1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
|
/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 1999 - 2005, Digium, Inc.
*
* Mark Spencer <markster@digium.com>
*
* Goertzel routines are borrowed from Steve Underwood's tremendous work on the
* DTMF detector.
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
*
* \brief Convenience Signal Processing routines
*
* \author Mark Spencer <markster@digium.com>
* \author Steve Underwood <steveu@coppice.org>
*/
/* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
/*
tone_detect.c - General telephony tone detection, and specific
detection of DTMF.
Copyright (C) 2001 Steve Underwood <steveu@coppice.org>
Despite my general liking of the GPL, I place this code in the
public domain for the benefit of all mankind - even the slimy
ones who might try to proprietize my work and use it to my
detriment.
*/
/*** MODULEINFO
<support_level>core</support_level>
***/
#include "asterisk.h"
ASTERISK_FILE_VERSION(__FILE__, "$Revision: 413587 $")
#include <math.h>
#include "asterisk/frame.h"
#include "asterisk/channel.h"
#include "asterisk/dsp.h"
#include "asterisk/ulaw.h"
#include "asterisk/alaw.h"
#include "asterisk/utils.h"
#include "asterisk/options.h"
#include "asterisk/config.h"
/*! Number of goertzels for progress detect */
enum gsamp_size {
GSAMP_SIZE_NA = 183, /*!< North America - 350, 440, 480, 620, 950, 1400, 1800 Hz */
GSAMP_SIZE_CR = 188, /*!< Costa Rica, Brazil - Only care about 425 Hz */
GSAMP_SIZE_UK = 160 /*!< UK disconnect goertzel feed - should trigger 400hz */
};
enum prog_mode {
PROG_MODE_NA = 0,
PROG_MODE_CR,
PROG_MODE_UK
};
enum freq_index {
/*! For US modes { */
HZ_350 = 0,
HZ_440,
HZ_480,
HZ_620,
HZ_950,
HZ_1400,
HZ_1800, /*!< } */
/*! For CR/BR modes */
HZ_425 = 0,
/*! For UK mode */
HZ_350UK = 0,
HZ_400UK,
HZ_440UK
};
static struct progalias {
char *name;
enum prog_mode mode;
} aliases[] = {
{ "us", PROG_MODE_NA },
{ "ca", PROG_MODE_NA },
{ "cr", PROG_MODE_CR },
{ "br", PROG_MODE_CR },
{ "uk", PROG_MODE_UK },
};
static struct progress {
enum gsamp_size size;
int freqs[7];
} modes[] = {
{ GSAMP_SIZE_NA, { 350, 440, 480, 620, 950, 1400, 1800 } }, /*!< North America */
{ GSAMP_SIZE_CR, { 425 } }, /*!< Costa Rica, Brazil */
{ GSAMP_SIZE_UK, { 350, 400, 440 } }, /*!< UK */
};
/*!\brief This value is the minimum threshold, calculated by averaging all
* of the samples within a frame, for which a frame is determined to either
* be silence (below the threshold) or noise (above the threshold). Please
* note that while the default threshold is an even exponent of 2, there is
* no requirement that it be so. The threshold will accept any value between
* 0 and 32767.
*/
#define DEFAULT_THRESHOLD 512
enum busy_detect {
BUSY_PERCENT = 10, /*!< The percentage difference between the two last silence periods */
BUSY_PAT_PERCENT = 7, /*!< The percentage difference between measured and actual pattern */
BUSY_THRESHOLD = 100, /*!< Max number of ms difference between max and min times in busy */
BUSY_MIN = 75, /*!< Busy must be at least 80 ms in half-cadence */
BUSY_MAX =3100 /*!< Busy can't be longer than 3100 ms in half-cadence */
