1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2022 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
#if !defined(ASTCENC_DECOMPRESS_ONLY)
/**
* @brief Functions to calculate variance per component in a NxN footprint.
*
* We need N to be parametric, so the routine below uses summed area tables in order to execute in
* O(1) time independent of how big N is.
*
* The addition uses a Brent-Kung-based parallel prefix adder. This uses the prefix tree to first
* perform a binary reduction, and then distributes the results. This method means that there is no
* serial dependency between a given element and the next one, and also significantly improves
* numerical stability allowing us to use floats rather than doubles.
*/
#include "astcenc_internal.h"
#include <cassert>
/**
* @brief Generate a prefix-sum array using the Brent-Kung algorithm.
*
* This will take an input array of the form:
* v0, v1, v2, ...
* ... and modify in-place to turn it into a prefix-sum array of the form:
* v0, v0+v1, v0+v1+v2, ...
*
* @param d The array to prefix-sum.
* @param items The number of items in the array.
* @param stride The item spacing in the array; i.e. dense arrays should use 1.
*/
static void brent_kung_prefix_sum(
vfloat4* d,
size_t items,
int stride
) {
if (items < 2)
return;
size_t lc_stride = 2;
size_t log2_stride = 1;
// The reduction-tree loop
do {
size_t step = lc_stride >> 1;
size_t start = lc_stride - 1;
size_t iters = items >> log2_stride;
vfloat4 *da = d + (start * stride);
ptrdiff_t ofs = -static_cast<ptrdiff_t>(step * stride);
size_t ofs_stride = stride << log2_stride;
while (iters)
{
*da = *da + da[ofs];
da += ofs_stride;
iters--;
}
log2_stride += 1;
lc_stride <<= 1;
} while (lc_stride <= items);
// The expansion-tree loop
do {
log2_stride -= 1;
lc_stride >>= 1;
size_t step = lc_stride >> 1;
size_t start = step + lc_stride - 1;
size_t iters = (items - step) >> log2_stride;
vfloat4 *da = d + (start * stride);
ptrdiff_t ofs = -static_cast<ptrdiff_t>(step * stride);
size_t ofs_stride = stride << log2_stride;
while (iters)
{
*da = *da + da[ofs];
da += ofs_stride;
iters--;
}
} while (lc_stride > 2);
}
/* See header for documentation. */
void compute_pixel_region_variance(
astcenc_contexti& ctx,
const pixel_region_args& arg
) {
// Unpack the memory structure into local variables
const astcenc_image* img = arg.img;
astcenc_swizzle swz = arg.swz;
bool have_z = arg.have_z;
int size_x = arg.size_x;
int size_y = arg.size_y;
int size_z = arg.size_z;
int offset_x = arg.offset_x;
int offset_y = arg.offset_y;
int offset_z = arg.offset_z;
int alpha_kernel_radius = arg.alpha_kernel_radius;
float* input_alpha_averages = ctx.input_alpha_averages;
vfloat4* work_memory = arg.work_memory;
// Compute memory sizes and dimensions that we need
int kernel_radius = alpha_kernel_radius;
