1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
|
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2011-2024 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
#if !defined(ASTCENC_DECOMPRESS_ONLY)
/**
* @brief Functions for finding best partition for a block.
*
* The partition search operates in two stages. The first pass uses kmeans clustering to group
* texels into an ideal partitioning for the requested partition count, and then compares that
* against the 1024 partitionings generated by the ASTC partition hash function. The generated
* partitions are then ranked by the number of texels in the wrong partition, compared to the ideal
* clustering. All 1024 partitions are tested for similarity and ranked, apart from duplicates and
* partitionings that actually generate fewer than the requested partition count, but only the top
* N candidates are actually put through a more detailed search. N is determined by the compressor
* quality preset.
*
* For the detailed search, each candidate is checked against two possible encoding methods:
*
* - The best partitioning assuming different chroma colors (RGB + RGB or RGB + delta endpoints).
* - The best partitioning assuming same chroma colors (RGB + scale endpoints).
*
* This is implemented by computing the compute mean color and dominant direction for each
* partition. This defines two lines, both of which go through the mean color value.
*
* - One line has a direction defined by the dominant direction; this is used to assess the error
* from using an uncorrelated color representation.
* - The other line goes through (0,0,0,1) and is used to assess the error from using a same chroma
* (RGB + scale) color representation.
*
* The best candidate is selected by computing the squared-errors that result from using these
* lines for endpoint selection.
*/
#include <limits>
#include "astcenc_internal.h"
/**
* @brief Pick some initial kmeans cluster centers.
*
* @param blk The image block color data to compress.
* @param texel_count The number of texels in the block.
* @param partition_count The number of partitions in the block.
* @param[out] cluster_centers The initial partition cluster center colors.
*/
static void kmeans_init(
const image_block& blk,
unsigned int texel_count,
unsigned int partition_count,
vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS]
) {
promise(texel_count > 0);
promise(partition_count > 0);
unsigned int clusters_selected = 0;
float distances[BLOCK_MAX_TEXELS];
// Pick a random sample as first cluster center; 145897 from random.org
unsigned int sample = 145897 % texel_count;
vfloat4 center_color = blk.texel(sample);
cluster_centers[clusters_selected] = center_color;
clusters_selected++;
// Compute the distance to the first cluster center
float distance_sum = 0.0f;
for (unsigned int i = 0; i < texel_count; i++)
{
vfloat4 color = blk.texel(i);
vfloat4 diff = color - center_color;
float distance = dot_s(diff * diff, blk.channel_weight);
distance_sum += distance;
distances[i] = distance;
}
// More numbers from random.org for weighted-random center selection
const float cluster_cutoffs[9] {
0.626220f, 0.932770f, 0.275454f,
0.318558f, 0.240113f, 0.009190f,
0.347661f, 0.731960f, 0.156391f
};
unsigned int cutoff = (clusters_selected - 1) + 3 * (partition_count - 2);
// Pick the remaining samples as needed
while (true)
{
// Pick the next center in a weighted-random fashion.
float summa = 0.0f;
float distance_cutoff = distance_sum * cluster_cutoffs[cutoff++];
for (sample = 0; sample < texel_count; sample++)
{
summa += distances[sample];
if (summa >= distance_cutoff)
{
break;
}
}
// Clamp to a valid range and store the selected cluster center
sample = astc::min(sample, texel_count - 1);
center_color = blk.texel(sample);
cluster_centers[clusters_selected++] = center_color;
if (clusters_selected >= partition_count)
{
break;
}
// Compute the distance to the new cluster center, keep the min dist
distance_sum = 0.0f;
for (unsigned int i = 0; i < texel_count; i++)
{
vfloat4 color = blk.texel(i);
vfloat4 diff = color - center_color;
float distance = dot_s(diff * diff, blk.channel_weight);
distance = astc::min(distance, distances[i]);
distance_sum += distance;
distances[i] = distance;
}
}
}
/**
* @brief Assign texels to clusters, based on a set of chosen center points.
*
* @param blk The image block color data to compress.
* @param texel_count The number of texels in the block.
* @param partition_count The number of partitions in the block.