};
/*! Remember last 15 units */
#define DSP_HISTORY 15
#define TONE_THRESH 10.0 /*!< How much louder the tone should be than channel energy */
#define TONE_MIN_THRESH 1e8 /*!< How much tone there should be at least to attempt */
/*! All THRESH_XXX values are in GSAMP_SIZE chunks (us = 22ms) */
enum gsamp_thresh {
THRESH_RING = 8, /*!< Need at least 150ms ring to accept */
THRESH_TALK = 2, /*!< Talk detection does not work continuously */
THRESH_BUSY = 4, /*!< Need at least 80ms to accept */
THRESH_CONGESTION = 4, /*!< Need at least 80ms to accept */
THRESH_HANGUP = 60, /*!< Need at least 1300ms to accept hangup */
THRESH_RING2ANSWER = 300 /*!< Timeout from start of ring to answer (about 6600 ms) */
};
#define MAX_DTMF_DIGITS 128
/* Basic DTMF (AT&T) specs:
*
* Minimum tone on = 40ms
* Minimum tone off = 50ms
* Maximum digit rate = 10 per second
* Normal twist <= 8dB accepted
* Reverse twist <= 4dB accepted
* S/N >= 15dB will detect OK
* Attenuation <= 26dB will detect OK
* Frequency tolerance +- 1.5% will detect, +-3.5% will reject
*/
#define DTMF_THRESHOLD 8.0e7
#define FAX_THRESHOLD 8.0e7
#define FAX_2ND_HARMONIC 2.0 /* 4dB */
#define DEF_DTMF_NORMAL_TWIST 6.31 /* 8.0dB */
#define DEF_RELAX_DTMF_NORMAL_TWIST 6.31 /* 8.0dB */
#ifdef RADIO_RELAX
#define DEF_DTMF_REVERSE_TWIST 2.51 /* 4.01dB */
#define DEF_RELAX_DTMF_REVERSE_TWIST 6.61 /* 8.2dB */
#else
#define DEF_DTMF_REVERSE_TWIST 2.51 /* 4.01dB */
#define DEF_RELAX_DTMF_REVERSE_TWIST 3.98 /* 6.0dB */
#endif
#define DTMF_RELATIVE_PEAK_ROW 6.3 /* 8dB */
#define DTMF_RELATIVE_PEAK_COL 6.3 /* 8dB */
#define DTMF_2ND_HARMONIC_ROW (relax ? 1.7 : 2.5) /* 4dB normal */
#define DTMF_2ND_HARMONIC_COL 63.1 /* 18dB */
#define DTMF_TO_TOTAL_ENERGY 42.0
#define BELL_MF_THRESHOLD 1.6e9
#define BELL_MF_TWIST 4.0 /* 6dB */
#define BELL_MF_RELATIVE_PEAK 12.6 /* 11dB */
#if defined(BUSYDETECT_TONEONLY) && defined(BUSYDETECT_COMPARE_TONE_AND_SILENCE)
#error You cant use BUSYDETECT_TONEONLY together with BUSYDETECT_COMPARE_TONE_AND_SILENCE
#endif
/* The CNG signal consists of the transmission of 1100 Hz for 1/2 second,
* followed by a 3 second silent (2100 Hz OFF) period.
*/
#define FAX_TONE_CNG_FREQ 1100
#define FAX_TONE_CNG_DURATION 500
#define FAX_TONE_CNG_DB 16
/* This signal may be sent by the Terminating FAX machine anywhere between
* 1.8 to 2.5 seconds AFTER answering the call. The CED signal consists
* of a 2100 Hz tone that is from 2.6 to 4 seconds in duration.
*/
#define FAX_TONE_CED_FREQ 2100
#define FAX_TONE_CED_DURATION 2600
#define FAX_TONE_CED_DB 16
#define DEFAULT_SAMPLE_RATE 8000
/* MF goertzel size */
#define MF_GSIZE 120
/* DTMF goertzel size */
#define DTMF_GSIZE 102
/* How many successive hits needed to consider begin of a digit
* IE. Override with dtmf_hits_to_begin=4 in dsp.conf
*/
#define DEF_DTMF_HITS_TO_BEGIN 2
/* How many successive misses needed to consider end of a digit
* IE. Override with dtmf_misses_to_end=4 in dsp.conf
*/
#define DEF_DTMF_MISSES_TO_END 3
/*!
* \brief The default silence threshold we will use if an alternate
* configured value is not present or is invalid.