int kerneldim = 2 * kernel_radius + 1;
int kernel_radius_xy = kernel_radius;
int kernel_radius_z = have_z ? kernel_radius : 0;
int padsize_x = size_x + kerneldim;
int padsize_y = size_y + kerneldim;
int padsize_z = size_z + (have_z ? kerneldim : 0);
int sizeprod = padsize_x * padsize_y * padsize_z;
int zd_start = have_z ? 1 : 0;
vfloat4 *varbuf1 = work_memory;
vfloat4 *varbuf2 = work_memory + sizeprod;
// Scaling factors to apply to Y and Z for accesses into the work buffers
int yst = padsize_x;
int zst = padsize_x * padsize_y;
// Scaling factors to apply to Y and Z for accesses into result buffers
int ydt = img->dim_x;
int zdt = img->dim_x * img->dim_y;
// Macros to act as accessor functions for the work-memory
#define VARBUF1(z, y, x) varbuf1[z * zst + y * yst + x]
#define VARBUF2(z, y, x) varbuf2[z * zst + y * yst + x]
// Load N and N^2 values into the work buffers
if (img->data_type == ASTCENC_TYPE_U8)
{
// Swizzle data structure 4 = ZERO, 5 = ONE
uint8_t data[6];
data[ASTCENC_SWZ_0] = 0;
data[ASTCENC_SWZ_1] = 255;
for (int z = zd_start; z < padsize_z; z++)
{
int z_src = (z - zd_start) + offset_z - kernel_radius_z;
z_src = astc::clamp(z_src, 0, static_cast<int>(img->dim_z - 1));
uint8_t* data8 = static_cast<uint8_t*>(img->data[z_src]);
for (int y = 1; y < padsize_y; y++)
{
int y_src = (y - 1) + offset_y - kernel_radius_xy;
y_src = astc::clamp(y_src, 0, static_cast<int>(img->dim_y - 1));
for (int x = 1; x < padsize_x; x++)
{
int x_src = (x - 1) + offset_x - kernel_radius_xy;
x_src = astc::clamp(x_src, 0, static_cast<int>(img->dim_x - 1));
data[0] = data8[(4 * img->dim_x * y_src) + (4 * x_src )];
data[1] = data8[(4 * img->dim_x * y_src) + (4 * x_src + 1)];
data[2] = data8[(4 * img->dim_x * y_src) + (4 * x_src + 2)];
data[3] = data8[(4 * img->dim_x * y_src) + (4 * x_src + 3)];
uint8_t r = data[swz.r];
uint8_t g = data[swz.g];
uint8_t b = data[swz.b];
uint8_t a = data[swz.a];
vfloat4 d = vfloat4 (r * (1.0f / 255.0f),
g * (1.0f / 255.0f),
b * (1.0f / 255.0f),
a * (1.0f / 255.0f));
VARBUF1(z, y, x) = d;
VARBUF2(z, y, x) = d * d;
}
}
}
}
else if (img->data_type == ASTCENC_TYPE_F16)
{
// Swizzle data structure 4 = ZERO, 5 = ONE (in FP16)
uint16_t data[6];
data[ASTCENC_SWZ_0] = 0;
data[ASTCENC_SWZ_1] = 0x3C00;
for (int z = zd_start; z < padsize_z; z++)
{
int z_src = (z - zd_start) + offset_z - kernel_radius_z;
z_src = astc::clamp(z_src, 0, static_cast<int>(img->dim_z - 1));
uint16_t* data16 = static_cast<uint16_t*>(img->data[z_src]);
for (int y = 1; y < padsize_y; y++)
{
int y_src = (y - 1) + offset_y - kernel_radius_xy;
y_src = astc::clamp(y_src, 0, static_cast<int>(img->dim_y - 1));
for (int x = 1; x < padsize_x; x++)
{
int x_src = (x - 1) + offset_x - kernel_radius_xy;
x_src = astc::clamp(x_src, 0, static_cast<int>(img->dim_x - 1));
data[0] = data16[(4 * img->dim_x * y_src) + (4 * x_src )];
