1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
|
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2019-2022 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
/**
* @brief 4x32-bit vectors, implemented using SSE.
*
* This module implements 4-wide 32-bit float, int, and mask vectors for x86
* SSE. The implementation requires at least SSE2, but higher levels of SSE can
* be selected at compile time to improve performance.
*
* There is a baseline level of functionality provided by all vector widths and
* implementations. This is implemented using identical function signatures,
* modulo data type, so we can use them as substitutable implementations in VLA
* code.
*
* The 4-wide vectors are also used as a fixed-width type, and significantly
* extend the functionality above that available to VLA code.
*/
#ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED
#define ASTC_VECMATHLIB_SSE_4_H_INCLUDED
#ifndef ASTCENC_SIMD_INLINE
#error "Include astcenc_vecmathlib.h, do not include directly"
#endif
#include <cstdio>
// ============================================================================
// vfloat4 data type
// ============================================================================
/**
* @brief Data type for 4-wide floats.
*/
struct vfloat4
{
/**
* @brief Construct from zero-initialized value.
*/
ASTCENC_SIMD_INLINE vfloat4() = default;
/**
* @brief Construct from 4 values loaded from an unaligned address.
*
* Consider using loada() which is better with vectors if data is aligned
* to vector length.
*/
ASTCENC_SIMD_INLINE explicit vfloat4(const float *p)
{
m = _mm_loadu_ps(p);
}
/**
* @brief Construct from 1 scalar value replicated across all lanes.
*
* Consider using zero() for constexpr zeros.
*/
ASTCENC_SIMD_INLINE explicit vfloat4(float a)
{
m = _mm_set1_ps(a);
}
/**
* @brief Construct from 4 scalar values.
*
* The value of @c a is stored to lane 0 (LSB) in the SIMD register.
*/
ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d)
{
m = _mm_set_ps(d, c, b, a);
}
/**
* @brief Construct from an existing SIMD register.
*/
ASTCENC_SIMD_INLINE explicit vfloat4(__m128 a)
{
m = a;
}
/**
* @brief Get the scalar value of a single lane.
*/
template <int l> ASTCENC_SIMD_INLINE float lane() const
{
return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l));
}
/**
* @brief Set the scalar value of a single lane.
*/
template <int l> ASTCENC_SIMD_INLINE void set_lane(float a)
{
#if ASTCENC_SSE >= 41
__m128 v = _mm_set1_ps(a);
m = _mm_insert_ps(m, v, l << 6 | l << 4);
#else
alignas(16) float idx[4];
_mm_store_ps(idx, m);
idx[l] = a;
m = _mm_load_ps(idx);
#endif
}
/**
* @brief Factory that returns a vector of zeros.
*/
static ASTCENC_SIMD_INLINE vfloat4 zero()
{
return vfloat4(_mm_setzero_ps());
}
/**
* @brief Factory that returns a replicated scalar loaded from memory.
*/
static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p)
{
return vfloat4(_mm_load_ps1(p));
}
/**
* @brief Factory that returns a vector loaded from 16B aligned memory.
*/
static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p)
{
return vfloat4(_mm_load_ps(p));
}
/**
* @brief Factory that returns a vector containing the lane IDs.
*/
static ASTCENC_SIMD_INLINE vfloat4 lane_id()
{
return vfloat4(_mm_set_ps(3, 2, 1, 0));
}
/**
* @brief Return a swizzled float 2.
*/
template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const
{
vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2));
result.set_lane<2>(0.0f);
result.set_lane<3>(0.0f);
return result;
}
/**
* @brief Return a swizzled float 3.
*/
template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const
{
vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4));
result.set_lane<3>(0.0f);
return result;
}
/**
* @brief Return a swizzled float 4.
*/
template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const
{
return vfloat4(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4 | l3 << 6));
}
/**
* @brief The vector ...
*/
__m128 m;
};
// ============================================================================
// vint4 data type
// ============================================================================
/**
* @brief Data type for 4-wide ints.
*/
struct vint4
{
/**
* @brief Construct from zero-initialized value.
*/
ASTCENC_SIMD_INLINE vint4() = default;
/**
* @brief Construct from 4 values loaded from an unaligned address.
*
* Consider using loada() which is better with vectors if data is aligned
* to vector length.