*/
static const int DEFAULT_SILENCE_THRESHOLD = 256;
#define CONFIG_FILE_NAME "dsp.conf"
typedef struct {
int v2;
int v3;
int chunky;
int fac;
int samples;
} goertzel_state_t;
typedef struct {
int value;
int power;
} goertzel_result_t;
typedef struct
{
int freq;
int block_size;
int squelch; /* Remove (squelch) tone */
goertzel_state_t tone;
float energy; /* Accumulated energy of the current block */
int samples_pending; /* Samples remain to complete the current block */
int mute_samples; /* How many additional samples needs to be muted to suppress already detected tone */
int hits_required; /* How many successive blocks with tone we are looking for */
float threshold; /* Energy of the tone relative to energy from all other signals to consider a hit */
int hit_count; /* How many successive blocks we consider tone present */
int last_hit; /* Indicates if the last processed block was a hit */
} tone_detect_state_t;
typedef struct
{
goertzel_state_t row_out[4];
goertzel_state_t col_out[4];
int hits; /* How many successive hits we have seen already */
int misses; /* How many successive misses we have seen already */
int lasthit;
int current_hit;
float energy;
int current_sample;
int mute_samples;
} dtmf_detect_state_t;
typedef struct
{
goertzel_state_t tone_out[6];
int current_hit;
int hits[5];
int current_sample;
int mute_samples;
} mf_detect_state_t;
typedef struct
{
char digits[MAX_DTMF_DIGITS + 1];
int digitlen[MAX_DTMF_DIGITS + 1];
int current_digits;
int detected_digits;
int lost_digits;
union {
dtmf_detect_state_t dtmf;
mf_detect_state_t mf;
} td;
} digit_detect_state_t;
static const float dtmf_row[] = {
697.0, 770.0, 852.0, 941.0
};
static const float dtmf_col[] = {
1209.0, 1336.0, 1477.0, 1633.0
};
static const float mf_tones[] = {
700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
};
static const char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
static const char bell_mf_positions[] = "1247C-358A--69*---0B----#";
static int thresholds[THRESHOLD_MAX];
static float dtmf_normal_twist; /* AT&T = 8dB */
static float dtmf_reverse_twist; /* AT&T = 4dB */
static float relax_dtmf_normal_twist; /* AT&T = 8dB */
static float relax_dtmf_reverse_twist; /* AT&T = 6dB */
static int dtmf_hits_to_begin; /* How many successive hits needed to consider begin of a digit */
static int dtmf_misses_to_end; /* How many successive misses needed to consider end of a digit */
static inline void goertzel_sample(goertzel_state_t *s, short sample)
{
int v1;
v1 = s->v2;
s->v2 = s->v3;
s->v3 = (s->fac * s->v2) >> 15;
s->v3 = s->v3 - v1 + (sample >> s->chunky);
if (abs(s->v3) > 32768) {
s->chunky++;
s->v3 = s->v3 >> 1;
s->v2 = s->v2 >> 1;
}
}
static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
{
int i;
for (i = 0; i < count; i++) {
goertzel_sample(s, samps[i]);
}
}
static inline float goertzel_result(goertzel_state_t *s)
{
goertzel_result_t r;
r.value = (s->v3 * s->v3) + (s->v2 * s->v2);
r.value -= ((s->v2 * s->v3) >> 15) * s->fac;
r.power = s->chunky * 2;
return (float)r.value * (float)(1 << r.power);
}
static inline void goertzel_init(goertzel_state_t *s, float freq, int samples, unsigned int sample_rate)
{
s->v2 = s->v3 = s->chunky = 0.0;
s->fac = (int)(32768.0 * 2.0 * cos(2.0 * M_PI * freq / sample_rate));
s->samples = samples;
}
static inline void goertzel_reset(goertzel_state_t *s)
{
s->v2 = s->v3 = s->chunky = 0.0;
}
typedef struct {
int start;
int end;
} fragment_t;
/* Note on tone suppression (squelching). Individual detectors (DTMF/MF/generic tone)
* report fragments of the frame in which detected tone resides and which needs
* to be "muted" in order to suppress the tone. To mark fragment for muting,
* detectors call mute_fragment passing fragment_t there. Multiple fragments
* can be marked and ast_dsp_process later will mute all of them.
*
* Note: When tone starts in the middle of a Goertzel block, it won't be properly
* detected in that block, only in the next. If we only mute the next block
* where tone is actually detected, the user will still hear beginning
* of the tone in preceeding block. This is why we usually want to mute some amount
* of samples preceeding and following the block where tone was detected.
*/
struct ast_dsp {
struct ast_frame f;
int threshold;
int totalsilence;
int totalnoise;
int features;
int ringtimeout;
int busymaybe;
int busycount;
struct ast_dsp_busy_pattern busy_cadence;
int historicnoise[DSP_HISTORY];
int historicsilence[DSP_HISTORY];
goertzel_state_t freqs[7];
int freqcount;
int gsamps;
enum gsamp_size gsamp_size;
enum prog_mode progmode;
int tstate;
int tcount;
int digitmode;
int faxmode;
int dtmf_began;
int display_inband_dtmf_warning;
float genergy;
int mute_fragments;
unsigned int sample_rate;
fragment_t mute_data[5];
digit_detect_state_t digit_state;
tone_detect_state_t cng_tone_state;
tone_detect_state_t ced_tone_state;
};
static void mute_fragment(struct ast_dsp *dsp, fragment_t *fragment)
{
if (dsp->mute_fragments >= ARRAY_LEN(dsp->mute_data)) {
ast_log(LOG_ERROR, "Too many fragments to mute. Ignoring\n");
return;
}
dsp->mute_data[dsp->mute_fragments++] = *fragment;
}
static void ast_tone_detect_init(tone_detect_state_t *s, int freq, int duration, int amp, unsigned int sample_rate)
{
int duration_samples;
float x;
int periods_in_block;
s->freq = freq;
/* Desired tone duration in samples */
duration_samples = duration * sample_rate / 1000;
/* We want to allow 10% deviation of tone duration */
duration_samples = duration_samples * 9 / 10;
/* If we want to remove tone, it is important to have block size not
to exceed frame size. Otherwise by the moment tone is detected it is too late
to squelch it from previous frames. Block size is 20ms at the given sample rate.*/
s->block_size = (20 * sample_rate) / 1000;
periods_in_block = s->block_size * freq / sample_rate;
/* Make sure we will have at least 5 periods at target frequency for analisys.
