1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
|
/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 1999 - 2005, Digium, Inc.
*
* Mark Spencer <markster@digium.com>
*
* Based on frompcm.c and topcm.c from the Emiliano MIPL browser/
* interpreter. See http://www.bsdtelephony.com.mx
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
*
* \brief codec_g726.c - translate between signed linear and ITU G.726-32kbps
*
* \ingroup codecs
*/
#include <fcntl.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "asterisk.h"
ASTERISK_FILE_VERSION(__FILE__, "$Revision: 7221 $")
#include "asterisk/lock.h"
#include "asterisk/logger.h"
#include "asterisk/module.h"
#include "asterisk/config.h"
#include "asterisk/options.h"
#include "asterisk/translate.h"
#include "asterisk/channel.h"
#define WANT_ASM
#include "log2comp.h"
/* define NOT_BLI to use a faster but not bit-level identical version */
/* #define NOT_BLI */
#if defined(NOT_BLI)
# if defined(_MSC_VER)
typedef __int64 sint64;
# elif defined(__GNUC__)
typedef long long sint64;
# else
# error 64-bit integer type is not defined for your compiler/platform
# endif
#endif
#define BUFFER_SIZE 8096 /* size for the translation buffers */
#define BUF_SHIFT 5
AST_MUTEX_DEFINE_STATIC(localuser_lock);
static int localusecnt = 0;
static char *tdesc = "ITU G.726-32kbps G726 Transcoder";
static int useplc = 0;
/* Sample frame data */
#include "slin_g726_ex.h"
#include "g726_slin_ex.h"
/*
* The following is the definition of the state structure
* used by the G.721/G.723 encoder and decoder to preserve their internal
* state between successive calls. The meanings of the majority
* of the state structure fields are explained in detail in the
* CCITT Recommendation G.721. The field names are essentially indentical
* to variable names in the bit level description of the coding algorithm
* included in this Recommendation.
*/
struct g726_state {
long yl; /* Locked or steady state step size multiplier. */
int yu; /* Unlocked or non-steady state step size multiplier. */
int dms; /* Short term energy estimate. */
int dml; /* Long term energy estimate. */
int ap; /* Linear weighting coefficient of 'yl' and 'yu'. */
int a[2]; /* Coefficients of pole portion of prediction filter.
* stored as fixed-point 1==2^14 */
int b[6]; /* Coefficients of zero portion of prediction filter.
* stored as fixed-point 1==2^14 */
int pk[2]; /* Signs of previous two samples of a partially
* reconstructed signal.
*/
int dq[6]; /* Previous 6 samples of the quantized difference signal
* stored as fixed point 1==2^12,
* or in internal floating point format */
int sr[2]; /* Previous 2 samples of the quantized difference signal
* stored as fixed point 1==2^12,
* or in internal floating point format */
int td; /* delayed tone detect, new in 1988 version */
};
static int qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
/*
* Maps G.721 code word to reconstructed scale factor normalized log
* magnitude values.
*/
static int _dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
425, 373, 323, 273, 213, 135, 4, -2048};
/* Maps G.721 code word to log of scale factor multiplier. */
static int _witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
1122, 355, 198, 112, 64, 41, 18, -12};
/*
* Maps G.721 code words to a set of values whose long and short
* term averages are computed and then compared to give an indication
* how stationary (steady state) the signal is.
*/
static int _fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
/* Deprecated
static int power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
*/
/*
* g72x_init_state()
*
* This routine initializes and/or resets the g726_state structure
* pointed to by 'state_ptr'.
* All the initial state values are specified in the CCITT G.721 document.
*/
static void g726_init_state(struct g726_state *state_ptr)
{
int cnta;
state_ptr->yl = 34816;
state_ptr->yu = 544;
state_ptr->dms = 0;
state_ptr->dml = 0;
state_ptr->ap = 0;
for (cnta = 0; cnta < 2; cnta++)
{
state_ptr->a[cnta] = 0;
state_ptr->pk[cnta] = 0;
#ifdef NOT_BLI
state_ptr->sr[cnta] = 1;
#else
state_ptr->sr[cnta] = 32;
#endif
}
for (cnta = 0; cnta < 6; cnta++)
{
state_ptr->b[cnta] = 0;
#ifdef NOT_BLI
state_ptr->dq[cnta] = 1;
#else
state_ptr->dq[cnta] = 32;
#endif
}
state_ptr->td = 0;
}
/*
* quan()
*
* quantizes the input val against the table of integers.