*/
ASTCENC_SIMD_INLINE explicit vint4(const int *p)
{
m = _mm_loadu_si128(reinterpret_cast<const __m128i*>(p));
}
/**
* @brief Construct from 4 uint8_t loaded from an unaligned address.
*/
ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p)
{
// _mm_loadu_si32 would be nicer syntax, but missing on older GCC
__m128i t = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(p));
#if ASTCENC_SSE >= 41
m = _mm_cvtepu8_epi32(t);
#else
t = _mm_unpacklo_epi8(t, _mm_setzero_si128());
m = _mm_unpacklo_epi16(t, _mm_setzero_si128());
#endif
}
/**
* @brief Construct from 1 scalar value replicated across all lanes.
*
* Consider using vfloat4::zero() for constexpr zeros.
*/
ASTCENC_SIMD_INLINE explicit vint4(int a)
{
m = _mm_set1_epi32(a);
}
/**
* @brief Construct from 4 scalar values.
*
* The value of @c a is stored to lane 0 (LSB) in the SIMD register.
*/
ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d)
{
m = _mm_set_epi32(d, c, b, a);
}
/**
* @brief Construct from an existing SIMD register.
*/
ASTCENC_SIMD_INLINE explicit vint4(__m128i a)
{
m = a;
}
/**
* @brief Get the scalar from a single lane.
*/
template <int l> ASTCENC_SIMD_INLINE int lane() const
{
return _mm_cvtsi128_si32(_mm_shuffle_epi32(m, l));
}
/**
* @brief Set the scalar value of a single lane.
*/
template <int l> ASTCENC_SIMD_INLINE void set_lane(int a)
{
#if ASTCENC_SSE >= 41
m = _mm_insert_epi32(m, a, l);
#else
alignas(16) int idx[4];
_mm_store_si128(reinterpret_cast<__m128i*>(idx), m);
idx[l] = a;
m = _mm_load_si128(reinterpret_cast<const __m128i*>(idx));
#endif
}
/**
* @brief Factory that returns a vector of zeros.
*/
static ASTCENC_SIMD_INLINE vint4 zero()
{
return vint4(_mm_setzero_si128());
}
/**
* @brief Factory that returns a replicated scalar loaded from memory.
*/
static ASTCENC_SIMD_INLINE vint4 load1(const int* p)
{
return vint4(*p);
}
/**
* @brief Factory that returns a vector loaded from 16B aligned memory.
*/
static ASTCENC_SIMD_INLINE vint4 loada(const int* p)
{
return vint4(_mm_load_si128(reinterpret_cast<const __m128i*>(p)));
}
/**
* @brief Factory that returns a vector containing the lane IDs.
*/
static ASTCENC_SIMD_INLINE vint4 lane_id()
{
return vint4(_mm_set_epi32(3, 2, 1, 0));
}
/**
* @brief The vector ...
*/
__m128i m;
};
// ============================================================================
// vmask4 data type
// ============================================================================
/**
* @brief Data type for 4-wide control plane masks.
*/
struct vmask4
{
/**
* @brief Construct from an existing SIMD register.
*/
ASTCENC_SIMD_INLINE explicit vmask4(__m128 a)
{
m = a;
}
/**
* @brief Construct from an existing SIMD register.
*/
ASTCENC_SIMD_INLINE explicit vmask4(__m128i a)
{
m = _mm_castsi128_ps(a);
}
/**
* @brief Construct from 1 scalar value.
*/
ASTCENC_SIMD_INLINE explicit vmask4(bool a)
{
vint4 mask(a == false ? 0 : -1);
m = _mm_castsi128_ps(mask.m);
}
/**
* @brief Construct from 4 scalar values.
*
* The value of @c a is stored to lane 0 (LSB) in the SIMD register.
*/
ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d)
{
vint4 mask(a == false ? 0 : -1,
b == false ? 0 : -1,
c == false ? 0 : -1,
d == false ? 0 : -1);
m = _mm_castsi128_ps(mask.m);
}
/**
* @brief Get the scalar value of a single lane.
*/
template <int l> ASTCENC_SIMD_INLINE float lane() const
{
return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l));
}
/**
* @brief The vector ...
*/
__m128 m;
};
// ============================================================================
// vmask4 operators and functions
// ============================================================================
/**
* @brief Overload: mask union (or).
*/
ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b)
{
return vmask4(_mm_or_ps(a.m, b.m));
}
/**
* @brief Overload: mask intersect (and).