This may make block larger than expected packet and will make squelching impossible
but at least we will be detecting the tone */
if (periods_in_block < 5) {
periods_in_block = 5;
}
/* Now calculate final block size. It will contain integer number of periods */
s->block_size = periods_in_block * sample_rate / freq;
/* tone_detect is currently only used to detect fax tones and we
do not need squelching the fax tones */
s->squelch = 0;
/* Account for the first and the last block to be incomplete
and thus no tone will be detected in them */
s->hits_required = (duration_samples - (s->block_size - 1)) / s->block_size;
goertzel_init(&s->tone, freq, s->block_size, sample_rate);
s->samples_pending = s->block_size;
s->hit_count = 0;
s->last_hit = 0;
s->energy = 0.0;
/* We want tone energy to be amp decibels above the rest of the signal (the noise).
According to Parseval's theorem the energy computed in time domain equals to energy
computed in frequency domain. So subtracting energy in the frequency domain (Goertzel result)
from the energy in the time domain we will get energy of the remaining signal (without the tone
we are detecting). We will be checking that
10*log(Ew / (Et - Ew)) > amp
Calculate threshold so that we will be actually checking
Ew > Et * threshold
*/
x = pow(10.0, amp / 10.0);
s->threshold = x / (x + 1);
ast_debug(1, "Setup tone %d Hz, %d ms, block_size=%d, hits_required=%d\n", freq, duration, s->block_size, s->hits_required);
}
static void ast_fax_detect_init(struct ast_dsp *s)
{
ast_tone_detect_init(&s->cng_tone_state, FAX_TONE_CNG_FREQ, FAX_TONE_CNG_DURATION, FAX_TONE_CNG_DB, s->sample_rate);
ast_tone_detect_init(&s->ced_tone_state, FAX_TONE_CED_FREQ, FAX_TONE_CED_DURATION, FAX_TONE_CED_DB, s->sample_rate);
if (s->faxmode & DSP_FAXMODE_DETECT_SQUELCH) {
s->cng_tone_state.squelch = 1;
s->ced_tone_state.squelch = 1;
}
}
static void ast_dtmf_detect_init (dtmf_detect_state_t *s, unsigned int sample_rate)
{
int i;
s->lasthit = 0;
s->current_hit = 0;
for (i = 0; i < 4; i++) {
goertzel_init(&s->row_out[i], dtmf_row[i], DTMF_GSIZE, sample_rate);
goertzel_init(&s->col_out[i], dtmf_col[i], DTMF_GSIZE, sample_rate);
s->energy = 0.0;
}
s->current_sample = 0;
s->hits = 0;
s->misses = 0;
}
static void ast_mf_detect_init (mf_detect_state_t *s, unsigned int sample_rate)
{
int i;
s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
for (i = 0; i < 6; i++) {
goertzel_init (&s->tone_out[i], mf_tones[i], MF_GSIZE, sample_rate);
}
s->current_sample = 0;
s->current_hit = 0;
}
static void ast_digit_detect_init(digit_detect_state_t *s, int mf, unsigned int sample_rate)
{
s->current_digits = 0;
s->detected_digits = 0;
s->lost_digits = 0;
s->digits[0] = '\0';
if (mf) {
ast_mf_detect_init(&s->td.mf, sample_rate);
} else {
ast_dtmf_detect_init(&s->td.dtmf, sample_rate);
}
}
static int tone_detect(struct ast_dsp *dsp, tone_detect_state_t *s, int16_t *amp, int samples)
{
float tone_energy;
int i;
int hit = 0;
int limit;
int res = 0;
int16_t *ptr;
short samp;
int start, end;
fragment_t mute = {0, 0};
if (s->squelch && s->mute_samples > 0) {
mute.end = (s->mute_samples < samples) ? s->mute_samples : samples;
s->mute_samples -= mute.end;
}
for (start = 0; start < samples; start = end) {
/* Process in blocks. */
limit = samples - start;
if (limit > s->samples_pending) {
limit = s->samples_pending;
}
end = start + limit;
for (i = limit, ptr = amp ; i > 0; i--, ptr++) {
samp = *ptr;
/* signed 32 bit int should be enough to square any possible signed 16 bit value */
s->energy += (int32_t) samp * (int32_t) samp;
goertzel_sample(&s->tone, samp);
}
s->samples_pending -= limit;
