File: astcenccli_error_metrics.cpp

package info (click to toggle)
astc-encoder 2.1%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 36,948 kB
  • sloc: cpp: 20,204; python: 2,598; makefile: 156; sh: 15
file content (380 lines) | stat: -rw-r--r-- 10,746 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2020 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------

/**
 * @brief Functions for computing image error metrics.
 */

#include <cassert>
#include <cstdio>

#include "astcenccli_internal.h"

/**
 * @brief An accumulator using Kahan compensated floating-point summation.
 *
 * This method keeps higher precision than direct summation by keeping track of
 * the error compensation factor, c, which can be added into the next
 * calculation. This allows single precision floats to be used in places that
 * would otherwise need double precision, which is useful when vectorizing.
 */
class kahan_accum4
{
public:
	/** The running sum. */
	float4 sum;

	/** The current compensation factor. */
	float4 comp;

	/**
	 * @brief Create a new Kahan accumulator
	 */
	kahan_accum4() {
		sum = float4(0.0f);
		comp = float4(0.0f);
	}
};

/**
 * @brief The incremental addition operator for Kahan summation.
 *
 * @param val The Kahan accumulator to increment
 * @param inc The increment to apply
 *
 * @return The updated accumulator
 */
static kahan_accum4 &operator+=(
	kahan_accum4 &val,
	float4 inc
) {
	float4 y = inc - val.comp;
	float4 t = val.sum + y;
	val.comp = (t - val.sum) - y;
	val.sum = t;
	return val;
}

/**
 * @brief mPSNR tonemapping operator for HDR images.
 *
 * @param val The color value to tone map
 * @param fstop The exposure fstop; should be in range [-125, 125]
 *
 * @return The mapped color value in [0.0f, 255.0f] range
 */
static float mpsnr_operator(
	float val,
	int fstop
) {
	if32 p;
	p.u = 0x3f800000 + (fstop << 23);  // 0x3f800000 is 1.0f
	val *= p.f;
	val = powf(val, (1.0f / 2.2f));
	val *= 255.0f;

	// Do not reorder these, correct NaN handling relies on the fact that
	// any comparison with NaN returns false so will fall-though to the 0.0f.
	if (val > 255.0f) return 255.0f;
	if (val > 0.0f) return val;
	return 0.0f;
}

/**
 * @brief mPSNR difference between two values.
 *
 * Differences are given as "val1 - val2".
 *
 * @param val1     The first color value
 * @param val2     The second color value
 * @param fstop_lo The low exposure fstop; should be in range [-125, 125]
 * @param fstop_hi The high exposure fstop; should be in range [-125, 125]
 *
 * @return The summed mPSNR difference across all active fstop levels
 */
static float mpsnr_sumdiff(
	float val1,
	float val2,
	int fstop_lo,
	int fstop_hi
) {
	float summa = 0.0f;
	for (int i = fstop_lo; i <= fstop_hi; i++)
	{
		float mval1 = mpsnr_operator(val1, i);
		float mval2 = mpsnr_operator(val2, i);
		float mdiff = mval1 - mval2;
		summa += mdiff * mdiff;
	}
	return summa;
}

/* Public function, see header file for detailed documentation */
void compute_error_metrics(
	int compute_hdr_metrics,
	int input_components,
	const astcenc_image* img1,
	const astcenc_image* img2,
	int fstop_lo,
	int fstop_hi
) {
	static int channelmasks[5] = { 0x00, 0x07, 0x0C, 0x07, 0x0F };
	int channelmask = channelmasks[input_components];

	kahan_accum4 errorsum;
	kahan_accum4 alpha_scaled_errorsum;
	kahan_accum4 log_errorsum;
	kahan_accum4 mpsnr_errorsum;

	unsigned int dim_x = MIN(img1->dim_x, img2->dim_x);
	unsigned int dim_y = MIN(img1->dim_y, img2->dim_y);
	unsigned int dim_z = MIN(img1->dim_z, img2->dim_z);

	if (img1->dim_x != img2->dim_x ||
	    img1->dim_y != img2->dim_y ||
	    img1->dim_z != img2->dim_z)
	{
		printf("WARNING: Only intersection of images will be compared:\n"
		       "  Image 1: %dx%dx%d\n"
		       "  Image 2: %dx%dx%d\n",
		       img1->dim_x, img1->dim_y, img1->dim_z,
		       img2->dim_x, img2->dim_y, img2->dim_z);
	}

	int img1pad = img1->dim_pad;
	int img2pad = img2->dim_pad;
	float rgb_peak = 0.0f;