*/
ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b)
{
return vmask4(_mm_and_ps(a.m, b.m));
}
/**
* @brief Overload: mask difference (xor).
*/
ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b)
{
return vmask4(_mm_xor_ps(a.m, b.m));
}
/**
* @brief Overload: mask invert (not).
*/
ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a)
{
return vmask4(_mm_xor_si128(_mm_castps_si128(a.m), _mm_set1_epi32(-1)));
}
/**
* @brief Return a 4-bit mask code indicating mask status.
*
* bit0 = lane 0
*/
ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a)
{
return static_cast<unsigned int>(_mm_movemask_ps(a.m));
}
// ============================================================================
// vint4 operators and functions
// ============================================================================
/**
* @brief Overload: vector by vector addition.
*/
ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b)
{
return vint4(_mm_add_epi32(a.m, b.m));
}
/**
* @brief Overload: vector by vector subtraction.
*/
ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b)
{
return vint4(_mm_sub_epi32(a.m, b.m));
}
/**
* @brief Overload: vector by vector multiplication.
*/
ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b)
{
#if ASTCENC_SSE >= 41
return vint4(_mm_mullo_epi32 (a.m, b.m));
#else
__m128i t1 = _mm_mul_epu32(a.m, b.m);
__m128i t2 = _mm_mul_epu32(
_mm_srli_si128(a.m, 4),
_mm_srli_si128(b.m, 4));
__m128i r = _mm_unpacklo_epi32(
_mm_shuffle_epi32(t1, _MM_SHUFFLE (0, 0, 2, 0)),
_mm_shuffle_epi32(t2, _MM_SHUFFLE (0, 0, 2, 0)));
return vint4(r);
#endif
}
/**
* @brief Overload: vector bit invert.
*/
ASTCENC_SIMD_INLINE vint4 operator~(vint4 a)
{
return vint4(_mm_xor_si128(a.m, _mm_set1_epi32(-1)));
}
/**
* @brief Overload: vector by vector bitwise or.
*/
ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b)
{
return vint4(_mm_or_si128(a.m, b.m));
}
/**
* @brief Overload: vector by vector bitwise and.
*/
ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b)
{
return vint4(_mm_and_si128(a.m, b.m));
}
/**
* @brief Overload: vector by vector bitwise xor.
*/
ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b)
{
return vint4(_mm_xor_si128(a.m, b.m));
}
/**
* @brief Overload: vector by vector equality.
*/
ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b)
{
return vmask4(_mm_cmpeq_epi32(a.m, b.m));
}
/**
* @brief Overload: vector by vector inequality.
*/
ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b)
{
return ~vmask4(_mm_cmpeq_epi32(a.m, b.m));
}
/**
* @brief Overload: vector by vector less than.
*/
ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b)
{
return vmask4(_mm_cmplt_epi32(a.m, b.m));
}
/**
* @brief Overload: vector by vector greater than.
*/
ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b)
{
return vmask4(_mm_cmpgt_epi32(a.m, b.m));
}
/**
* @brief Logical shift left.
*/
template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a)
{
return vint4(_mm_slli_epi32(a.m, s));
}
/**
* @brief Logical shift right.
*/
template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a)
{
return vint4(_mm_srli_epi32(a.m, s));
}
/**
* @brief Arithmetic shift right.
*/
template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a)
{
return vint4(_mm_srai_epi32(a.m, s));
}
/**
* @brief Return the min vector of two vectors.
*/
ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b)
{
#if ASTCENC_SSE >= 41
return vint4(_mm_min_epi32(a.m, b.m));
#else
vmask4 d = a < b;
__m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m);
__m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m);
return vint4(_mm_or_si128(ap,bp));
#endif
}
/**
* @brief Return the max vector of two vectors.
*/
ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b)
{
#if ASTCENC_SSE >= 41
return vint4(_mm_max_epi32(a.m, b.m));
#else
vmask4 d = a > b;
__m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m);
__m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m);
return vint4(_mm_or_si128(ap,bp));
#endif
}
/**
* @brief Return the horizontal minimum of a vector.
*/
ASTCENC_SIMD_INLINE vint4 hmin(vint4 a)
{
a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2))));
a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1))));
return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0)));
}
/*
* @brief Return the horizontal maximum of a vector.
*/
ASTCENC_SIMD_INLINE vint4 hmax(vint4 a)
{
a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2))));
a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1))));
return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0)));
}
/**
* @brief Return the horizontal sum of a vector as a scalar.
