1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2022 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
#if !defined(ASTCENC_DECOMPRESS_ONLY)
/**
* @brief Functions for angular-sum algorithm for weight alignment.
*
* This algorithm works as follows:
* - we compute a complex number P as (cos s*i, sin s*i) for each weight,
* where i is the input value and s is a scaling factor based on the spacing between the weights.
* - we then add together complex numbers for all the weights.
* - we then compute the length and angle of the resulting sum.
*
* This should produce the following results:
* - perfect alignment results in a vector whose length is equal to the sum of lengths of all inputs
* - even distribution results in a vector of length 0.
* - all samples identical results in perfect alignment for every scaling.
*
* For each scaling factor within a given set, we compute an alignment factor from 0 to 1. This
* should then result in some scalings standing out as having particularly good alignment factors;
* we can use this to produce a set of candidate scale/shift values for various quantization levels;
* we should then actually try them and see what happens.
*/
#include "astcenc_internal.h"
#include "astcenc_vecmathlib.h"
#include <stdio.h>
#include <cassert>
#include <cstring>
static constexpr unsigned int ANGULAR_STEPS { 32 };
static_assert((ANGULAR_STEPS % ASTCENC_SIMD_WIDTH) == 0,
"ANGULAR_STEPS must be multiple of ASTCENC_SIMD_WIDTH");
static_assert(ANGULAR_STEPS >= 32,
"ANGULAR_STEPS must be at least max(steps_for_quant_level)");
// Store a reduced sin/cos table for 64 possible weight values; this causes
// slight quality loss compared to using sin() and cos() directly. Must be 2^N.
static constexpr unsigned int SINCOS_STEPS { 64 };
static const uint8_t steps_for_quant_level[12] {
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32
};
alignas(ASTCENC_VECALIGN) static float sin_table[SINCOS_STEPS][ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) static float cos_table[SINCOS_STEPS][ANGULAR_STEPS];
#if defined(ASTCENC_DIAGNOSTICS)
static bool print_once { true };
#endif
/* See header for documentation. */
void prepare_angular_tables()
{
for (unsigned int i = 0; i < ANGULAR_STEPS; i++)
{
float angle_step = static_cast<float>(i + 1);
for (unsigned int j = 0; j < SINCOS_STEPS; j++)
{
sin_table[j][i] = static_cast<float>(sinf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
cos_table[j][i] = static_cast<float>(cosf((2.0f * astc::PI / (SINCOS_STEPS - 1.0f)) * angle_step * static_cast<float>(j)));
}
}
}
/**
* @brief Compute the angular alignment factors and offsets.
*
* @param weight_count The number of (decimated) weights.
* @param dec_weight_ideal_value The ideal decimated unquantized weight values.
* @param max_angular_steps The maximum number of steps to be tested.
* @param[out] offsets The output angular offsets array.
*/
static void compute_angular_offsets(
unsigned int weight_count,
const float* dec_weight_ideal_value,
unsigned int max_angular_steps,
float* offsets
) {
promise(weight_count > 0);
promise(max_angular_steps > 0);
alignas(ASTCENC_VECALIGN) int isamplev[BLOCK_MAX_WEIGHTS];
// Precompute isample; arrays are always allocated 64 elements long
for (unsigned int i = 0; i < weight_count; i += ASTCENC_SIMD_WIDTH)
{
// Add 2^23 and interpreting bits extracts round-to-nearest int
vfloat sample = loada(dec_weight_ideal_value + i) * (SINCOS_STEPS - 1.0f) + vfloat(12582912.0f);
vint isample = float_as_int(sample) & vint((SINCOS_STEPS - 1));
storea(isample, isamplev + i);
}
// Arrays are multiple of SIMD width (ANGULAR_STEPS), safe to overshoot max
vfloat mult = vfloat(1.0f / (2.0f * astc::PI));
for (unsigned int i = 0; i < max_angular_steps; i += ASTCENC_SIMD_WIDTH)
{
vfloat anglesum_x = vfloat::zero();
vfloat anglesum_y = vfloat::zero();
for (unsigned int j = 0; j < weight_count; j++)
{
int isample = isamplev[j];
anglesum_x += loada(cos_table[isample] + i);
anglesum_y += loada(sin_table[isample] + i);
}
vfloat angle = atan2(anglesum_y, anglesum_x);
vfloat ofs = angle * mult;
storea(ofs, offsets + i);
}
}
/**
* @brief For a given step size compute the lowest and highest weight.