* It returns i if table[i - 1] <= val < table[i].
*
* Using linear search for simple coding.
*/
static int quan(int val, int *table, int size)
{
int i;
for (i = 0; i < size && val >= *table; ++i, ++table)
;
return (i);
}
#ifdef NOT_BLI /* faster non-identical version */
/*
* predictor_zero()
*
* computes the estimated signal from 6-zero predictor.
*
*/
static int predictor_zero(struct g726_state *state_ptr)
{ /* divide by 2 is necessary here to handle negative numbers correctly */
int i;
sint64 sezi;
for (sezi = 0, i = 0; i < 6; i++) /* ACCUM */
sezi += (sint64)state_ptr->b[i] * state_ptr->dq[i];
return (int)(sezi >> 13) / 2 /* 2^14 */;
}
/*
* predictor_pole()
*
* computes the estimated signal from 2-pole predictor.
*
*/
static int predictor_pole(struct g726_state *state_ptr)
{ /* divide by 2 is necessary here to handle negative numbers correctly */
return (int)(((sint64)state_ptr->a[1] * state_ptr->sr[1] +
(sint64)state_ptr->a[0] * state_ptr->sr[0]) >> 13) / 2 /* 2^14 */;
}
#else /* NOT_BLI - identical version */
/*
* fmult()
*
* returns the integer product of the fixed-point number "an" (1==2^12) and
* "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
*/
static int fmult(int an, int srn)
{
int anmag, anexp, anmant;
int wanexp, wanmant;
int retval;
anmag = (an > 0) ? an : ((-an) & 0x1FFF);
anexp = ilog2(anmag) - 5;
anmant = (anmag == 0) ? 32 :
(anexp >= 0) ? anmag >> anexp : anmag << -anexp;
wanexp = anexp + ((srn >> 6) & 0xF) - 13;
wanmant = (anmant * (srn & 077) + 0x30) >> 4;
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
(wanmant >> -wanexp);
return (((an ^ srn) < 0) ? -retval : retval);
}
static int predictor_zero(struct g726_state *state_ptr)
{
int i;
int sezi;
for (sezi = 0, i = 0; i < 6; i++) /* ACCUM */
sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
return sezi;
}
static int predictor_pole(struct g726_state *state_ptr)
{
return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
}
#endif /* NOT_BLI */
/*
* step_size()
*
* computes the quantization step size of the adaptive quantizer.
*
*/
static int step_size(struct g726_state *state_ptr)
{
int y;
int dif;
int al;
if (state_ptr->ap >= 256)
return (state_ptr->yu);
else {
y = state_ptr->yl >> 6;
dif = state_ptr->yu - y;
al = state_ptr->ap >> 2;
if (dif > 0)
y += (dif * al) >> 6;
else if (dif < 0)
y += (dif * al + 0x3F) >> 6;
return (y);
}
}
/*
* quantize()
*
* Given a raw sample, 'd', of the difference signal and a
* quantization step size scale factor, 'y', this routine returns the
* ADPCM codeword to which that sample gets quantized. The step
* size scale factor division operation is done in the log base 2 domain
* as a subtraction.
*/
static int quantize(
int d, /* Raw difference signal sample */
int y, /* Step size multiplier */
int *table, /* quantization table */
int size) /* table size of integers */
{
int dqm; /* Magnitude of 'd' */
int exp; /* Integer part of base 2 log of 'd' */
int mant; /* Fractional part of base 2 log */
int dl; /* Log of magnitude of 'd' */
int dln; /* Step size scale factor normalized log */
int i;
/*
* LOG
*
* Compute base 2 log of 'd', and store in 'dl'.
*/
dqm = abs(d);
exp = ilog2(dqm);
if (exp < 0)
exp = 0;
mant = ((dqm << 7) >> exp) & 0x7F; /* Fractional portion. */
dl = (exp << 7) | mant;
/*
* SUBTB
*
* "Divide" by step size multiplier.