	for (unsigned int z = 0; z < dim_z; z++)
	{
		for (unsigned int y = 0; y < dim_y; y++)
		{
			int ze1 = (img1->dim_z == 1) ? z : z + img1pad;
			int ze2 = (img2->dim_z == 1) ? z : z + img2pad;

			int ye1 = y + img1pad;
			int ye2 = y + img2pad;

			for (unsigned int x = 0; x < dim_x; x++)
			{
				float4 color1;
				float4 color2;

				int xe1 = 4 * x + 4 * img1pad;
				int xe2 = 4 * x + 4 * img2pad;

				if (img1->data_type == ASTCENC_TYPE_U8)
				{
					uint8_t*** data8 = static_cast<uint8_t***>(img1->data);
					color1 = float4(
					    data8[ze1][ye1][xe1    ] * (1.0f / 255.0f),
					    data8[ze1][ye1][xe1 + 1] * (1.0f / 255.0f),
					    data8[ze1][ye1][xe1 + 2] * (1.0f / 255.0f),
					    data8[ze1][ye1][xe1 + 3] * (1.0f / 255.0f));
				}
				else if (img1->data_type == ASTCENC_TYPE_F16)
				{
					uint16_t*** data16 = static_cast<uint16_t***>(img1->data);
					color1 = float4(
					    astc::clamp64Kf(sf16_to_float(data16[ze1][ye1][xe1    ])),
					    astc::clamp64Kf(sf16_to_float(data16[ze1][ye1][xe1 + 1])),
					    astc::clamp64Kf(sf16_to_float(data16[ze1][ye1][xe1 + 2])),
					    astc::clamp64Kf(sf16_to_float(data16[ze1][ye1][xe1 + 3])));
				}
				else // if (img1->data_type == ASTCENC_TYPE_F32)
				{
					assert(img1->data_type == ASTCENC_TYPE_F32);
					float*** data32 = static_cast<float***>(img1->data);
					color1 = float4(
					    astc::clamp64Kf(data32[ze1][ye1][xe1    ]),
					    astc::clamp64Kf(data32[ze1][ye1][xe1 + 1]),
					    astc::clamp64Kf(data32[ze1][ye1][xe1 + 2]),
					    astc::clamp64Kf(data32[ze1][ye1][xe1 + 3]));
				}

				if (img2->data_type == ASTCENC_TYPE_U8)
				{
					uint8_t*** data8 = static_cast<uint8_t***>(img2->data);
					color2 = float4(
					    data8[ze2][ye2][xe2    ] * (1.0f / 255.0f),
					    data8[ze2][ye2][xe2 + 1] * (1.0f / 255.0f),
					    data8[ze2][ye2][xe2 + 2] * (1.0f / 255.0f),
					    data8[ze2][ye2][xe2 + 3] * (1.0f / 255.0f));
				}
				else if (img2->data_type == ASTCENC_TYPE_F16)
				{
					uint16_t*** data16 = static_cast<uint16_t***>(img2->data);
					color2 = float4(
					    astc::clamp64Kf(sf16_to_float(data16[ze2][ye2][xe2    ])),
					    astc::clamp64Kf(sf16_to_float(data16[ze2][ye2][xe2 + 1])),
					    astc::clamp64Kf(sf16_to_float(data16[ze2][ye2][xe2 + 2])),
					    astc::clamp64Kf(sf16_to_float(data16[ze2][ye2][xe2 + 3])));
				}
				else // if (img2->data_type == ASTCENC_TYPE_F32)
				{
					assert(img2->data_type == ASTCENC_TYPE_F32);
					float*** data16 = static_cast<float***>(img2->data);
					color2 = float4(
					    astc::clamp64Kf(data16[ze2][ye2][xe2    ]),
					    astc::clamp64Kf(data16[ze2][ye2][xe2 + 1]),
					    astc::clamp64Kf(data16[ze2][ye2][xe2 + 2]),
					    astc::clamp64Kf(data16[ze2][ye2][xe2 + 3]));
				}

				rgb_peak = MAX(MAX(color1.r, color1.g), MAX(color1.b, rgb_peak));

				float4 diffcolor = color1 - color2;
				errorsum += diffcolor * diffcolor;

				float4 alpha_scaled_diffcolor = float4(
				    diffcolor.r * color1.a,
				    diffcolor.g * color1.a,
				    diffcolor.b * color1.a,
				    diffcolor.a);

				alpha_scaled_errorsum += alpha_scaled_diffcolor * \
				                         alpha_scaled_diffcolor;

