1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
|
#!/usr/bin/env python3
# SPDX-License-Identifier: Apache-2.0
# -----------------------------------------------------------------------------
# Copyright 2021 Arm Limited
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy
# of the License at:
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
# -----------------------------------------------------------------------------
"""
The ``astc_trace_analysis`` utility provides a tool to analyze trace files.
WARNING: Trace files are an engineering tool, and not part of the standard
product, so traces and their associated tools are volatile and may change
significantly without notice.
"""
import argparse
from collections import defaultdict as ddict
import json
import numpy as np
import sys
QUANT_TABLE = {
0: 2,
1: 3,
2: 4,
3: 5,
4: 6,
5: 8,
6: 10,
7: 12,
8: 16,
9: 20,
10: 24,
11: 32
}
CHANNEL_TABLE = {
0: "R",
1: "G",
2: "B",
3: "A"
}
class Trace:
def __init__(self, block_x, block_y, block_z):
self.block_x = block_x
self.block_y = block_y
self.block_z = block_z
self.blocks = []
def add_block(self, block):
self.blocks.append(block)
def __getitem__(self, i):
return self.blocks[i]
def __delitem__(self, i):
del self.blocks[i]
def __len__(self):
return len(self.blocks)
class Block:
def __init__(self, pos_x, pos_y, pos_z, error_target):
self.pos_x = pos_x
self.pos_y = pos_y
self.pos_z = pos_z
self.raw_min = None
self.raw_max = None
self.ldr_min = None
self.ldr_max = None
self.error_target = error_target
self.passes = []
self.qualityHit = None
def add_minimums(self, r, g, b, a):
self.raw_min = (r, g, b, a)
def ldr(x):
cmax = 65535.0
return int((r / cmax) * 255.0)
self.ldr_min = (ldr(r), ldr(g), ldr(b), ldr(a))
def add_maximums(self, r, g, b, a):
self.raw_max = (r, g, b, a)
def ldr(x):
cmax = 65535.0
return int((r / cmax) * 255.0)
self.ldr_max = (ldr(r), ldr(g), ldr(b), ldr(a))
def add_pass(self, pas):
self.passes.append(pas)
def __getitem__(self, i):
return self.passes[i]
def __delitem__(self, i):
del self.passes[i]
def __len__(self):
return len(self.passes)
class Pass:
def __init__(self, partitions, partition, planes, target_hit, mode, component):
self.partitions = partitions
self.partition_index = 0 if partition is None else partition
self.planes = planes
self.plane2_component = component
self.target_hit = target_hit
self.search_mode = mode
self.candidates = []
def add_candidate(self, candidate):
self.candidates.append(candidate)
def __getitem__(self, i):
return self.candidates[i]
def __delitem__(self, i):
del self.candidates[i]
def __len__(self):
return len(self.candidates)
class Candidate:
def __init__(self, weight_x, weight_y, weight_z, weight_quant):
self.weight_x = weight_x
self.weight_y = weight_y
self.weight_z = weight_z
self.weight_quant = weight_quant
self.refinement_errors = []
def add_refinement(self, errorval):
self.refinement_errors.append(errorval)
def get_attrib(data, name, multiple=False, hard_fail=True):
results = []
for attrib in data:
if len(attrib) == 2 and attrib[0] == name:
results.append(attrib[1])
if not results:
if hard_fail:
print(json.dumps(data, indent=2))
assert False, "Attribute %s not found" % name
if multiple:
return list()
return None
if not multiple:
if len(results) > 1:
print(json.dumps(data, indent=2))
assert False, "Attribute %s found %u times" % (name, len(results))
return results[0]
return results
def rev_enumerate(seq):
return zip(reversed(range(len(seq))), reversed(seq))
def foreach_block(data):
for block in data:
yield block
def foreach_pass(data):
for block in data:
for pas in block:
yield (block, pas)
def foreach_candidate(data):
for block in data:
for pas in block:
# Special case - None candidates for 0 partition
if not len(pas):
yield (block, pas, None)
for candidate in pas:
yield (block, pas, candidate)
def get_node(data, name, multiple=False, hard_fail=True):
results = []
for attrib in data:
if len(attrib) == 3 and attrib[0] == "node" and attrib[1] == name:
results.append(attrib[2])
if not results:
if hard_fail:
print(json.dumps(data, indent=2))
assert False, "Node %s not found" % name