*/
dln = dl - (y >> 2);
/*
* QUAN
*
* Obtain codword i for 'd'.
*/
i = quan(dln, table, size);
if (d < 0) /* take 1's complement of i */
return ((size << 1) + 1 - i);
else if (i == 0) /* take 1's complement of 0 */
return ((size << 1) + 1); /* new in 1988 */
else
return (i);
}
/*
* reconstruct()
*
* Returns reconstructed difference signal 'dq' obtained from
* codeword 'i' and quantization step size scale factor 'y'.
* Multiplication is performed in log base 2 domain as addition.
*/
static int reconstruct(
int sign, /* 0 for non-negative value */
int dqln, /* G.72x codeword */
int y) /* Step size multiplier */
{
int dql; /* Log of 'dq' magnitude */
int dex; /* Integer part of log */
int dqt;
int dq; /* Reconstructed difference signal sample */
dql = dqln + (y >> 2); /* ADDA */
if (dql < 0) {
#ifdef NOT_BLI
return (sign) ? -1 : 1;
#else
return (sign) ? -0x8000 : 0;
#endif
} else { /* ANTILOG */
dex = (dql >> 7) & 15;
dqt = 128 + (dql & 127);
#ifdef NOT_BLI
dq = ((dqt << 19) >> (14 - dex));
return (sign) ? -dq : dq;
#else
dq = (dqt << 7) >> (14 - dex);
return (sign) ? (dq - 0x8000) : dq;
#endif
}
}
/*
* update()
*
* updates the state variables for each output code
*/
static void update(
int code_size, /* distinguish 723_40 with others */
int y, /* quantizer step size */
int wi, /* scale factor multiplier */
int fi, /* for long/short term energies */
int dq, /* quantized prediction difference */
int sr, /* reconstructed signal */
int dqsez, /* difference from 2-pole predictor */
struct g726_state *state_ptr) /* coder state pointer */
{
int cnt;
int mag; /* Adaptive predictor, FLOAT A */
#ifndef NOT_BLI
int exp;
#endif
int a2p=0; /* LIMC */
int a1ul; /* UPA1 */
int pks1; /* UPA2 */
int fa1;
int tr; /* tone/transition detector */
int ylint, thr2, dqthr;
int ylfrac, thr1;
int pk0;
pk0 = (dqsez < 0) ? 1 : 0; /* needed in updating predictor poles */
#ifdef NOT_BLI
mag = abs(dq / 0x1000); /* prediction difference magnitude */
#else
mag = dq & 0x7FFF; /* prediction difference magnitude */
#endif
/* TRANS */
ylint = state_ptr->yl >> 15; /* exponent part of yl */
ylfrac = (state_ptr->yl >> 10) & 0x1F; /* fractional part of yl */
thr1 = (32 + ylfrac) << ylint; /* threshold */
thr2 = (ylint > 9) ? 31 << 10 : thr1; /* limit thr2 to 31 << 10 */
dqthr = (thr2 + (thr2 >> 1)) >> 1; /* dqthr = 0.75 * thr2 */
if (state_ptr->td == 0) /* signal supposed voice */
tr = 0;
else if (mag <= dqthr) /* supposed data, but small mag */
tr = 0; /* treated as voice */
else /* signal is data (modem) */
tr = 1;
/*
* Quantizer scale factor adaptation.
*/
/* FUNCTW & FILTD & DELAY */
/* update non-steady state step size multiplier */
state_ptr->yu = y + ((wi - y) >> 5);
/* LIMB */
if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
state_ptr->yu = 544;
else if (state_ptr->yu > 5120)
state_ptr->yu = 5120;
/* FILTE & DELAY */
/* update steady state step size multiplier */
state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
/*
* Adaptive predictor coefficients.