*
* Compute the lowest and highest weight that results from quantizing using the given stepsize and
* offset, and then compute the resulting error. The cut errors indicate the error that results from
* forcing samples that should have had one weight value one step up or down.
*
* @param weight_count The number of (decimated) weights.
* @param dec_weight_ideal_value The ideal decimated unquantized weight values.
* @param max_angular_steps The maximum number of steps to be tested.
* @param max_quant_steps The maximum quantization level to be tested.
* @param offsets The angular offsets array.
* @param[out] lowest_weight Per angular step, the lowest weight.
* @param[out] weight_span Per angular step, the span between lowest and highest weight.
* @param[out] error Per angular step, the error.
* @param[out] cut_low_weight_error Per angular step, the low weight cut error.
* @param[out] cut_high_weight_error Per angular step, the high weight cut error.
*/
static void compute_lowest_and_highest_weight(
unsigned int weight_count,
const float* dec_weight_ideal_value,
unsigned int max_angular_steps,
unsigned int max_quant_steps,
const float* offsets,
float* lowest_weight,
int* weight_span,
float* error,
float* cut_low_weight_error,
float* cut_high_weight_error
) {
promise(weight_count > 0);
promise(max_angular_steps > 0);
vfloat rcp_stepsize = vfloat::lane_id() + vfloat(1.0f);
// Arrays are ANGULAR_STEPS long, so always safe to run full vectors
for (unsigned int sp = 0; sp < max_angular_steps; sp += ASTCENC_SIMD_WIDTH)
{
vfloat minidx(128.0f);
vfloat maxidx(-128.0f);
vfloat errval = vfloat::zero();
vfloat cut_low_weight_err = vfloat::zero();
vfloat cut_high_weight_err = vfloat::zero();
vfloat offset = loada(offsets + sp);
for (unsigned int j = 0; j < weight_count; j++)
{
vfloat sval = load1(dec_weight_ideal_value + j) * rcp_stepsize - offset;
vfloat svalrte = round(sval);
vfloat diff = sval - svalrte;
errval += diff * diff;
// Reset tracker on min hit
vmask mask = svalrte < minidx;
minidx = select(minidx, svalrte, mask);
cut_low_weight_err = select(cut_low_weight_err, vfloat::zero(), mask);
// Accumulate on min hit
mask = svalrte == minidx;
vfloat accum = cut_low_weight_err + vfloat(1.0f) - vfloat(2.0f) * diff;
cut_low_weight_err = select(cut_low_weight_err, accum, mask);
// Reset tracker on max hit
mask = svalrte > maxidx;
maxidx = select(maxidx, svalrte, mask);
cut_high_weight_err = select(cut_high_weight_err, vfloat::zero(), mask);
// Accumulate on max hit
mask = svalrte == maxidx;
accum = cut_high_weight_err + vfloat(1.0f) + vfloat(2.0f) * diff;
cut_high_weight_err = select(cut_high_weight_err, accum, mask);
}
// Write out min weight and weight span; clamp span to a usable range
vint span = float_to_int(maxidx - minidx + vfloat(1));
span = min(span, vint(max_quant_steps + 3));
span = max(span, vint(2));
storea(minidx, lowest_weight + sp);
storea(span, weight_span + sp);
// The cut_(lowest/highest)_weight_error indicate the error that results from forcing
// samples that should have had the weight value one step (up/down).
vfloat ssize = 1.0f / rcp_stepsize;
vfloat errscale = ssize * ssize;
storea(errval * errscale, error + sp);
storea(cut_low_weight_err * errscale, cut_low_weight_error + sp);
storea(cut_high_weight_err * errscale, cut_high_weight_error + sp);
rcp_stepsize = rcp_stepsize + vfloat(ASTCENC_SIMD_WIDTH);
}
}
/**
* @brief The main function for the angular algorithm.
*
* @param weight_count The number of (decimated) weights.
* @param dec_weight_ideal_value The ideal decimated unquantized weight values.
* @param max_quant_level The maximum quantization level to be tested.
* @param[out] low_value Per angular step, the lowest weight value.
* @param[out] high_value Per angular step, the highest weight value.