* @param cluster_centers The partition cluster center colors.
* @param[out] partition_of_texel The partition assigned for each texel.
*/
static void kmeans_assign(
const image_block& blk,
unsigned int texel_count,
unsigned int partition_count,
const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
) {
promise(texel_count > 0);
promise(partition_count > 0);
uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
// Find the best partition for every texel
for (unsigned int i = 0; i < texel_count; i++)
{
float best_distance = std::numeric_limits<float>::max();
unsigned int best_partition = 0;
vfloat4 color = blk.texel(i);
for (unsigned int j = 0; j < partition_count; j++)
{
vfloat4 diff = color - cluster_centers[j];
float distance = dot_s(diff * diff, blk.channel_weight);
if (distance < best_distance)
{
best_distance = distance;
best_partition = j;
}
}
partition_of_texel[i] = static_cast<uint8_t>(best_partition);
partition_texel_count[best_partition]++;
}
// It is possible to get a situation where a partition ends up without any texels. In this case,
// assign texel N to partition N. This is silly, but ensures that every partition retains at
// least one texel. Reassigning a texel in this manner may cause another partition to go empty,
// so if we actually did a reassignment, run the whole loop over again.
bool problem_case;
do
{
problem_case = false;
for (unsigned int i = 0; i < partition_count; i++)
{
if (partition_texel_count[i] == 0)
{
partition_texel_count[partition_of_texel[i]]--;
partition_texel_count[i]++;
partition_of_texel[i] = static_cast<uint8_t>(i);
problem_case = true;
}
}
} while (problem_case);
}
/**
* @brief Compute new cluster centers based on their center of gravity.
*
* @param blk The image block color data to compress.
* @param texel_count The number of texels in the block.
* @param partition_count The number of partitions in the block.
* @param[out] cluster_centers The new cluster center colors.
* @param partition_of_texel The partition assigned for each texel.
*/
static void kmeans_update(
const image_block& blk,
unsigned int texel_count,
unsigned int partition_count,
vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
const uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
) {
promise(texel_count > 0);
promise(partition_count > 0);
vfloat4 color_sum[BLOCK_MAX_PARTITIONS] {
vfloat4::zero(),
vfloat4::zero(),
vfloat4::zero(),
vfloat4::zero()
};
uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
// Find the center-of-gravity in each cluster
for (unsigned int i = 0; i < texel_count; i++)
{
uint8_t partition = partition_of_texel[i];
color_sum[partition] += blk.texel(i);
partition_texel_count[partition]++;
}
// Set the center of gravity to be the new cluster center
for (unsigned int i = 0; i < partition_count; i++)
{
float scale = 1.0f / static_cast<float>(partition_texel_count[i]);
cluster_centers[i] = color_sum[i] * scale;
}
}
/**
* @brief Compute bit-mismatch for partitioning in 2-partition mode.
*
* @param a The texel assignment bitvector for the block.
* @param b The texel assignment bitvector for the partition table.
*
* @return The number of bit mismatches.
*/
static inline uint8_t partition_mismatch2(
const uint64_t a[2],
const uint64_t b[2]
) {
int v1 = popcount(a[0] ^ b[0]) + popcount(a[1] ^ b[1]);
int v2 = popcount(a[0] ^ b[1]) + popcount(a[1] ^ b[0]);
// Divide by 2 because XOR always counts errors twice, once when missing
// in the expected position, and again when present in the wrong partition
return static_cast<uint8_t>(astc::min(v1, v2) / 2);
}
/**
* @brief Compute bit-mismatch for partitioning in 3-partition mode.
*
* @param a The texel assignment bitvector for the block.
* @param b The texel assignment bitvector for the partition table.
*
* @return The number of bit mismatches.