*/
if (tr == 1) { /* reset a's and b's for modem signal */
state_ptr->a[0] = 0;
state_ptr->a[1] = 0;
state_ptr->b[0] = 0;
state_ptr->b[1] = 0;
state_ptr->b[2] = 0;
state_ptr->b[3] = 0;
state_ptr->b[4] = 0;
state_ptr->b[5] = 0;
} else { /* update a's and b's */
pks1 = pk0 ^ state_ptr->pk[0]; /* UPA2 */
/* update predictor pole a[1] */
a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
if (dqsez != 0) {
fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
if (fa1 < -8191) /* a2p = function of fa1 */
a2p -= 0x100;
else if (fa1 > 8191)
a2p += 0xFF;
else
a2p += fa1 >> 5;
if (pk0 ^ state_ptr->pk[1])
/* LIMC */
if (a2p <= -12160)
a2p = -12288;
else if (a2p >= 12416)
a2p = 12288;
else
a2p -= 0x80;
else if (a2p <= -12416)
a2p = -12288;
else if (a2p >= 12160)
a2p = 12288;
else
a2p += 0x80;
}
/* TRIGB & DELAY */
state_ptr->a[1] = a2p;
/* UPA1 */
/* update predictor pole a[0] */
state_ptr->a[0] -= state_ptr->a[0] >> 8;
if (dqsez != 0) {
if (pks1 == 0)
state_ptr->a[0] += 192;
else
state_ptr->a[0] -= 192;
}
/* LIMD */
a1ul = 15360 - a2p;
if (state_ptr->a[0] < -a1ul)
state_ptr->a[0] = -a1ul;
else if (state_ptr->a[0] > a1ul)
state_ptr->a[0] = a1ul;
/* UPB : update predictor zeros b[6] */
for (cnt = 0; cnt < 6; cnt++) {
if (code_size == 5) /* for 40Kbps G.723 */
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;
else /* for G.721 and 24Kbps G.723 */
state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
if (mag)
{ /* XOR */
if ((dq ^ state_ptr->dq[cnt]) >= 0)
state_ptr->b[cnt] += 128;
else
state_ptr->b[cnt] -= 128;
}
}
}
for (cnt = 5; cnt > 0; cnt--)
state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
#ifdef NOT_BLI
state_ptr->dq[0] = dq;
#else
/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
if (mag == 0) {
state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0x20 - 0x400;
} else {
exp = ilog2(mag) + 1;
state_ptr->dq[0] = (dq >= 0) ?
(exp << 6) + ((mag << 6) >> exp) :
(exp << 6) + ((mag << 6) >> exp) - 0x400;
}
#endif
state_ptr->sr[1] = state_ptr->sr[0];
#ifdef NOT_BLI
state_ptr->sr[0] = sr;
#else
/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
if (sr == 0) {
state_ptr->sr[0] = 0x20;
} else if (sr > 0) {
exp = ilog2(sr) + 1;
state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
} else if (sr > -0x8000) {
mag = -sr;
exp = ilog2(mag) + 1;
state_ptr->sr[0] = (exp << 6) + ((mag << 6) >> exp) - 0x400;
} else
state_ptr->sr[0] = 0x20 - 0x400;
#endif
/* DELAY A */
state_ptr->pk[1] = state_ptr->pk[0];
state_ptr->pk[0] = pk0;
/* TONE */
if (tr == 1) /* this sample has been treated as data */
state_ptr->td = 0; /* next one will be treated as voice */
else if (a2p < -11776) /* small sample-to-sample correlation */
state_ptr->td = 1; /* signal may be data */
else /* signal is voice */
state_ptr->td = 0;
/*
* Adaptation speed control.
*/
state_ptr->dms += (fi - state_ptr->dms) >> 5; /* FILTA */
state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7); /* FILTB */
if (tr == 1)
state_ptr->ap = 256;
else if (y < 1536) /* SUBTC */
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else if (state_ptr->td == 1)
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
(state_ptr->dml >> 3))
state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
else
state_ptr->ap += (-state_ptr->ap) >> 4;
}
/*
* g726_decode()
*
* Description:
*
* Decodes a 4-bit code of G.726-32 encoded data of i and
* returns the resulting linear PCM, A-law or u-law value.
* return -1 for unknown out_coding value.
