1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
// SPDX-License-Identifier: Apache-2.0
// ----------------------------------------------------------------------------
// Copyright 2021-2024 Arm Limited
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at:
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
// ----------------------------------------------------------------------------
// This is a utility tool to test blend modes.
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include "astcenc_mathlib.h"
#define STB_IMAGE_IMPLEMENTATION
#include "ThirdParty/stb_image.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "ThirdParty/stb_image_write.h"
/**
* @brief Linearize an sRGB value.
*
* @return The linearized value.
*/
static float srgb_to_linear(
float a
) {
if (a <= 0.04045f)
{
return a * (1.0f / 12.92f);
}
return powf((a + 0.055f) * (1.0f / 1.055f), 2.4f);
}
/**
* @brief sRGB gamma-encode a linear value.
*
* @return The gamma encoded value.
*/
static float linear_to_srgb(
float a
) {
if (a <= 0.0031308f)
{
return a * 12.92f;
}
return 1.055f * powf(a, 1.0f / 2.4f) - 0.055f;
}
int main(int argc, char **argv)
{
// Parse command line
if (argc != 6)
{
printf("Usage: astc_blend_test <source> <dest> <format> <blend_mode> <filter>\n");
exit(1);
}
const char* src_file = argv[1];
const char* dst_file = argv[2];
bool use_linear = false;
if (!strcmp(argv[3], "linear"))
{
use_linear = true;
}
else if (!strcmp(argv[3], "srgb"))
{
use_linear = false;
}
else
{
printf("<format> must be either 'linear' or 'srgb'\n");
exit(1);
}
bool use_post_blend = false;
if (!strcmp(argv[4], "post"))
{
use_post_blend = true;
}
else if (!strcmp(argv[4], "pre"))
{
use_post_blend = false;
}
else
{
printf("<blend_mode> must be either 'post' or 'pre'\n");
exit(1);
}
bool use_filter = false;
if (!strcmp(argv[5], "on"))
{
use_filter = true;
}
else if (!strcmp(argv[5], "off"))
{
use_filter = false;
}
else
{
printf("<filter> must be either 'on' or 'off'\n");
exit(1);
}
// Load the input image
int dim_x;
int dim_y;
const uint8_t* data_in = stbi_load(src_file, &dim_x, &dim_y, nullptr, 4);
if (!data_in)
{
printf("ERROR: Failed to load input image.\n");
exit(1);
}
// Allocate the output image
uint8_t* data_out = (uint8_t*)malloc(4 * dim_y * dim_x);
if (!data_out)
{
printf("ERROR: Failed to allocate output image.\n");
exit(1);
}
// For each pixel blending and filtering
if (!use_filter)
{
for (int y = 0; y < dim_y; y++)
{
const uint8_t* row_in = data_in + (4 * dim_x * y);
uint8_t* row_out = data_out + (4 * dim_x * y);
for (int x = 0; x < dim_x; x++)
{
const uint8_t* pixel_in = row_in + 4 * x;
uint8_t* pixel_out = row_out + 4 * x;
float r_src = static_cast<float>(pixel_in[0]) / 255.0f;
float g_src = static_cast<float>(pixel_in[1]) / 255.0f;
float b_src = static_cast<float>(pixel_in[2]) / 255.0f;
float a_src = static_cast<float>(pixel_in[3]) / 255.0f;
if (use_linear == false)
{
r_src = srgb_to_linear(r_src);
g_src = srgb_to_linear(g_src);
b_src = srgb_to_linear(b_src);
}
float r_dst = 0.53f;
float g_dst = 0.53f;
float b_dst = 0.53f;
float r_out;
float g_out;
float b_out;
float a_out;
// Post-multiply blending