*/
static inline uint8_t partition_mismatch3(
const uint64_t a[3],
const uint64_t b[3]
) {
int p00 = popcount(a[0] ^ b[0]);
int p01 = popcount(a[0] ^ b[1]);
int p02 = popcount(a[0] ^ b[2]);
int p10 = popcount(a[1] ^ b[0]);
int p11 = popcount(a[1] ^ b[1]);
int p12 = popcount(a[1] ^ b[2]);
int p20 = popcount(a[2] ^ b[0]);
int p21 = popcount(a[2] ^ b[1]);
int p22 = popcount(a[2] ^ b[2]);
int s0 = p11 + p22;
int s1 = p12 + p21;
int v0 = astc::min(s0, s1) + p00;
int s2 = p10 + p22;
int s3 = p12 + p20;
int v1 = astc::min(s2, s3) + p01;
int s4 = p10 + p21;
int s5 = p11 + p20;
int v2 = astc::min(s4, s5) + p02;
// Divide by 2 because XOR always counts errors twice, once when missing
// in the expected position, and again when present in the wrong partition
return static_cast<uint8_t>(astc::min(v0, v1, v2) / 2);
}
/**
* @brief Compute bit-mismatch for partitioning in 4-partition mode.
*
* @param a The texel assignment bitvector for the block.
* @param b The texel assignment bitvector for the partition table.
*
* @return The number of bit mismatches.
*/
static inline uint8_t partition_mismatch4(
const uint64_t a[4],
const uint64_t b[4]
) {
int p00 = popcount(a[0] ^ b[0]);
int p01 = popcount(a[0] ^ b[1]);
int p02 = popcount(a[0] ^ b[2]);
int p03 = popcount(a[0] ^ b[3]);
int p10 = popcount(a[1] ^ b[0]);
int p11 = popcount(a[1] ^ b[1]);
int p12 = popcount(a[1] ^ b[2]);
int p13 = popcount(a[1] ^ b[3]);
int p20 = popcount(a[2] ^ b[0]);
int p21 = popcount(a[2] ^ b[1]);
int p22 = popcount(a[2] ^ b[2]);
int p23 = popcount(a[2] ^ b[3]);
int p30 = popcount(a[3] ^ b[0]);
int p31 = popcount(a[3] ^ b[1]);
int p32 = popcount(a[3] ^ b[2]);
int p33 = popcount(a[3] ^ b[3]);
int mx23 = astc::min(p22 + p33, p23 + p32);
int mx13 = astc::min(p21 + p33, p23 + p31);
int mx12 = astc::min(p21 + p32, p22 + p31);
int mx03 = astc::min(p20 + p33, p23 + p30);
int mx02 = astc::min(p20 + p32, p22 + p30);
int mx01 = astc::min(p21 + p30, p20 + p31);
int v0 = p00 + astc::min(p11 + mx23, p12 + mx13, p13 + mx12);
int v1 = p01 + astc::min(p10 + mx23, p12 + mx03, p13 + mx02);
int v2 = p02 + astc::min(p11 + mx03, p10 + mx13, p13 + mx01);
int v3 = p03 + astc::min(p11 + mx02, p12 + mx01, p10 + mx12);
// Divide by 2 because XOR always counts errors twice, once when missing
// in the expected position, and again when present in the wrong partition
return static_cast<uint8_t>(astc::min(v0, v1, v2, v3) / 2);
}
using mismatch_dispatch = unsigned int (*)(const uint64_t*, const uint64_t*);
/**
* @brief Count the partition table mismatches vs the data clustering.
*
* @param bsd The block size information.
* @param partition_count The number of partitions in the block.
* @param bitmaps The block texel partition assignment patterns.
* @param[out] mismatch_counts The array storing per partitioning mismatch counts.
*/
static void count_partition_mismatch_bits(
const block_size_descriptor& bsd,
unsigned int partition_count,
const uint64_t bitmaps[BLOCK_MAX_PARTITIONS],
uint8_t mismatch_counts[BLOCK_MAX_PARTITIONINGS]
) {
unsigned int active_count = bsd.partitioning_count_selected[partition_count - 1];
promise(active_count > 0);
if (partition_count == 2)
{
for (unsigned int i = 0; i < active_count; i++)
{
mismatch_counts[i] = partition_mismatch2(bitmaps, bsd.coverage_bitmaps_2[i]);
assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
assert(mismatch_counts[i] < bsd.texel_count);
}
}
else if (partition_count == 3)
{
for (unsigned int i = 0; i < active_count; i++)
{
mismatch_counts[i] = partition_mismatch3(bitmaps, bsd.coverage_bitmaps_3[i]);
assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
assert(mismatch_counts[i] < bsd.texel_count);
}
}
else
{
for (unsigned int i = 0; i < active_count; i++)
{
mismatch_counts[i] = partition_mismatch4(bitmaps, bsd.coverage_bitmaps_4[i]);
assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
assert(mismatch_counts[i] < bsd.texel_count);
}
}
}
/**
* @brief Use counting sort on the mismatch array to sort partition candidates.