if (s->samples_pending) {
/* Finished incomplete (last) block */
break;
}
tone_energy = goertzel_result(&s->tone);
/* Scale to make comparable */
tone_energy *= 2.0;
s->energy *= s->block_size;
ast_debug(10, "tone %d, Ew=%.2E, Et=%.2E, s/n=%10.2f\n", s->freq, tone_energy, s->energy, tone_energy / (s->energy - tone_energy));
hit = 0;
if (tone_energy > s->energy * s->threshold) {
ast_debug(10, "Hit! count=%d\n", s->hit_count);
hit = 1;
}
if (s->hit_count) {
s->hit_count++;
}
if (hit == s->last_hit) {
if (!hit) {
/* Two successive misses. Tone ended */
s->hit_count = 0;
} else if (!s->hit_count) {
s->hit_count++;
}
}
if (s->hit_count == s->hits_required) {
ast_debug(1, "%d Hz done detected\n", s->freq);
res = 1;
}
s->last_hit = hit;
/* If we had a hit in this block, include it into mute fragment */
if (s->squelch && hit) {
if (mute.end < start - s->block_size) {
/* There is a gap between fragments */
mute_fragment(dsp, &mute);
mute.start = (start > s->block_size) ? (start - s->block_size) : 0;
}
mute.end = end + s->block_size;
}
/* Reinitialise the detector for the next block */
/* Reset for the next block */
goertzel_reset(&s->tone);
/* Advance to the next block */
s->energy = 0.0;
s->samples_pending = s->block_size;
amp += limit;
}
if (s->squelch && mute.end) {
if (mute.end > samples) {
s->mute_samples = mute.end - samples;
mute.end = samples;
}
mute_fragment(dsp, &mute);
}
return res;
}
static void store_digit(digit_detect_state_t *s, char digit)
{
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digitlen[s->current_digits] = 0;
s->digits[s->current_digits++] = digit;
s->digits[s->current_digits] = '\0';
} else {
ast_log(LOG_WARNING, "Digit lost due to full buffer\n");
s->lost_digits++;
}
}
static int dtmf_detect(struct ast_dsp *dsp, digit_detect_state_t *s, int16_t amp[], int samples, int squelch, int relax)
{
float row_energy[4];
float col_energy[4];
int i;
int j;
int sample;
short samp;
int best_row;
int best_col;
int hit;
int limit;
fragment_t mute = {0, 0};
if (squelch && s->td.dtmf.mute_samples > 0) {
mute.end = (s->td.dtmf.mute_samples < samples) ? s->td.dtmf.mute_samples : samples;
s->td.dtmf.mute_samples -= mute.end;
}
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* DTMF_GSIZE is optimised to meet the DTMF specs. */
if ((samples - sample) >= (DTMF_GSIZE - s->td.dtmf.current_sample)) {
limit = sample + (DTMF_GSIZE - s->td.dtmf.current_sample);
} else {
limit = samples;
}
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
samp = amp[j];
s->td.dtmf.energy += (int32_t) samp * (int32_t) samp;
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
goertzel_sample(s->td.dtmf.row_out, samp);
goertzel_sample(s->td.dtmf.col_out, samp);
goertzel_sample(s->td.dtmf.row_out + 1, samp);
goertzel_sample(s->td.dtmf.col_out + 1, samp);
goertzel_sample(s->td.dtmf.row_out + 2, samp);
goertzel_sample(s->td.dtmf.col_out + 2, samp);
goertzel_sample(s->td.dtmf.row_out + 3, samp);
goertzel_sample(s->td.dtmf.col_out + 3, samp);
}
s->td.dtmf.current_sample += (limit - sample);
if (s->td.dtmf.current_sample < DTMF_GSIZE) {
continue;
}
/* We are at the end of a DTMF detection block */
/* Find the peak row and the peak column */
row_energy[0] = goertzel_result (&s->td.dtmf.row_out[0]);
col_energy[0] = goertzel_result (&s->td.dtmf.col_out[0]);
for (best_row = best_col = 0, i = 1; i < 4; i++) {
row_energy[i] = goertzel_result (&s->td.dtmf.row_out[i]);
if (row_energy[i] > row_energy[best_row]) {
best_row = i;
}
col_energy[i] = goertzel_result (&s->td.dtmf.col_out[i]);
if (col_energy[i] > col_energy[best_col]) {
best_col = i;
}
}
hit = 0;