*/
ASTCENC_SIMD_INLINE int hadd_s(vint4 a)
{
// Add top and bottom halves, lane 1/0
__m128i fold = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(a.m),
_mm_castsi128_ps(a.m)));
__m128i t = _mm_add_epi32(a.m, fold);
// Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow)
t = _mm_add_epi32(t, _mm_shuffle_epi32(t, 0x55));
return _mm_cvtsi128_si32(t);
}
/**
* @brief Store a vector to a 16B aligned memory address.
*/
ASTCENC_SIMD_INLINE void storea(vint4 a, int* p)
{
_mm_store_si128(reinterpret_cast<__m128i*>(p), a.m);
}
/**
* @brief Store a vector to an unaligned memory address.
*/
ASTCENC_SIMD_INLINE void store(vint4 a, int* p)
{
// Cast due to missing intrinsics
_mm_storeu_ps(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m));
}
/**
* @brief Store lowest N (vector width) bytes into an unaligned address.
*/
ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p)
{
// Cast due to missing intrinsics
_mm_store_ss(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m));
}
/**
* @brief Gather N (vector width) indices from the array.
*/
ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices)
{
#if ASTCENC_AVX >= 2
return vint4(_mm_i32gather_epi32(base, indices.m, 4));
#else
alignas(16) int idx[4];
storea(indices, idx);
return vint4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]);
#endif
}
/**
* @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
*/
ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a)
{
#if ASTCENC_SSE >= 41
__m128i shuf = _mm_set_epi8(0,0,0,0, 0,0,0,0, 0,0,0,0, 12,8,4,0);
return vint4(_mm_shuffle_epi8(a.m, shuf));
#else
__m128i va = _mm_unpacklo_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(1,1,1,1)));
__m128i vb = _mm_unpackhi_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(3,3,3,3)));
return vint4(_mm_unpacklo_epi16(va, vb));
#endif
}
/**
* @brief Return lanes from @c b if @c cond is set, else @c a.
*/
ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond)
{
__m128i condi = _mm_castps_si128(cond.m);
#if ASTCENC_SSE >= 41
return vint4(_mm_blendv_epi8(a.m, b.m, condi));
#else
return vint4(_mm_or_si128(_mm_and_si128(condi, b.m), _mm_andnot_si128(condi, a.m)));
#endif
}
// ============================================================================
// vfloat4 operators and functions
// ============================================================================
/**
* @brief Overload: vector by vector addition.
*/
ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b)
{
return vfloat4(_mm_add_ps(a.m, b.m));
}
/**
* @brief Overload: vector by vector subtraction.
*/
ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b)
{
return vfloat4(_mm_sub_ps(a.m, b.m));
}
/**
* @brief Overload: vector by vector multiplication.
*/
ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b)
{
return vfloat4(_mm_mul_ps(a.m, b.m));
}
/**
* @brief Overload: vector by vector division.
*/
ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b)
{
return vfloat4(_mm_div_ps(a.m, b.m));
}
/**
* @brief Overload: vector by vector equality.
*/
ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b)
{
return vmask4(_mm_cmpeq_ps(a.m, b.m));
}
/**
* @brief Overload: vector by vector inequality.
*/
ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b)
{
return vmask4(_mm_cmpneq_ps(a.m, b.m));
}
/**
* @brief Overload: vector by vector less than.
*/
ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b)
{
return vmask4(_mm_cmplt_ps(a.m, b.m));
}
/**
* @brief Overload: vector by vector greater than.
*/
ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b)
{
return vmask4(_mm_cmpgt_ps(a.m, b.m));
}
/**
* @brief Overload: vector by vector less than or equal.
*/
ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b)
{
return vmask4(_mm_cmple_ps(a.m, b.m));
}
/**
* @brief Overload: vector by vector greater than or equal.
*/
ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b)
{
return vmask4(_mm_cmpge_ps(a.m, b.m));
}
/**
* @brief Return the min vector of two vectors.
*
* If either lane value is NaN, @c b will be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b)
{
// Do not reorder - second operand will return if either is NaN
return vfloat4(_mm_min_ps(a.m, b.m));
}
/**
* @brief Return the max vector of two vectors.
*
* If either lane value is NaN, @c b will be returned for that lane.
*/
ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b)
{
// Do not reorder - second operand will return if either is NaN
return vfloat4(_mm_max_ps(a.m, b.m));
}
/**
* @brief Return the absolute value of the float vector.