*
* @param partitioning_count The number of packed partitionings.
* @param mismatch_count Partitioning mismatch counts, in index order.
* @param[out] partition_ordering Partition index values, in mismatch order.
*
* @return The number of active partitions in this selection.
*/
static unsigned int get_partition_ordering_by_mismatch_bits(
unsigned int texel_count,
unsigned int partitioning_count,
const uint8_t mismatch_count[BLOCK_MAX_PARTITIONINGS],
uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS]
) {
promise(partitioning_count > 0);
uint16_t mscount[BLOCK_MAX_KMEANS_TEXELS] { 0 };
// Create the histogram of mismatch counts
for (unsigned int i = 0; i < partitioning_count; i++)
{
mscount[mismatch_count[i]]++;
}
// Create a running sum from the histogram array
// Indices store previous values only; i.e. exclude self after sum
uint16_t sum = 0;
for (unsigned int i = 0; i < texel_count; i++)
{
uint16_t cnt = mscount[i];
mscount[i] = sum;
sum += cnt;
}
// Use the running sum as the index, incrementing after read to allow
// sequential entries with the same count
for (unsigned int i = 0; i < partitioning_count; i++)
{
unsigned int idx = mscount[mismatch_count[i]]++;
partition_ordering[idx] = static_cast<uint16_t>(i);
}
return partitioning_count;
}
/**
* @brief Use k-means clustering to compute a partition ordering for a block..
*
* @param bsd The block size information.
* @param blk The image block color data to compress.
* @param partition_count The desired number of partitions in the block.
* @param[out] partition_ordering The list of recommended partition indices, in priority order.
*
* @return The number of active partitionings in this selection.
*/
static unsigned int compute_kmeans_partition_ordering(
const block_size_descriptor& bsd,
const image_block& blk,
unsigned int partition_count,
uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS]
) {
vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS];
uint8_t texel_partitions[BLOCK_MAX_TEXELS];
// Use three passes of k-means clustering to partition the block data
for (unsigned int i = 0; i < 3; i++)
{
if (i == 0)
{
kmeans_init(blk, bsd.texel_count, partition_count, cluster_centers);
}
else
{
kmeans_update(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
}
kmeans_assign(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
}
// Construct the block bitmaps of texel assignments to each partition
uint64_t bitmaps[BLOCK_MAX_PARTITIONS] { 0 };
unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
promise(texels_to_process > 0);
for (unsigned int i = 0; i < texels_to_process; i++)
{
unsigned int idx = bsd.kmeans_texels[i];
bitmaps[texel_partitions[idx]] |= 1ULL << i;
}
// Count the mismatch between the block and the format's partition tables
uint8_t mismatch_counts[BLOCK_MAX_PARTITIONINGS];
count_partition_mismatch_bits(bsd, partition_count, bitmaps, mismatch_counts);
// Sort the partitions based on the number of mismatched bits
return get_partition_ordering_by_mismatch_bits(
texels_to_process,
bsd.partitioning_count_selected[partition_count - 1],
mismatch_counts, partition_ordering);
}
/**
* @brief Insert a partitioning into an order list of results, sorted by error.
*
* @param max_values The max number of entries in the best result arrays.
* @param this_error The error of the new entry.
* @param this_partition The partition ID of the new entry.
* @param[out] best_errors The array of best error values.
* @param[out] best_partitions The array of best partition values.