/* Basic signal level test and the twist test */
if (row_energy[best_row] >= DTMF_THRESHOLD &&
col_energy[best_col] >= DTMF_THRESHOLD &&
col_energy[best_col] < row_energy[best_row] * (relax ? relax_dtmf_reverse_twist : dtmf_reverse_twist) &&
row_energy[best_row] < col_energy[best_col] * (relax ? relax_dtmf_normal_twist : dtmf_normal_twist)) {
/* Relative peak test */
for (i = 0; i < 4; i++) {
if ((i != best_col &&
col_energy[i] * DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
(i != best_row
&& row_energy[i] * DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
break;
}
}
/* ... and fraction of total energy test */
if (i >= 4 &&
(row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY * s->td.dtmf.energy) {
/* Got a hit */
hit = dtmf_positions[(best_row << 2) + best_col];
}
}
/*
* Adapted from ETSI ES 201 235-3 V1.3.1 (2006-03)
* (40ms reference is tunable with hits_to_begin and misses_to_end)
* each hit/miss is 12.75ms with DTMF_GSIZE at 102
*
* Character recognition: When not DRC *(1) and then
* Shall exist VSC > 40 ms (hits_to_begin)
* May exist 20 ms <= VSC <= 40 ms
* Shall not exist VSC < 20 ms
*
* Character recognition: When DRC and then
* Shall cease Not VSC > 40 ms (misses_to_end)
* May cease 20 ms >= Not VSC >= 40 ms
* Shall not cease Not VSC < 20 ms
*
* *(1) or optionally a different digit recognition condition
*
* Legend: VSC The continuous existence of a valid signal condition.
* Not VSC The continuous non-existence of valid signal condition.
* DRC The existence of digit recognition condition.
* Not DRC The non-existence of digit recognition condition.
*/
/*
* Example: hits_to_begin=2 misses_to_end=3
* -------A last_hit=A hits=0&1
* ------AA hits=2 current_hit=A misses=0 BEGIN A
* -----AA- misses=1 last_hit=' ' hits=0
* ----AA-- misses=2
* ---AA--- misses=3 current_hit=' ' END A
* --AA---B last_hit=B hits=0&1
* -AA---BC last_hit=C hits=0&1
* AA---BCC hits=2 current_hit=C misses=0 BEGIN C
* A---BCC- misses=1 last_hit=' ' hits=0
* ---BCC-C misses=0 last_hit=C hits=0&1
* --BCC-CC misses=0
*
* Example: hits_to_begin=3 misses_to_end=2
* -------A last_hit=A hits=0&1
* ------AA hits=2
* -----AAA hits=3 current_hit=A misses=0 BEGIN A
* ----AAAB misses=1 last_hit=B hits=0&1
* ---AAABB misses=2 current_hit=' ' hits=2 END A
* --AAABBB hits=3 current_hit=B misses=0 BEGIN B
* -AAABBBB misses=0
*
* Example: hits_to_begin=2 misses_to_end=2
* -------A last_hit=A hits=0&1
* ------AA hits=2 current_hit=A misses=0 BEGIN A
* -----AAB misses=1 hits=0&1
* ----AABB misses=2 current_hit=' ' hits=2 current_hit=B misses=0 BEGIN B
* ---AABBB misses=0
*/
if (s->td.dtmf.current_hit) {
/* We are in the middle of a digit already */
if (hit != s->td.dtmf.current_hit) {
s->td.dtmf.misses++;
if (s->td.dtmf.misses == dtmf_misses_to_end) {
/* There were enough misses to consider digit ended */
s->td.dtmf.current_hit = 0;
}
} else {
s->td.dtmf.misses = 0;
/* Current hit was same as last, so increment digit duration (of last digit) */
s->digitlen[s->current_digits - 1] += DTMF_GSIZE;
}
}
/* Look for a start of a new digit no matter if we are already in the middle of some
digit or not. This is because hits_to_begin may be smaller than misses_to_end
and we may find begin of new digit before we consider last one ended. */
if (hit != s->td.dtmf.lasthit) {
s->td.dtmf.lasthit = hit;
s->td.dtmf.hits = 0;
}
if (hit && hit != s->td.dtmf.current_hit) {
s->td.dtmf.hits++;
if (s->td.dtmf.hits == dtmf_hits_to_begin) {
store_digit(s, hit);
s->digitlen[s->current_digits - 1] = dtmf_hits_to_begin * DTMF_GSIZE;
s->td.dtmf.current_hit = hit;
s->td.dtmf.misses = 0;
}
}