data[1] = data16[(4 * img->dim_x * y_src) + (4 * x_src + 1)];
data[2] = data16[(4 * img->dim_x * y_src) + (4 * x_src + 2)];
data[3] = data16[(4 * img->dim_x * y_src) + (4 * x_src + 3)];
vint4 di(data[swz.r], data[swz.g], data[swz.b], data[swz.a]);
vfloat4 d = float16_to_float(di);
VARBUF1(z, y, x) = d;
VARBUF2(z, y, x) = d * d;
}
}
}
}
else // if (img->data_type == ASTCENC_TYPE_F32)
{
assert(img->data_type == ASTCENC_TYPE_F32);
// Swizzle data structure 4 = ZERO, 5 = ONE (in FP16)
float data[6];
data[ASTCENC_SWZ_0] = 0.0f;
data[ASTCENC_SWZ_1] = 1.0f;
for (int z = zd_start; z < padsize_z; z++)
{
int z_src = (z - zd_start) + offset_z - kernel_radius_z;
z_src = astc::clamp(z_src, 0, static_cast<int>(img->dim_z - 1));
float* data32 = static_cast<float*>(img->data[z_src]);
for (int y = 1; y < padsize_y; y++)
{
int y_src = (y - 1) + offset_y - kernel_radius_xy;
y_src = astc::clamp(y_src, 0, static_cast<int>(img->dim_y - 1));
for (int x = 1; x < padsize_x; x++)
{
int x_src = (x - 1) + offset_x - kernel_radius_xy;
x_src = astc::clamp(x_src, 0, static_cast<int>(img->dim_x - 1));
data[0] = data32[(4 * img->dim_x * y_src) + (4 * x_src )];
data[1] = data32[(4 * img->dim_x * y_src) + (4 * x_src + 1)];
data[2] = data32[(4 * img->dim_x * y_src) + (4 * x_src + 2)];
data[3] = data32[(4 * img->dim_x * y_src) + (4 * x_src + 3)];
float r = data[swz.r];
float g = data[swz.g];
float b = data[swz.b];
float a = data[swz.a];
vfloat4 d(r, g, b, a);
VARBUF1(z, y, x) = d;
VARBUF2(z, y, x) = d * d;
}
}
}
}
// Pad with an extra layer of 0s; this forms the edge of the SAT tables
vfloat4 vbz = vfloat4::zero();
for (int z = 0; z < padsize_z; z++)
{
for (int y = 0; y < padsize_y; y++)
{
VARBUF1(z, y, 0) = vbz;
VARBUF2(z, y, 0) = vbz;
}
for (int x = 0; x < padsize_x; x++)
{
VARBUF1(z, 0, x) = vbz;
VARBUF2(z, 0, x) = vbz;
}
}
if (have_z)
{
for (int y = 0; y < padsize_y; y++)
{
for (int x = 0; x < padsize_x; x++)
{
VARBUF1(0, y, x) = vbz;
VARBUF2(0, y, x) = vbz;
}
}
}
// Generate summed-area tables for N and N^2; this is done in-place, using
// a Brent-Kung parallel-prefix based algorithm to minimize precision loss
for (int z = zd_start; z < padsize_z; z++)
{
for (int y = 1; y < padsize_y; y++)
{
brent_kung_prefix_sum(&(VARBUF1(z, y, 1)), padsize_x - 1, 1);
brent_kung_prefix_sum(&(VARBUF2(z, y, 1)), padsize_x - 1, 1);
}
}
for (int z = zd_start; z < padsize_z; z++)
{
for (int x = 1; x < padsize_x; x++)
{
brent_kung_prefix_sum(&(VARBUF1(z, 1, x)), padsize_y - 1, yst);
brent_kung_prefix_sum(&(VARBUF2(z, 1, x)), padsize_y - 1, yst);
}
}
if (have_z)
{
for (int y = 1; y < padsize_y; y++)
{
for (int x = 1; x < padsize_x; x++)
{
brent_kung_prefix_sum(&(VARBUF1(1, y, x)), padsize_z - 1, zst);
brent_kung_prefix_sum(&(VARBUF2(1, y, x)), padsize_z - 1, zst);
}
}
}
// Compute a few constants used in the variance-calculation.