if (use_post_blend)
{
r_out = (r_dst * (1.0f - a_src)) + (r_src * a_src);
g_out = (g_dst * (1.0f - a_src)) + (g_src * a_src);
b_out = (b_dst * (1.0f - a_src)) + (b_src * a_src);
a_out = 1.0f;
}
// Pre-multiply blending
else
{
r_out = (r_dst * (1.0f - a_src)) + (r_src * 1.0f);
g_out = (g_dst * (1.0f - a_src)) + (g_src * 1.0f);
b_out = (b_dst * (1.0f - a_src)) + (b_src * 1.0f);
a_out = 1.0f;
}
// Clamp color between 0 and 1.0f
r_out = astc::min(r_out, 1.0f);
g_out = astc::min(g_out, 1.0f);
b_out = astc::min(b_out, 1.0f);
if (use_linear == false)
{
r_out = linear_to_srgb(r_out);
g_out = linear_to_srgb(g_out);
b_out = linear_to_srgb(b_out);
}
pixel_out[0] = (uint8_t)(r_out * 255.0f);
pixel_out[1] = (uint8_t)(g_out * 255.0f);
pixel_out[2] = (uint8_t)(b_out * 255.0f);
pixel_out[3] = (uint8_t)(a_out * 255.0f);
}
}
}
else
{
for (int y = 0; y < dim_y - 1; y++)
{
const uint8_t* row_in_0 = data_in + (4 * dim_x * y);
const uint8_t* row_in_1 = data_in + (4 * dim_x * (y + 1));
uint8_t* row_out = data_out + (4 * (dim_x - 1) * y);
for (int x = 0; x < dim_x - 1; x++)
{
const uint8_t* pixel_in_00 = row_in_0 + 4 * x;
const uint8_t* pixel_in_01 = row_in_0 + 4 * (x + 1);
const uint8_t* pixel_in_10 = row_in_1 + 4 * x;
const uint8_t* pixel_in_11 = row_in_1 + 4 * (x + 1);
uint8_t* pixel_out = row_out + 4 * x;
// Bilinear filter with a half-pixel offset
float r_src = static_cast<float>(pixel_in_00[0] + pixel_in_01[0] + pixel_in_10[0] + pixel_in_11[0]) / (255.0f * 4.0f);
float g_src = static_cast<float>(pixel_in_00[1] + pixel_in_01[1] + pixel_in_10[1] + pixel_in_11[1]) / (255.0f * 4.0f);
float b_src = static_cast<float>(pixel_in_00[2] + pixel_in_01[2] + pixel_in_10[2] + pixel_in_11[2]) / (255.0f * 4.0f);
float a_src = static_cast<float>(pixel_in_00[3] + pixel_in_01[3] + pixel_in_10[3] + pixel_in_11[3]) / (255.0f * 4.0f);
if (use_linear == false)
{
r_src = srgb_to_linear(r_src);
g_src = srgb_to_linear(g_src);
b_src = srgb_to_linear(b_src);
}
float r_dst = 0.8f;
float g_dst = 1.0f;
float b_dst = 0.8f;
float r_out;
float g_out;
float b_out;
float a_out;
// Post-multiply blending
if (use_post_blend)
{
r_out = (r_dst * (1.0f - a_src)) + (r_src * a_src);
g_out = (g_dst * (1.0f - a_src)) + (g_src * a_src);
b_out = (b_dst * (1.0f - a_src)) + (b_src * a_src);
a_out = 1.0f;
}
// Pre-multiply blending
else
{
r_out = (r_dst * (1.0f - a_src)) + (r_src * 1.0f);
g_out = (g_dst * (1.0f - a_src)) + (g_src * 1.0f);
b_out = (b_dst * (1.0f - a_src)) + (b_src * 1.0f);
a_out = 1.0f;
}
// Clamp color between 0 and 1.0f
r_out = astc::min(r_out, 1.0f);
g_out = astc::min(g_out, 1.0f);
b_out = astc::min(b_out, 1.0f);
if (use_linear == false)
{
r_out = linear_to_srgb(r_out);
g_out = linear_to_srgb(g_out);
b_out = linear_to_srgb(b_out);
}
pixel_out[0] = (uint8_t)(r_out * 255.0f);
pixel_out[1] = (uint8_t)(g_out * 255.0f);
pixel_out[2] = (uint8_t)(b_out * 255.0f);
pixel_out[3] = (uint8_t)(a_out * 255.0f);
}
}
}
// Write out the result
if (!use_filter)
{
stbi_write_png(dst_file, dim_x, dim_y, 4, data_out, 4 * dim_x);
}
else
{
stbi_write_png(dst_file, dim_x - 1, dim_y - 1, 4, data_out, 4 * (dim_x - 1));
}
return 0;
}
|