*/
static int g726_decode(int i, struct g726_state *state_ptr)
{
int sezi, sez, se; /* ACCUM */
int y; /* MIX */
int sr; /* ADDB */
int dq;
int dqsez;
i &= 0x0f; /* mask to get proper bits */
#ifdef NOT_BLI
sezi = predictor_zero(state_ptr);
sez = sezi;
se = sezi + predictor_pole(state_ptr); /* estimated signal */
#else
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
#endif
y = step_size(state_ptr); /* dynamic quantizer step size */
dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized diff. */
#ifdef NOT_BLI
sr = se + dq; /* reconst. signal */
dqsez = dq + sez; /* pole prediction diff. */
#else
sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
dqsez = sr - se + sez; /* pole prediction diff. */
#endif
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
#ifdef NOT_BLI
return (sr >> 10); /* sr was 26-bit dynamic range */
#else
return (sr << 2); /* sr was 14-bit dynamic range */
#endif
}
/*
* g726_encode()
*
* Encodes the input vale of linear PCM, A-law or u-law data sl and returns
* the resulting code. -1 is returned for unknown input coding value.
*/
static int g726_encode(int sl, struct g726_state *state_ptr)
{
int sezi, se, sez; /* ACCUM */
int d; /* SUBTA */
int sr; /* ADDB */
int y; /* MIX */
int dqsez; /* ADDC */
int dq, i;
#ifdef NOT_BLI
sl <<= 10; /* 26-bit dynamic range */
sezi = predictor_zero(state_ptr);
sez = sezi;
se = sezi + predictor_pole(state_ptr); /* estimated signal */
#else
sl >>= 2; /* 14-bit dynamic range */
sezi = predictor_zero(state_ptr);
sez = sezi >> 1;
se = (sezi + predictor_pole(state_ptr)) >> 1; /* estimated signal */
#endif
d = sl - se; /* estimation difference */
/* quantize the prediction difference */
y = step_size(state_ptr); /* quantizer step size */
#ifdef NOT_BLI
d /= 0x1000;
#endif
i = quantize(d, y, qtab_721, 7); /* i = G726 code */
dq = reconstruct(i & 8, _dqlntab[i], y); /* quantized est diff */
#ifdef NOT_BLI
sr = se + dq; /* reconst. signal */
dqsez = dq + sez; /* pole prediction diff. */
#else
sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconst. signal */
dqsez = sr - se + sez; /* pole prediction diff. */
#endif
update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
return (i);
}
/*
* Private workspace for translating signed linear signals to G726.
*/
struct g726_encoder_pvt
{
struct ast_frame f;
char offset[AST_FRIENDLY_OFFSET]; /* Space to build offset */
unsigned char outbuf[BUFFER_SIZE]; /* Encoded G726, two nibbles to a word */
unsigned char next_flag;
struct g726_state g726;
int tail;
};
/*
* Private workspace for translating G726 signals to signed linear.
*/
struct g726_decoder_pvt
{
struct ast_frame f;
char offset[AST_FRIENDLY_OFFSET]; /* Space to build offset */
short outbuf[BUFFER_SIZE]; /* Decoded signed linear values */
struct g726_state g726;
int tail;
plc_state_t plc;
};
/*
* G726ToLin_New
* Create a new instance of g726_decoder_pvt.
*
* Results:
* Returns a pointer to the new instance.
*
* Side effects:
* None.
*/
static struct ast_translator_pvt *
g726tolin_new (void)
{
struct g726_decoder_pvt *tmp;
tmp = malloc (sizeof (struct g726_decoder_pvt));
if (tmp)
{
memset(tmp, 0, sizeof(*tmp));
tmp->tail = 0;
plc_init(&tmp->plc);
localusecnt++;
g726_init_state(&tmp->g726);
ast_update_use_count ();
}
return (struct ast_translator_pvt *) tmp;
}
/*
* LinToG726_New
* Create a new instance of g726_encoder_pvt.
*
* Results:
* Returns a pointer to the new instance.
*
* Side effects:
* None.