float alpha_kdim = static_cast<float>(2 * alpha_kernel_radius + 1);
float alpha_rsamples;
if (have_z)
{
alpha_rsamples = 1.0f / (alpha_kdim * alpha_kdim * alpha_kdim);
}
else
{
alpha_rsamples = 1.0f / (alpha_kdim * alpha_kdim);
}
// Use the summed-area tables to compute variance for each neighborhood
if (have_z)
{
for (int z = 0; z < size_z; z++)
{
int z_src = z + kernel_radius_z;
int z_dst = z + offset_z;
int z_low = z_src - alpha_kernel_radius;
int z_high = z_src + alpha_kernel_radius + 1;
for (int y = 0; y < size_y; y++)
{
int y_src = y + kernel_radius_xy;
int y_dst = y + offset_y;
int y_low = y_src - alpha_kernel_radius;
int y_high = y_src + alpha_kernel_radius + 1;
for (int x = 0; x < size_x; x++)
{
int x_src = x + kernel_radius_xy;
int x_dst = x + offset_x;
int x_low = x_src - alpha_kernel_radius;
int x_high = x_src + alpha_kernel_radius + 1;
// Summed-area table lookups for alpha average
float vasum = ( VARBUF1(z_high, y_low, x_low).lane<3>()
- VARBUF1(z_high, y_low, x_high).lane<3>()
- VARBUF1(z_high, y_high, x_low).lane<3>()
+ VARBUF1(z_high, y_high, x_high).lane<3>()) -
( VARBUF1(z_low, y_low, x_low).lane<3>()
- VARBUF1(z_low, y_low, x_high).lane<3>()
- VARBUF1(z_low, y_high, x_low).lane<3>()
+ VARBUF1(z_low, y_high, x_high).lane<3>());
int out_index = z_dst * zdt + y_dst * ydt + x_dst;
input_alpha_averages[out_index] = (vasum * alpha_rsamples);
}
}
}
}
else
{
for (int y = 0; y < size_y; y++)
{
int y_src = y + kernel_radius_xy;
int y_dst = y + offset_y;
int y_low = y_src - alpha_kernel_radius;
int y_high = y_src + alpha_kernel_radius + 1;
for (int x = 0; x < size_x; x++)
{
int x_src = x + kernel_radius_xy;
int x_dst = x + offset_x;
int x_low = x_src - alpha_kernel_radius;
int x_high = x_src + alpha_kernel_radius + 1;
// Summed-area table lookups for alpha average
float vasum = VARBUF1(0, y_low, x_low).lane<3>()
- VARBUF1(0, y_low, x_high).lane<3>()
- VARBUF1(0, y_high, x_low).lane<3>()
+ VARBUF1(0, y_high, x_high).lane<3>();
int out_index = y_dst * ydt + x_dst;
input_alpha_averages[out_index] = (vasum * alpha_rsamples);
}
}
}
}
/* See header for documentation. */
unsigned int init_compute_averages(
const astcenc_image& img,
unsigned int alpha_kernel_radius,
const astcenc_swizzle& swz,
avg_args& ag
) {
unsigned int size_x = img.dim_x;
unsigned int size_y = img.dim_y;
unsigned int size_z = img.dim_z;
// Compute maximum block size and from that the working memory buffer size
unsigned int kernel_radius = alpha_kernel_radius;
unsigned int kerneldim = 2 * kernel_radius + 1;
bool have_z = (size_z > 1);
unsigned int max_blk_size_xy = have_z ? 16 : 32;
unsigned int max_blk_size_z = astc::min(size_z, have_z ? 16u : 1u);
unsigned int max_padsize_xy = max_blk_size_xy + kerneldim;
unsigned int max_padsize_z = max_blk_size_z + (have_z ? kerneldim : 0);
// Perform block-wise averages calculations across the image
// Initialize fields which are not populated until later
ag.arg.size_x = 0;
ag.arg.size_y = 0;
ag.arg.size_z = 0;
ag.arg.offset_x = 0;
ag.arg.offset_y = 0;
ag.arg.offset_z = 0;
ag.arg.work_memory = nullptr;
ag.arg.img = &img;
ag.arg.swz = swz;
ag.arg.have_z = have_z;
ag.arg.alpha_kernel_radius = alpha_kernel_radius;
ag.img_size_x = size_x;
ag.img_size_y = size_y;
ag.img_size_z = size_z;
ag.blk_size_xy = max_blk_size_xy;
ag.blk_size_z = max_blk_size_z;
ag.work_memory_size = 2 * max_padsize_xy * max_padsize_xy * max_padsize_z;
// The parallel task count
unsigned int z_tasks = (size_z + max_blk_size_z - 1) / max_blk_size_z;
unsigned int y_tasks = (size_y + max_blk_size_xy - 1) / max_blk_size_xy;
return z_tasks * y_tasks;
}
#endif
|