*/
ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a)
{
return vfloat4(_mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), a.m), a.m));
}
/**
* @brief Return a float rounded to the nearest integer value.
*/
ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a)
{
#if ASTCENC_SSE >= 41
constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
return vfloat4(_mm_round_ps(a.m, flags));
#else
__m128 v = a.m;
__m128 neg_zero = _mm_castsi128_ps(_mm_set1_epi32(static_cast<int>(0x80000000)));
__m128 no_fraction = _mm_set1_ps(8388608.0f);
__m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7FFFFFFF));
__m128 sign = _mm_and_ps(v, neg_zero);
__m128 s_magic = _mm_or_ps(no_fraction, sign);
__m128 r1 = _mm_add_ps(v, s_magic);
r1 = _mm_sub_ps(r1, s_magic);
__m128 r2 = _mm_and_ps(v, abs_mask);
__m128 mask = _mm_cmple_ps(r2, no_fraction);
r2 = _mm_andnot_ps(mask, v);
r1 = _mm_and_ps(r1, mask);
return vfloat4(_mm_xor_ps(r1, r2));
#endif
}
/**
* @brief Return the horizontal minimum of a vector.
*/
ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a)
{
a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2))));
a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1))));
return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0)));
}
/**
* @brief Return the horizontal maximum of a vector.
*/
ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a)
{
a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2))));
a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1))));
return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0)));
}
/**
* @brief Return the horizontal sum of a vector as a scalar.
*/
ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a)
{
// Add top and bottom halves, lane 1/0
__m128 t = _mm_add_ps(a.m, _mm_movehl_ps(a.m, a.m));
// Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow)
t = _mm_add_ss(t, _mm_shuffle_ps(t, t, 0x55));
return _mm_cvtss_f32(t);
}
/**
* @brief Return the sqrt of the lanes in the vector.
*/
ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a)
{
return vfloat4(_mm_sqrt_ps(a.m));
}
/**
* @brief Return lanes from @c b if @c cond is set, else @c a.
*/
ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond)
{
#if ASTCENC_SSE >= 41
return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m));
#else
return vfloat4(_mm_or_ps(_mm_and_ps(cond.m, b.m), _mm_andnot_ps(cond.m, a.m)));
#endif
}
/**
* @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
*/
ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond)
{
#if ASTCENC_SSE >= 41
return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m));
#else
__m128 d = _mm_castsi128_ps(_mm_srai_epi32(_mm_castps_si128(cond.m), 31));
return vfloat4(_mm_or_ps(_mm_and_ps(d, b.m), _mm_andnot_ps(d, a.m)));
#endif
}
/**
* @brief Load a vector of gathered results from an array;
*/
ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices)
{
#if ASTCENC_AVX >= 2
return vfloat4(_mm_i32gather_ps(base, indices.m, 4));
#else
alignas(16) int idx[4];
storea(indices, idx);
return vfloat4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]);
#endif
}
/**
* @brief Store a vector to an unaligned memory address.
*/
ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p)
{
_mm_storeu_ps(p, a.m);
}
/**
* @brief Store a vector to a 16B aligned memory address.
*/
ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p)
{
_mm_store_ps(p, a.m);
}
/**
* @brief Return a integer value for a float vector, using truncation.
*/
ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a)
{
return vint4(_mm_cvttps_epi32(a.m));
}
/**
* @brief Return a integer value for a float vector, using round-to-nearest.
*/
ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a)
{
a = round(a);
return vint4(_mm_cvttps_epi32(a.m));
}
/**
* @brief Return a float value for an integer vector.
*/
ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a)
{
return vfloat4(_mm_cvtepi32_ps(a.m));
}
/**
* @brief Return a float16 value for a float vector, using round-to-nearest.
*/
ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a)
{
#if ASTCENC_F16C >= 1
__m128i packedf16 = _mm_cvtps_ph(a.m, 0);
__m128i f16 = _mm_cvtepu16_epi32(packedf16);
return vint4(f16);
#else
return vint4(
float_to_sf16(a.lane<0>()),
float_to_sf16(a.lane<1>()),
float_to_sf16(a.lane<2>()),
float_to_sf16(a.lane<3>()));
#endif
}
/**
* @brief Return a float16 value for a float scalar, using round-to-nearest.