return None
if not multiple:
if len(results) > 1:
print(json.dumps(data, indent=2))
assert False, "Node %s found %u times" % (name, len(results))
return results[0]
return results
def find_best_pass_and_candidate(block):
explicit_pass = None
best_error = 1e30
best_pass = None
best_candidate = None
for pas in block:
# Special case for constant color blocks - no trial candidates
if pas.target_hit and pas.partitions == 0:
return (pas, None)
for candidate in pas:
errorval = candidate.refinement_errors[-1]
if errorval <= best_error:
best_error = errorval
best_pass = pas
best_candidate = candidate
# Every other return type must have both best pass and best candidate
assert (best_pass and best_candidate)
return (best_pass, best_candidate)
def generate_database(data):
# Skip header
assert(data[0] == "node")
assert(data[1] == "root")
data = data[2]
bx = get_attrib(data, "block_x")
by = get_attrib(data, "block_y")
bz = get_attrib(data, "block_z")
dbStruct = Trace(bx, by, bz)
for block in get_node(data, "block", True):
px = get_attrib(block, "pos_x")
py = get_attrib(block, "pos_y")
pz = get_attrib(block, "pos_z")
minr = get_attrib(block, "min_r")
ming = get_attrib(block, "min_g")
minb = get_attrib(block, "min_b")
mina = get_attrib(block, "min_a")
maxr = get_attrib(block, "max_r")
maxg = get_attrib(block, "max_g")
maxb = get_attrib(block, "max_b")
maxa = get_attrib(block, "max_a")
et = get_attrib(block, "tune_error_threshold")
blockStruct = Block(px, py, pz, et)
blockStruct.add_minimums(minr, ming, minb, mina)
blockStruct.add_maximums(maxr, maxg, maxb, maxa)
dbStruct.add_block(blockStruct)
for pas in get_node(block, "pass", True):
# Don't copy across passes we skipped due to heuristics
skipped = get_attrib(pas, "skip", False, False)
if skipped:
continue
prts = get_attrib(pas, "partition_count")
prti = get_attrib(pas, "partition_index", False, False)
plns = get_attrib(pas, "plane_count")
chan = get_attrib(pas, "plane_component", False, plns > 2)
mode = get_attrib(pas, "search_mode", False, False)
ehit = get_attrib(pas, "exit", False, False) == "quality hit"
passStruct = Pass(prts, prti, plns, ehit, mode, chan)
blockStruct.add_pass(passStruct)
# Constant color blocks don't have any candidates
if prts == 0:
continue
for candidate in get_node(pas, "candidate", True):
# Don't copy across candidates we couldn't encode
failed = get_attrib(candidate, "failed", False, False)
if failed:
continue
wx = get_attrib(candidate, "weight_x")
wy = get_attrib(candidate, "weight_y")
wz = get_attrib(candidate, "weight_z")
wq = QUANT_TABLE[get_attrib(candidate, "weight_quant")]
epre = get_attrib(candidate, "error_prerealign", True, False)
epst = get_attrib(candidate, "error_postrealign", True, False)
candStruct = Candidate(wx, wy, wz, wq)
passStruct.add_candidate(candStruct)
for value in epre:
candStruct.add_refinement(value)
for value in epst:
candStruct.add_refinement(value)
return dbStruct
def filter_database(data):
for block in data:
best_pass, best_candidate = find_best_pass_and_candidate(block)
for i, pas in rev_enumerate(block):
if pas != best_pass:
del block[i]
continue
if best_candidate is None:
continue
for j, candidate in rev_enumerate(pas):
if candidate != best_candidate:
del pas[j]
def generate_pass_statistics(data):
pass
def generate_feature_statistics(data):
# -------------------------------------------------------------------------
# Config
print("Compressor Config")
print("=================")
if data.block_z > 1:
dat = (data.block_x, data.block_y, data.block_z)
print(" - Block size: %ux%ux%u" % dat)
else:
dat = (data.block_x, data.block_y)
print(" - Block size: %ux%u" % dat)
print("")
# -------------------------------------------------------------------------
# Block metrics
result = ddict(int)
RANGE_QUANT = 16
for block in foreach_block(data):
ranges = []
for i in range(0, 4):
ranges.append(block.ldr_max[i] - block.ldr_min[i])
max_range = max(ranges)
max_range = int(max_range / RANGE_QUANT) * RANGE_QUANT
result[max_range] += 1
print("Channel Range")
print("=============")
keys = sorted(result.keys())
for key in keys:
dat = (key, key + RANGE_QUANT - 1, result[key])