*/
static struct ast_translator_pvt *
lintog726_new (void)
{
struct g726_encoder_pvt *tmp;
tmp = malloc (sizeof (struct g726_encoder_pvt));
if (tmp)
{
memset(tmp, 0, sizeof(*tmp));
localusecnt++;
tmp->tail = 0;
g726_init_state(&tmp->g726);
ast_update_use_count ();
}
return (struct ast_translator_pvt *) tmp;
}
/*
* G726ToLin_FrameIn
* Fill an input buffer with packed 4-bit G726 values if there is room
* left.
*
* Results:
* Foo
*
* Side effects:
* tmp->tail is the number of packed values in the buffer.
*/
static int
g726tolin_framein (struct ast_translator_pvt *pvt, struct ast_frame *f)
{
struct g726_decoder_pvt *tmp = (struct g726_decoder_pvt *) pvt;
unsigned char *b;
int x;
if(f->datalen == 0) { /* perform PLC with nominal framesize of 20ms/160 samples */
if((tmp->tail + 160) > BUFFER_SIZE) {
ast_log(LOG_WARNING, "Out of buffer space\n");
return -1;
}
if(useplc) {
plc_fillin(&tmp->plc, tmp->outbuf+tmp->tail, 160);
tmp->tail += 160;
}
return 0;
}
b = f->data;
for (x=0;x<f->datalen;x++) {
if (tmp->tail >= BUFFER_SIZE) {
ast_log(LOG_WARNING, "Out of buffer space!\n");
return -1;
}
tmp->outbuf[tmp->tail++] = g726_decode((b[x] >> 4) & 0xf, &tmp->g726);
if (tmp->tail >= BUFFER_SIZE) {
ast_log(LOG_WARNING, "Out of buffer space!\n");
return -1;
}
tmp->outbuf[tmp->tail++] = g726_decode(b[x] & 0x0f, &tmp->g726);
}
if(useplc) plc_rx(&tmp->plc, tmp->outbuf+tmp->tail-f->datalen*2, f->datalen*2);
return 0;
}
/*
* G726ToLin_FrameOut
* Convert 4-bit G726 encoded signals to 16-bit signed linear.
*
* Results:
* Converted signals are placed in tmp->f.data, tmp->f.datalen
* and tmp->f.samples are calculated.
*
* Side effects:
* None.
*/
static struct ast_frame *
g726tolin_frameout (struct ast_translator_pvt *pvt)
{
struct g726_decoder_pvt *tmp = (struct g726_decoder_pvt *) pvt;
if (!tmp->tail)
return NULL;
tmp->f.frametype = AST_FRAME_VOICE;
tmp->f.subclass = AST_FORMAT_SLINEAR;
tmp->f.datalen = tmp->tail * 2;
tmp->f.samples = tmp->tail;
tmp->f.mallocd = 0;
tmp->f.offset = AST_FRIENDLY_OFFSET;
tmp->f.src = __PRETTY_FUNCTION__;
tmp->f.data = tmp->outbuf;
tmp->tail = 0;
return &tmp->f;
}
/*
* LinToG726_FrameIn
* Fill an input buffer with 16-bit signed linear PCM values.
*
* Results:
* None.
*
* Side effects:
* tmp->tail is number of signal values in the input buffer.
*/
static int
lintog726_framein (struct ast_translator_pvt *pvt, struct ast_frame *f)
{
struct g726_encoder_pvt *tmp = (struct g726_encoder_pvt *) pvt;
short *s = f->data;
int samples = f->datalen / 2;
int x;
for (x=0;x<samples;x++) {
if (tmp->next_flag & 0x80) {
if (tmp->tail >= BUFFER_SIZE) {
ast_log(LOG_WARNING, "Out of buffer space\n");
return -1;
}
tmp->outbuf[tmp->tail++] = ((tmp->next_flag & 0xf)<< 4) | g726_encode(s[x], &tmp->g726);
tmp->next_flag = 0;
} else {
tmp->next_flag = 0x80 | g726_encode(s[x], &tmp->g726);
}
}
return 0;
}
/*
* LinToG726_FrameOut
* Convert a buffer of raw 16-bit signed linear PCM to a buffer
* of 4-bit G726 packed two to a byte (Big Endian).
*
* Results:
* Foo
*
* Side effects:
* Leftover inbuf data gets packed, tail gets updated.