/* If we had a hit in this block, include it into mute fragment */
if (squelch && hit) {
if (mute.end < sample - DTMF_GSIZE) {
/* There is a gap between fragments */
mute_fragment(dsp, &mute);
mute.start = (sample > DTMF_GSIZE) ? (sample - DTMF_GSIZE) : 0;
}
mute.end = limit + DTMF_GSIZE;
}
/* Reinitialise the detector for the next block */
for (i = 0; i < 4; i++) {
goertzel_reset(&s->td.dtmf.row_out[i]);
goertzel_reset(&s->td.dtmf.col_out[i]);
}
s->td.dtmf.energy = 0.0;
s->td.dtmf.current_sample = 0;
}
if (squelch && mute.end) {
if (mute.end > samples) {
s->td.dtmf.mute_samples = mute.end - samples;
mute.end = samples;
}
mute_fragment(dsp, &mute);
}
return (s->td.dtmf.current_hit); /* return the debounced hit */
}
static int mf_detect(struct ast_dsp *dsp, digit_detect_state_t *s, int16_t amp[],
int samples, int squelch, int relax)
{
float energy[6];
int best;
int second_best;
int i;
int j;
int sample;
short samp;
int hit;
int limit;
fragment_t mute = {0, 0};
if (squelch && s->td.mf.mute_samples > 0) {
mute.end = (s->td.mf.mute_samples < samples) ? s->td.mf.mute_samples : samples;
s->td.mf.mute_samples -= mute.end;
}
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* 80 is optimised to meet the MF specs. */
/* XXX So then why is MF_GSIZE defined as 120? */
if ((samples - sample) >= (MF_GSIZE - s->td.mf.current_sample)) {
limit = sample + (MF_GSIZE - s->td.mf.current_sample);
} else {
limit = samples;
}
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
samp = amp[j];
goertzel_sample(s->td.mf.tone_out, samp);
goertzel_sample(s->td.mf.tone_out + 1, samp);
goertzel_sample(s->td.mf.tone_out + 2, samp);
goertzel_sample(s->td.mf.tone_out + 3, samp);
goertzel_sample(s->td.mf.tone_out + 4, samp);
goertzel_sample(s->td.mf.tone_out + 5, samp);
}
s->td.mf.current_sample += (limit - sample);
if (s->td.mf.current_sample < MF_GSIZE) {
continue;
}
/* We're at the end of an MF detection block. */
/* Find the two highest energies. The spec says to look for
two tones and two tones only. Taking this literally -ie
only two tones pass the minimum threshold - doesn't work
well. The sinc function mess, due to rectangular windowing
ensure that! Find the two highest energies and ensure they
are considerably stronger than any of the others. */
energy[0] = goertzel_result(&s->td.mf.tone_out[0]);
energy[1] = goertzel_result(&s->td.mf.tone_out[1]);
if (energy[0] > energy[1]) {
best = 0;
second_best = 1;
} else {
best = 1;
second_best = 0;
}
/*endif*/
for (i = 2; i < 6; i++) {
energy[i] = goertzel_result(&s->td.mf.tone_out[i]);
if (energy[i] >= energy[best]) {
second_best = best;
best = i;
} else if (energy[i] >= energy[second_best]) {
second_best = i;
}
}
/* Basic signal level and twist tests */
hit = 0;
if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
&& energy[best] < energy[second_best]*BELL_MF_TWIST
&& energy[best] * BELL_MF_TWIST > energy[second_best]) {
/* Relative peak test */
hit = -1;
for (i = 0; i < 6; i++) {
if (i != best && i != second_best) {
if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
/* The best two are not clearly the best */
hit = 0;
break;
}
}
}
}
if (hit) {
/* Get the values into ascending order */
if (second_best < best) {
i = best;
best = second_best;
second_best = i;
}
best = best * 5 + second_best - 1;
hit = bell_mf_positions[best];
/* Look for two successive similar results */
/* The logic in the next test is:
For KP we need 4 successive identical clean detects, with
two blocks of something different preceeding it. For anything
else we need two successive identical clean detects, with
two blocks of something different preceeding it. */