*/
static void insert_result(
unsigned int max_values,
float this_error,
unsigned int this_partition,
float* best_errors,
unsigned int* best_partitions)
{
promise(max_values > 0);
// Don't bother searching if the current worst error beats the new error
if (this_error >= best_errors[max_values - 1])
{
return;
}
// Else insert into the list in error-order
for (unsigned int i = 0; i < max_values; i++)
{
// Existing result is better - move on ...
if (this_error > best_errors[i])
{
continue;
}
// Move existing results down one
for (unsigned int j = max_values - 1; j > i; j--)
{
best_errors[j] = best_errors[j - 1];
best_partitions[j] = best_partitions[j - 1];
}
// Insert new result
best_errors[i] = this_error;
best_partitions[i] = this_partition;
break;
}
}
/* See header for documentation. */
unsigned int find_best_partition_candidates(
const block_size_descriptor& bsd,
const image_block& blk,
unsigned int partition_count,
unsigned int partition_search_limit,
unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],
unsigned int requested_candidates
) {
// Constant used to estimate quantization error for a given partitioning; the optimal value for
// this depends on bitrate. These values have been determined empirically.
unsigned int texels_per_block = bsd.texel_count;
float weight_imprecision_estim = 0.055f;
if (texels_per_block <= 20)
{
weight_imprecision_estim = 0.03f;
}
else if (texels_per_block <= 31)
{
weight_imprecision_estim = 0.04f;
}
else if (texels_per_block <= 41)
{
weight_imprecision_estim = 0.05f;
}
promise(partition_count > 0);
promise(partition_search_limit > 0);
weight_imprecision_estim = weight_imprecision_estim * weight_imprecision_estim;
uint16_t partition_sequence[BLOCK_MAX_PARTITIONINGS];
unsigned int sequence_len = compute_kmeans_partition_ordering(bsd, blk, partition_count, partition_sequence);
partition_search_limit = astc::min(partition_search_limit, sequence_len);
requested_candidates = astc::min(partition_search_limit, requested_candidates);
bool uses_alpha = !blk.is_constant_channel(3);
// Partitioning errors assuming uncorrelated-chrominance endpoints
float uncor_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES];
unsigned int uncor_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES];
// Partitioning errors assuming same-chrominance endpoints
float samec_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES];
unsigned int samec_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES];
for (unsigned int i = 0; i < requested_candidates; i++)
{
uncor_best_errors[i] = ERROR_CALC_DEFAULT;
samec_best_errors[i] = ERROR_CALC_DEFAULT;
}
if (uses_alpha)
{
for (unsigned int i = 0; i < partition_search_limit; i++)
{
unsigned int partition = partition_sequence[i];
const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
// Compute weighting to give to each component in each partition
partition_metrics pms[BLOCK_MAX_PARTITIONS];
compute_avgs_and_dirs_4_comp(pi, blk, pms);
line4 uncor_lines[BLOCK_MAX_PARTITIONS];
line4 samec_lines[BLOCK_MAX_PARTITIONS];
processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS];
processed_line4 samec_plines[BLOCK_MAX_PARTITIONS];
float line_lengths[BLOCK_MAX_PARTITIONS];
for (unsigned int j = 0; j < partition_count; j++)
{
partition_metrics& pm = pms[j];
uncor_lines[j].a = pm.avg;
uncor_lines[j].b = normalize_safe(pm.dir, unit4());
uncor_plines[j].amod = uncor_lines[j].a - uncor_lines[j].b * dot(uncor_lines[j].a, uncor_lines[j].b);
uncor_plines[j].bs = uncor_lines[j].b;
samec_lines[j].a = vfloat4::zero();
samec_lines[j].b = normalize_safe(pm.avg, unit4());
samec_plines[j].amod = vfloat4::zero();
samec_plines[j].bs = samec_lines[j].b;
}
float uncor_error = 0.0f;
float samec_error = 0.0f;
compute_error_squared_rgba(pi,
blk,
uncor_plines,
samec_plines,
line_lengths,
uncor_error,
samec_error);
// Compute an estimate of error introduced by weight quantization imprecision.