*/
static void compute_angular_endpoints_for_quant_levels(
unsigned int weight_count,
const float* dec_weight_ideal_value,
unsigned int max_quant_level,
float low_value[TUNE_MAX_ANGULAR_QUANT + 1],
float high_value[TUNE_MAX_ANGULAR_QUANT + 1]
) {
unsigned int max_quant_steps = steps_for_quant_level[max_quant_level];
unsigned int max_angular_steps = steps_for_quant_level[max_quant_level];
alignas(ASTCENC_VECALIGN) float angular_offsets[ANGULAR_STEPS];
compute_angular_offsets(weight_count, dec_weight_ideal_value,
max_angular_steps, angular_offsets);
alignas(ASTCENC_VECALIGN) float lowest_weight[ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) int32_t weight_span[ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) float error[ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) float cut_low_weight_error[ANGULAR_STEPS];
alignas(ASTCENC_VECALIGN) float cut_high_weight_error[ANGULAR_STEPS];
compute_lowest_and_highest_weight(weight_count, dec_weight_ideal_value,
max_angular_steps, max_quant_steps,
angular_offsets, lowest_weight, weight_span, error,
cut_low_weight_error, cut_high_weight_error);
// For each quantization level, find the best error terms. Use packed vectors so data-dependent
// branches can become selects. This involves some integer to float casts, but the values are
// small enough so they never round the wrong way.
vfloat4 best_results[36];
// Initialize the array to some safe defaults
promise(max_quant_steps > 0);
for (unsigned int i = 0; i < (max_quant_steps + 4); i++)
{
// Lane<0> = Best error
// Lane<1> = Best scale; -1 indicates no solution found
// Lane<2> = Cut low weight
best_results[i] = vfloat4(ERROR_CALC_DEFAULT, -1.0f, 0.0f, 0.0f);
}
promise(max_angular_steps > 0);
for (unsigned int i = 0; i < max_angular_steps; i++)
{
float i_flt = static_cast<float>(i);
int idx_span = weight_span[i];
float error_cut_low = error[i] + cut_low_weight_error[i];
float error_cut_high = error[i] + cut_high_weight_error[i];
float error_cut_low_high = error[i] + cut_low_weight_error[i] + cut_high_weight_error[i];
// Check best error against record N
vfloat4 best_result = best_results[idx_span];
vfloat4 new_result = vfloat4(error[i], i_flt, 0.0f, 0.0f);
vmask4 mask = vfloat4(best_result.lane<0>()) > vfloat4(error[i]);
best_results[idx_span] = select(best_result, new_result, mask);
// Check best error against record N-1 with either cut low or cut high
best_result = best_results[idx_span - 1];
new_result = vfloat4(error_cut_low, i_flt, 1.0f, 0.0f);
mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low);
best_result = select(best_result, new_result, mask);
new_result = vfloat4(error_cut_high, i_flt, 0.0f, 0.0f);
mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_high);
best_results[idx_span - 1] = select(best_result, new_result, mask);
// Check best error against record N-2 with both cut low and high
best_result = best_results[idx_span - 2];
new_result = vfloat4(error_cut_low_high, i_flt, 1.0f, 0.0f);
mask = vfloat4(best_result.lane<0>()) > vfloat4(error_cut_low_high);
best_results[idx_span - 2] = select(best_result, new_result, mask);
}
for (unsigned int i = 0; i <= max_quant_level; i++)
{
unsigned int q = steps_for_quant_level[i];
int bsi = static_cast<int>(best_results[q].lane<1>());
// Did we find anything?