				if (compute_hdr_metrics)
				{
					float4 log_input_color1 = float4(
					    astc::xlog2(color1.r),
					    astc::xlog2(color1.g),
					    astc::xlog2(color1.b),
					    astc::xlog2(color1.a));

					float4 log_input_color2 = float4(
					    astc::xlog2(color2.r),
					    astc::xlog2(color2.g),
					    astc::xlog2(color2.b),
					    astc::xlog2(color2.a));

					float4 log_diffcolor = log_input_color1 - log_input_color2;

					log_errorsum += log_diffcolor * log_diffcolor;

					float4 mpsnr_error = float4(
					    mpsnr_sumdiff(color1.r, color2.r, fstop_lo, fstop_hi),
					    mpsnr_sumdiff(color1.g, color2.g, fstop_lo, fstop_hi),
					    mpsnr_sumdiff(color1.b, color2.b, fstop_lo, fstop_hi),
					    mpsnr_sumdiff(color1.a, color2.a, fstop_lo, fstop_hi));

					mpsnr_errorsum += mpsnr_error;
				}
			}
		}
	}

	float pixels = (float)(dim_x * dim_y * dim_z);
	float num = 0.0f;
	float alpha_num = 0.0f;
	float log_num = 0.0f;
	float mpsnr_num = 0.0f;
	float samples = 0.0f;

	if (channelmask & 1)
	{
		num += errorsum.sum.r;
		alpha_num += alpha_scaled_errorsum.sum.r;
		log_num += log_errorsum.sum.r;
		mpsnr_num += mpsnr_errorsum.sum.r;
		samples += pixels;
	}

	if (channelmask & 2)
	{
		num += errorsum.sum.g;
		alpha_num += alpha_scaled_errorsum.sum.g;
		log_num += log_errorsum.sum.g;
		mpsnr_num += mpsnr_errorsum.sum.g;
		samples += pixels;
	}

	if (channelmask & 4)
	{
		num += errorsum.sum.b;
		alpha_num += alpha_scaled_errorsum.sum.b;
		log_num += log_errorsum.sum.b;
		mpsnr_num += mpsnr_errorsum.sum.b;
		samples += pixels;
	}

	if (channelmask & 8)
	{
		num += errorsum.sum.a;
		alpha_num += alpha_scaled_errorsum.sum.a;
		samples += pixels;
	}

	float denom = samples;
	float stopcount = (float)(fstop_hi - fstop_lo + 1);
	float mpsnr_denom = pixels * 3.0f * stopcount * 255.0f * 255.0f;

	float psnr;
	if (num == 0.0f)
		psnr = 999.0f;
	else
		psnr = 10.0f * log10f(denom / num);

	float rgb_psnr = psnr;

	printf("Quality metrics\n");
	printf("===============\n\n");

	if (channelmask & 8)
	{
		printf("    PSNR (LDR-RGBA):          %9.4f dB\n", (double)psnr);

		float alpha_psnr;
		if (alpha_num == 0.0f)
			alpha_psnr = 999.0f;
		else
			alpha_psnr = 10.0f * log10f(denom / alpha_num);
		printf("    Alpha-weighted PSNR:      %9.4f dB\n", (double)alpha_psnr);

		float rgb_num = errorsum.sum.r + errorsum.sum.g + errorsum.sum.b;
		if (rgb_num == 0.0f)
			rgb_psnr = 999.0f;
		else
			rgb_psnr = 10.0f * log10f(pixels * 3.0f / rgb_num);
		printf("    PSNR (LDR-RGB):           %9.4f dB\n", (double)rgb_psnr);
	}
	else
	{
		printf("    PSNR (LDR-RGB):           %9.4f dB\n", (double)psnr);
	}

	if (compute_hdr_metrics)
	{
		printf("    PSNR (RGB norm to peak):  %9.4f dB (peak %f)\n",
				(double)(rgb_psnr + 20.0f * log10f(rgb_peak)),
				(double)rgb_peak);

		float mpsnr;
		if (mpsnr_num == 0.0f)
			mpsnr = 999.0f;
		else
			mpsnr = 10.0f * log10f(mpsnr_denom / mpsnr_num);
		printf("    mPSNR (RGB):              %9.4f dB (fstops %+d to %+d)\n",
				(double)mpsnr, fstop_lo, fstop_hi);

		float logrmse = astc::sqrt(log_num / pixels);
		printf("    LogRMSE (RGB):            %9.4f\n", (double)logrmse);
	}

	printf("\n");
}