*/
static inline uint16_t float_to_float16(float a)
{
#if ASTCENC_F16C >= 1
__m128i f16 = _mm_cvtps_ph(_mm_set1_ps(a), 0);
return static_cast<uint16_t>(_mm_cvtsi128_si32(f16));
#else
return float_to_sf16(a);
#endif
}
/**
* @brief Return a float value for a float16 vector.
*/
ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a)
{
#if ASTCENC_F16C >= 1
__m128i packed = _mm_packs_epi32(a.m, a.m);
__m128 f32 = _mm_cvtph_ps(packed);
return vfloat4(f32);
#else
return vfloat4(
sf16_to_float(static_cast<uint16_t>(a.lane<0>())),
sf16_to_float(static_cast<uint16_t>(a.lane<1>())),
sf16_to_float(static_cast<uint16_t>(a.lane<2>())),
sf16_to_float(static_cast<uint16_t>(a.lane<3>())));
#endif
}
/**
* @brief Return a float value for a float16 scalar.
*/
ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a)
{
#if ASTCENC_F16C >= 1
__m128i packed = _mm_set1_epi16(static_cast<short>(a));
__m128 f32 = _mm_cvtph_ps(packed);
return _mm_cvtss_f32(f32);
#else
return sf16_to_float(a);
#endif
}
/**
* @brief Return a float value as an integer bit pattern (i.e. no conversion).
*
* It is a common trick to convert floats into integer bit patterns, perform
* some bit hackery based on knowledge they are IEEE 754 layout, and then
* convert them back again. This is the first half of that flip.
*/
ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a)
{
return vint4(_mm_castps_si128(a.m));
}
/**
* @brief Return a integer value as a float bit pattern (i.e. no conversion).
*
* It is a common trick to convert floats into integer bit patterns, perform
* some bit hackery based on knowledge they are IEEE 754 layout, and then
* convert them back again. This is the second half of that flip.
*/
ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v)
{
return vfloat4(_mm_castsi128_ps(v.m));
}
/**
* @brief Prepare a vtable lookup table for use with the native SIMD size.
*/
ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p)
{
t0p = t0;
}
/**
* @brief Prepare a vtable lookup table for use with the native SIMD size.
*/
ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p)
{
#if ASTCENC_SSE >= 30
t0p = t0;
t1p = t0 ^ t1;
#else
t0p = t0;
t1p = t1;
#endif
}
/**
* @brief Prepare a vtable lookup table for use with the native SIMD size.
*/
ASTCENC_SIMD_INLINE void vtable_prepare(
vint4 t0, vint4 t1, vint4 t2, vint4 t3,
vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p)
{
#if ASTCENC_SSE >= 30
t0p = t0;
t1p = t0 ^ t1;
t2p = t1 ^ t2;
t3p = t2 ^ t3;
#else
t0p = t0;
t1p = t1;
t2p = t2;
t3p = t3;
#endif
}
/**
* @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes.
*/
ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx)
{
#if ASTCENC_SSE >= 30
// Set index byte MSB to 1 for unused bytes so shuffle returns zero
__m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
__m128i result = _mm_shuffle_epi8(t0.m, idxx);
return vint4(result);
#else
alignas(ASTCENC_VECALIGN) uint8_t table[16];
storea(t0, reinterpret_cast<int*>(table + 0));
return vint4(table[idx.lane<0>()],
table[idx.lane<1>()],
table[idx.lane<2>()],
table[idx.lane<3>()]);
#endif
}
/**
* @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes.
*/
ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx)
{
#if ASTCENC_SSE >= 30
// Set index byte MSB to 1 for unused bytes so shuffle returns zero
__m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
__m128i result = _mm_shuffle_epi8(t0.m, idxx);
idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
__m128i result2 = _mm_shuffle_epi8(t1.m, idxx);
result = _mm_xor_si128(result, result2);
return vint4(result);
#else
alignas(ASTCENC_VECALIGN) uint8_t table[32];
storea(t0, reinterpret_cast<int*>(table + 0));
storea(t1, reinterpret_cast<int*>(table + 16));
return vint4(table[idx.lane<0>()],
table[idx.lane<1>()],
table[idx.lane<2>()],
table[idx.lane<3>()]);
#endif
}
/**
* @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes.