// This error is computed as follows, for each partition
// 1: compute the principal-axis vector (full length) in error-space
// 2: convert the principal-axis vector to regular RGB-space
// 3: scale the vector by a constant that estimates average quantization error
// 4: for each texel, square the vector, then do a dot-product with the texel's
// error weight; sum up the results across all texels.
// 4(optimized): square the vector once, then do a dot-product with the average
// texel error, then multiply by the number of texels.
for (unsigned int j = 0; j < partition_count; j++)
{
float tpp = static_cast<float>(pi.partition_texel_count[j]);
vfloat4 error_weights(tpp * weight_imprecision_estim);
vfloat4 uncor_vector = uncor_lines[j].b * line_lengths[j];
vfloat4 samec_vector = samec_lines[j].b * line_lengths[j];
uncor_error += dot_s(uncor_vector * uncor_vector, error_weights);
samec_error += dot_s(samec_vector * samec_vector, error_weights);
}
insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
}
}
else
{
for (unsigned int i = 0; i < partition_search_limit; i++)
{
unsigned int partition = partition_sequence[i];
const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
// Compute weighting to give to each component in each partition
partition_metrics pms[BLOCK_MAX_PARTITIONS];
compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms);
partition_lines3 plines[BLOCK_MAX_PARTITIONS];
for (unsigned int j = 0; j < partition_count; j++)
{
partition_metrics& pm = pms[j];
partition_lines3& pl = plines[j];
pl.uncor_line.a = pm.avg;
pl.uncor_line.b = normalize_safe(pm.dir, unit3());
pl.samec_line.a = vfloat4::zero();
pl.samec_line.b = normalize_safe(pm.avg, unit3());
pl.uncor_pline.amod = pl.uncor_line.a - pl.uncor_line.b * dot3(pl.uncor_line.a, pl.uncor_line.b);
pl.uncor_pline.bs = pl.uncor_line.b;
pl.samec_pline.amod = vfloat4::zero();
pl.samec_pline.bs = pl.samec_line.b;
}
float uncor_error = 0.0f;
float samec_error = 0.0f;
compute_error_squared_rgb(pi,
blk,
plines,
uncor_error,
samec_error);
// Compute an estimate of error introduced by weight quantization imprecision.
// This error is computed as follows, for each partition
// 1: compute the principal-axis vector (full length) in error-space
// 2: convert the principal-axis vector to regular RGB-space
// 3: scale the vector by a constant that estimates average quantization error
// 4: for each texel, square the vector, then do a dot-product with the texel's
// error weight; sum up the results across all texels.
// 4(optimized): square the vector once, then do a dot-product with the average
// texel error, then multiply by the number of texels.
for (unsigned int j = 0; j < partition_count; j++)
{
partition_lines3& pl = plines[j];
float tpp = static_cast<float>(pi.partition_texel_count[j]);
vfloat4 error_weights(tpp * weight_imprecision_estim);
vfloat4 uncor_vector = pl.uncor_line.b * pl.line_length;
vfloat4 samec_vector = pl.samec_line.b * pl.line_length;
uncor_error += dot3_s(uncor_vector * uncor_vector, error_weights);
samec_error += dot3_s(samec_vector * samec_vector, error_weights);
}
insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
}
}
unsigned int interleave[2 * TUNE_MAX_PARTITIONING_CANDIDATES];
for (unsigned int i = 0; i < requested_candidates; i++)
{
interleave[2 * i] = bsd.get_raw_partition_info(partition_count, uncor_best_partitions[i]).partition_index;
interleave[2 * i + 1] = bsd.get_raw_partition_info(partition_count, samec_best_partitions[i]).partition_index;
}
uint64_t bitmasks[1024/64] { 0 };
unsigned int emitted = 0;
// Deduplicate the first "requested" entries
for (unsigned int i = 0; i < requested_candidates * 2; i++)
{
unsigned int partition = interleave[i];
unsigned int word = partition / 64;
unsigned int bit = partition % 64;
bool written = bitmasks[word] & (1ull << bit);
if (!written)
{
best_partitions[emitted] = partition;
bitmasks[word] |= 1ull << bit;
emitted++;
if (emitted == requested_candidates)
{
break;
}
}
}
return emitted;
}
#endif
|