#if defined(ASTCENC_DIAGNOSTICS)
if ((bsi < 0) && print_once)
{
print_once = false;
printf("INFO: Unable to find full encoding within search error limit.\n\n");
}
#endif
bsi = astc::max(0, bsi);
float lwi = lowest_weight[bsi] + best_results[q].lane<2>();
float hwi = lwi + static_cast<float>(q) - 1.0f;
float stepsize = 1.0f / (1.0f + static_cast<float>(bsi));
low_value[i] = (angular_offsets[bsi] + lwi) * stepsize;
high_value[i] = (angular_offsets[bsi] + hwi) * stepsize;
}
}
/* See header for documentation. */
void compute_angular_endpoints_1plane(
bool only_always,
const block_size_descriptor& bsd,
const float* dec_weight_ideal_value,
unsigned int max_weight_quant,
compression_working_buffers& tmpbuf
) {
float (&low_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
float (&high_value)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;
float (&low_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
float (&high_values)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;
unsigned int max_decimation_modes = only_always ? bsd.decimation_mode_count_always
: bsd.decimation_mode_count_selected;
promise(max_decimation_modes > 0);
for (unsigned int i = 0; i < max_decimation_modes; i++)
{
const decimation_mode& dm = bsd.decimation_modes[i];
if (!dm.is_ref_1_plane(static_cast<quant_method>(max_weight_quant)))
{
continue;
}
unsigned int weight_count = bsd.get_decimation_info(i).weight_count;
unsigned int max_precision = dm.maxprec_1plane;
if (max_precision > TUNE_MAX_ANGULAR_QUANT)
{
max_precision = TUNE_MAX_ANGULAR_QUANT;
}
if (max_precision > max_weight_quant)
{
max_precision = max_weight_quant;
}
compute_angular_endpoints_for_quant_levels(
weight_count,
dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
max_precision, low_values[i], high_values[i]);
}
unsigned int max_block_modes = only_always ? bsd.block_mode_count_1plane_always
: bsd.block_mode_count_1plane_selected;
promise(max_block_modes > 0);
for (unsigned int i = 0; i < max_block_modes; i++)
{
const block_mode& bm = bsd.block_modes[i];
assert(!bm.is_dual_plane);
unsigned int quant_mode = bm.quant_mode;
unsigned int decim_mode = bm.decimation_mode;
if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
{
low_value[i] = low_values[decim_mode][quant_mode];
high_value[i] = high_values[decim_mode][quant_mode];
}
else
{
low_value[i] = 0.0f;
high_value[i] = 1.0f;
}
}
}
/* See header for documentation. */
void compute_angular_endpoints_2planes(
const block_size_descriptor& bsd,
const float* dec_weight_ideal_value,
unsigned int max_weight_quant,
compression_working_buffers& tmpbuf
) {
float (&low_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value1;
float (&high_value1)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value1;
float (&low_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_low_value2;
float (&high_value2)[WEIGHTS_MAX_BLOCK_MODES] = tmpbuf.weight_high_value2;
float (&low_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values1;
float (&high_values1)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values1;
float (&low_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_low_values2;
float (&high_values2)[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1] = tmpbuf.weight_high_values2;
promise(bsd.decimation_mode_count_selected > 0);
for (unsigned int i = 0; i < bsd.decimation_mode_count_selected; i++)
{
const decimation_mode& dm = bsd.decimation_modes[i];
if (!dm.is_ref_2_plane(static_cast<quant_method>(max_weight_quant)))
{
continue;
}
unsigned int weight_count = bsd.get_decimation_info(i).weight_count;
unsigned int max_precision = dm.maxprec_2planes;
if (max_precision > TUNE_MAX_ANGULAR_QUANT)
{
max_precision = TUNE_MAX_ANGULAR_QUANT;
}
if (max_precision > max_weight_quant)
{
max_precision = max_weight_quant;
}
compute_angular_endpoints_for_quant_levels(
weight_count,
dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS,
max_precision, low_values1[i], high_values1[i]);
compute_angular_endpoints_for_quant_levels(
weight_count,
dec_weight_ideal_value + i * BLOCK_MAX_WEIGHTS + WEIGHTS_PLANE2_OFFSET,
max_precision, low_values2[i], high_values2[i]);
}
unsigned int start = bsd.block_mode_count_1plane_selected;
unsigned int end = bsd.block_mode_count_1plane_2plane_selected;
for (unsigned int i = start; i < end; i++)
{
const block_mode& bm = bsd.block_modes[i];
unsigned int quant_mode = bm.quant_mode;
unsigned int decim_mode = bm.decimation_mode;
if (quant_mode <= TUNE_MAX_ANGULAR_QUANT)
{
low_value1[i] = low_values1[decim_mode][quant_mode];
high_value1[i] = high_values1[decim_mode][quant_mode];
low_value2[i] = low_values2[decim_mode][quant_mode];
high_value2[i] = high_values2[decim_mode][quant_mode];
}
else
{
low_value1[i] = 0.0f;
high_value1[i] = 1.0f;
low_value2[i] = 0.0f;
high_value2[i] = 1.0f;
}
}
}
#endif
|