*/
ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx)
{
#if ASTCENC_SSE >= 30
// Set index byte MSB to 1 for unused bytes so shuffle returns zero
__m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
__m128i result = _mm_shuffle_epi8(t0.m, idxx);
idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
__m128i result2 = _mm_shuffle_epi8(t1.m, idxx);
result = _mm_xor_si128(result, result2);
idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
result2 = _mm_shuffle_epi8(t2.m, idxx);
result = _mm_xor_si128(result, result2);
idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
result2 = _mm_shuffle_epi8(t3.m, idxx);
result = _mm_xor_si128(result, result2);
return vint4(result);
#else
alignas(ASTCENC_VECALIGN) uint8_t table[64];
storea(t0, reinterpret_cast<int*>(table + 0));
storea(t1, reinterpret_cast<int*>(table + 16));
storea(t2, reinterpret_cast<int*>(table + 32));
storea(t3, reinterpret_cast<int*>(table + 48));
return vint4(table[idx.lane<0>()],
table[idx.lane<1>()],
table[idx.lane<2>()],
table[idx.lane<3>()]);
#endif
}
/**
* @brief Return a vector of interleaved RGBA data.
*
* Input vectors have the value stored in the bottom 8 bits of each lane,
* with high bits set to zero.
*
* Output vector stores a single RGBA texel packed in each lane.
*/
ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a)
{
// Workaround an XCode compiler internal fault; note is slower than slli_epi32
// so we should revert this when we get the opportunity
#if defined(__APPLE__)
__m128i value = r.m;
value = _mm_add_epi32(value, _mm_bslli_si128(g.m, 1));
value = _mm_add_epi32(value, _mm_bslli_si128(b.m, 2));
value = _mm_add_epi32(value, _mm_bslli_si128(a.m, 3));
return vint4(value);
#else
__m128i value = r.m;
value = _mm_add_epi32(value, _mm_slli_epi32(g.m, 8));
value = _mm_add_epi32(value, _mm_slli_epi32(b.m, 16));
value = _mm_add_epi32(value, _mm_slli_epi32(a.m, 24));
return vint4(value);
#endif
}
/**
* @brief Store a vector, skipping masked lanes.
*
* All masked lanes must be at the end of vector, after all non-masked lanes.
*/
ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint4 data, vmask4 mask)
{
#if ASTCENC_AVX >= 2
_mm_maskstore_epi32(base, _mm_castps_si128(mask.m), data.m);
#else
// Note - we cannot use _mm_maskmoveu_si128 as the underlying hardware doesn't guarantee
// fault suppression on masked lanes so we can get page faults at the end of an image.
if (mask.lane<3>() != 0.0f)
{
store(data, base);
}
else if (mask.lane<2>() != 0.0f)
{
base[0] = data.lane<0>();
base[1] = data.lane<1>();
base[2] = data.lane<2>();
}
else if (mask.lane<1>() != 0.0f)
{
base[0] = data.lane<0>();
base[1] = data.lane<1>();
}
else if (mask.lane<0>() != 0.0f)
{
base[0] = data.lane<0>();
}
#endif
}
#if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41)
#define ASTCENC_USE_NATIVE_DOT_PRODUCT 1
/**
* @brief Return the dot product for the full 4 lanes, returning scalar.
*/
ASTCENC_SIMD_INLINE float dot_s(vfloat4 a, vfloat4 b)
{
return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0xFF));
}
/**
* @brief Return the dot product for the full 4 lanes, returning vector.
*/
ASTCENC_SIMD_INLINE vfloat4 dot(vfloat4 a, vfloat4 b)
{
return vfloat4(_mm_dp_ps(a.m, b.m, 0xFF));
}
/**
* @brief Return the dot product for the bottom 3 lanes, returning scalar.
*/
ASTCENC_SIMD_INLINE float dot3_s(vfloat4 a, vfloat4 b)
{
return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0x77));
}
/**
* @brief Return the dot product for the bottom 3 lanes, returning vector.
*/
ASTCENC_SIMD_INLINE vfloat4 dot3(vfloat4 a, vfloat4 b)
{
return vfloat4(_mm_dp_ps(a.m, b.m, 0x77));
}
#endif // #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41)
#if ASTCENC_POPCNT >= 1
#define ASTCENC_USE_NATIVE_POPCOUNT 1
/**
* @brief Population bit count.
*
* @param v The value to population count.
*
* @return The number of 1 bits.
*/
ASTCENC_SIMD_INLINE int popcount(uint64_t v)
{
return static_cast<int>(_mm_popcnt_u64(v));
}
#endif // ASTCENC_POPCNT >= 1
#endif // #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED
|