_plane != 1 || bm.percentile > mode_cutoff)
		{
			continue;
		}

		int quant_mode = bm.quantization_mode;
		int decim_mode = bm.decimation_mode;

		low_value1[i] = low_values1[decim_mode][quant_mode];
		high_value1[i] = high_values1[decim_mode][quant_mode];
		low_value2[i] = low_values2[decim_mode][quant_mode];
		high_value2[i] = high_values2[decim_mode][quant_mode];
	}
}

#endif