*/
static struct ast_frame *
lintog726_frameout (struct ast_translator_pvt *pvt)
{
struct g726_encoder_pvt *tmp = (struct g726_encoder_pvt *) pvt;
if (!tmp->tail)
return NULL;
tmp->f.frametype = AST_FRAME_VOICE;
tmp->f.subclass = AST_FORMAT_G726;
tmp->f.samples = tmp->tail * 2;
tmp->f.mallocd = 0;
tmp->f.offset = AST_FRIENDLY_OFFSET;
tmp->f.src = __PRETTY_FUNCTION__;
tmp->f.data = tmp->outbuf;
tmp->f.datalen = tmp->tail;
tmp->tail = 0;
return &tmp->f;
}
/*
* G726ToLin_Sample
*/
static struct ast_frame *
g726tolin_sample (void)
{
static struct ast_frame f;
f.frametype = AST_FRAME_VOICE;
f.subclass = AST_FORMAT_G726;
f.datalen = sizeof (g726_slin_ex);
f.samples = sizeof(g726_slin_ex) * 2;
f.mallocd = 0;
f.offset = 0;
f.src = __PRETTY_FUNCTION__;
f.data = g726_slin_ex;
return &f;
}
/*
* LinToG726_Sample
*/
static struct ast_frame *
lintog726_sample (void)
{
static struct ast_frame f;
f.frametype = AST_FRAME_VOICE;
f.subclass = AST_FORMAT_SLINEAR;
f.datalen = sizeof (slin_g726_ex);
/* Assume 8000 Hz */
f.samples = sizeof (slin_g726_ex) / 2;
f.mallocd = 0;
f.offset = 0;
f.src = __PRETTY_FUNCTION__;
f.data = slin_g726_ex;
return &f;
}
/*
* G726_Destroy
* Destroys a private workspace.
*
* Results:
* It's gone!
*
* Side effects:
* None.
*/
static void
g726_destroy (struct ast_translator_pvt *pvt)
{
free (pvt);
localusecnt--;
ast_update_use_count ();
}
/*
* The complete translator for G726ToLin.
*/
static struct ast_translator g726tolin = {
"g726tolin",
AST_FORMAT_G726,
AST_FORMAT_SLINEAR,
g726tolin_new,
g726tolin_framein,
g726tolin_frameout,
g726_destroy,
/* NULL */
g726tolin_sample
};
/*
* The complete translator for LinToG726.
*/
static struct ast_translator lintog726 = {
"lintog726",
AST_FORMAT_SLINEAR,
AST_FORMAT_G726,
lintog726_new,
lintog726_framein,
lintog726_frameout,
g726_destroy,
/* NULL */
lintog726_sample
};
static void
parse_config(void)
{
struct ast_config *cfg;
struct ast_variable *var;
if ((cfg = ast_config_load("codecs.conf"))) {
if ((var = ast_variable_browse(cfg, "plc"))) {
while (var) {
if (!strcasecmp(var->name, "genericplc")) {
useplc = ast_true(var->value) ? 1 : 0;
if (option_verbose > 2)
ast_verbose(VERBOSE_PREFIX_3 "codec_g726: %susing generic PLC\n", useplc ? "" : "not ");
}
var = var->next;
}
}
ast_config_destroy(cfg);
}
}
int
reload(void)
{
parse_config();
return 0;
}
int
unload_module (void)
{
int res;
ast_mutex_lock (&localuser_lock);
res = ast_unregister_translator (&lintog726);
if (!res)
res = ast_unregister_translator (&g726tolin);
if (localusecnt)
res = -1;
ast_mutex_unlock (&localuser_lock);
return res;
}
int
load_module (void)
{
int res;
parse_config();
res = ast_register_translator (&g726tolin);
if (!res)
res = ast_register_translator (&lintog726);
else
ast_unregister_translator (&g726tolin);
return res;
}
/*
* Return a description of this module.
*/
char *
description (void)
{
return tdesc;
}
int
usecount (void)
{
int res;
STANDARD_USECOUNT (res);
return res;
}
char *
key ()
{
return ASTERISK_GPL_KEY;
}
|