print(" - %3u-%3u dynamic range = %6u blocks" % dat)
print("")
# -------------------------------------------------------------------------
# Partition usage
result_totals = ddict(int)
results = ddict(lambda: ddict(int))
for _, pas in foreach_pass(data):
result_totals[pas.partitions] += 1
results[pas.partitions][pas.partition_index] += 1
print("Partition Count")
print("===============")
keys = sorted(result_totals.keys())
for key in keys:
dat = (key, result_totals[key], len(results[key]))
print(" - %u partition(s) = %6u blocks / %4u indicies" % dat)
print("")
# -------------------------------------------------------------------------
# Plane usage
result_count = ddict(lambda: ddict(int))
result_channel = ddict(lambda: ddict(int))
for _, pas in foreach_pass(data):
result_count[pas.partitions][pas.planes] += 1
if (pas.planes > 1):
result_channel[pas.partitions][pas.plane2_component] += 1
print("Plane Usage")
print("===========")
keys = sorted(result_count.keys())
for key in keys:
keys2 = sorted(result_count[key])
for key2 in keys2:
val2 = result_count[key][key2]
dat = (key, key2, val2)
print(" - %u partition(s) %u plane(s) = %6u blocks" % dat)
if key2 == 2:
keys3 = sorted(result_channel[key])
for key3 in keys3:
dat = (CHANNEL_TABLE[key3], result_channel[key][key3])
print(" - %s plane = %6u blocks" % dat)
print("")
# -------------------------------------------------------------------------
# Decimation usage
decim_count = ddict(lambda: ddict(int))
quant_count = ddict(lambda: ddict(lambda: ddict(int)))
MERGE_ROTATIONS = True
for _, pas, can in foreach_candidate(data):
# Skip constant color blocks
if can is None:
continue
wx = can.weight_x
wy = can.weight_y
if MERGE_ROTATIONS and wx < wy:
wx, wy = wy, wx
decim_count[wx][wy] += 1
quant_count[wx][wy][can.weight_quant] += 1
print("Decimation Usage")
print("================")
if MERGE_ROTATIONS:
print(" - Note: data merging grid rotations")
x_keys = sorted(decim_count.keys())
for x_key in x_keys:
y_keys = sorted(decim_count[x_key])
for y_key in y_keys:
count = decim_count[x_key][y_key]
dat = (x_key, y_key, count)
print(" - %ux%u weights = %6u blocks" % dat)
q_keys = sorted(quant_count[x_key][y_key])
for q_key in q_keys:
count = quant_count[x_key][y_key][q_key]
dat = (q_key, count)
print(" - %2u quant range = %6u blocks" % dat)
print("")
# -------------------------------------------------------------------------
# Refinement usage
total_count = 0
better_count = 0
could_have_count = 0
success_count = 0
refinement_step = []
for block, pas, candidate in foreach_candidate(data):
# Ignore zero partition blocks - they don't use refinement
if not candidate:
continue
target_error = block.error_target
start_error = candidate.refinement_errors[0]
end_error = candidate.refinement_errors[-1]
rpf = float(start_error - end_error) / float(len(candidate.refinement_errors))
rpf = abs(rpf)
refinement_step.append(rpf / start_error)
total_count += 1
if end_error <= start_error:
better_count += 1
if end_error <= target_error:
success_count += 1
else:
for refinement in candidate.refinement_errors:
if refinement <= target_error:
could_have_count += 1
break
print("Refinement Usage")
print("================")
print(" - %u refinements(s)" % total_count)
print(" - %u refinements(s) improved" % better_count)
print(" - %u refinements(s) worsened" % (total_count - better_count))
print(" - %u refinements(s) could hit target, but didn't" % could_have_count)
print(" - %u refinements(s) hit target" % success_count)
print(" - %f mean step improvement" % np.mean(refinement_step))
def parse_command_line():
"""
Parse the command line.
Returns:
Namespace: The parsed command line container.
"""
parser = argparse.ArgumentParser()
parser.add_argument("trace", type=argparse.FileType("r"),
help="The trace file to analyze")
return parser.parse_args()
def main():
"""
The main function.
Returns:
int: The process return code.
"""
args = parse_command_line()
data = json.load(args.trace)
db = generate_database(data)
filter_database(db)
generate_feature_statistics(db)
return 0
if __name__ == "__main__":
sys.exit(main())
|