if (hit == s->td.mf.hits[4] && hit == s->td.mf.hits[3] &&
((hit != '*' && hit != s->td.mf.hits[2] && hit != s->td.mf.hits[1])||
(hit == '*' && hit == s->td.mf.hits[2] && hit != s->td.mf.hits[1] &&
hit != s->td.mf.hits[0]))) {
store_digit(s, hit);
}
}
if (hit != s->td.mf.hits[4] && hit != s->td.mf.hits[3]) {
/* Two successive block without a hit terminate current digit */
s->td.mf.current_hit = 0;
}
s->td.mf.hits[0] = s->td.mf.hits[1];
s->td.mf.hits[1] = s->td.mf.hits[2];
s->td.mf.hits[2] = s->td.mf.hits[3];
s->td.mf.hits[3] = s->td.mf.hits[4];
s->td.mf.hits[4] = hit;
/* If we had a hit in this block, include it into mute fragment */
if (squelch && hit) {
if (mute.end < sample - MF_GSIZE) {
/* There is a gap between fragments */
mute_fragment(dsp, &mute);
mute.start = (sample > MF_GSIZE) ? (sample - MF_GSIZE) : 0;
}
mute.end = limit + MF_GSIZE;
}
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++) {
goertzel_reset(&s->td.mf.tone_out[i]);
}
s->td.mf.current_sample = 0;
}
if (squelch && mute.end) {
if (mute.end > samples) {
s->td.mf.mute_samples = mute.end - samples;
mute.end = samples;
}
mute_fragment(dsp, &mute);
}
return (s->td.mf.current_hit); /* return the debounced hit */
}
static inline int pair_there(float p1, float p2, float i1, float i2, float e)
{
/* See if p1 and p2 are there, relative to i1 and i2 and total energy */
/* Make sure absolute levels are high enough */
if ((p1 < TONE_MIN_THRESH) || (p2 < TONE_MIN_THRESH)) {
return 0;
}
/* Amplify ignored stuff */
i2 *= TONE_THRESH;
i1 *= TONE_THRESH;
e *= TONE_THRESH;
/* Check first tone */
if ((p1 < i1) || (p1 < i2) || (p1 < e)) {
return 0;
}
/* And second */
if ((p2 < i1) || (p2 < i2) || (p2 < e)) {
return 0;
}
/* Guess it's there... */
return 1;
}
static int __ast_dsp_call_progress(struct ast_dsp *dsp, short *s, int len)
{
int x;
int y;
int pass;
int newstate = DSP_TONE_STATE_SILENCE;
int res = 0;
while (len) {
/* Take the lesser of the number of samples we need and what we have */
pass = len;
if (pass > dsp->gsamp_size - dsp->gsamps) {
pass = dsp->gsamp_size - dsp->gsamps;
}
for (x = 0; x < pass; x++) {
for (y = 0; y < dsp->freqcount; y++) {
goertzel_sample(&dsp->freqs[y], s[x]);
}
dsp->genergy += s[x] * s[x];
}
s += pass;
dsp->gsamps += pass;
len -= pass;
if (dsp->gsamps == dsp->gsamp_size) {
float hz[7];
for (y = 0; y < 7; y++) {
hz[y] = goertzel_result(&dsp->freqs[y]);
}
switch (dsp->progmode) {
case PROG_MODE_NA:
if (pair_there(hz[HZ_480], hz[HZ_620], hz[HZ_350], hz[HZ_440], dsp->genergy)) {
newstate = DSP_TONE_STATE_BUSY;
} else if (pair_there(hz[HZ_440], hz[HZ_480], hz[HZ_350], hz[HZ_620], dsp->genergy)) {
newstate = DSP_TONE_STATE_RINGING;
} else if (pair_there(hz[HZ_350], hz[HZ_440], hz[HZ_480], hz[HZ_620], dsp->genergy)) {
newstate = DSP_TONE_STATE_DIALTONE;
} else if (hz[HZ_950] > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_SPECIAL1;
} else if (hz[HZ_1400] > TONE_MIN_THRESH * TONE_THRESH) {
/* End of SPECIAL1 or middle of SPECIAL2 */
if (dsp->tstate == DSP_TONE_STATE_SPECIAL1 || dsp->tstate == DSP_TONE_STATE_SPECIAL2) {
newstate = DSP_TONE_STATE_SPECIAL2;
}
} else if (hz[HZ_1800] > TONE_MIN_THRESH * TONE_THRESH) {
/* End of SPECIAL2 or middle of SPECIAL3 */
if (dsp->tstate == DSP_TONE_STATE_SPECIAL2 || dsp->tstate == DSP_TONE_STATE_SPECIAL3) {
newstate = DSP_TONE_STATE_SPECIAL3;
}
} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_TALKING;
} else {
newstate = DSP_TONE_STATE_SILENCE;
}
break;
case PROG_MODE_CR:
if (hz[HZ_425] > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_RINGING;
} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_TALKING;
} else {
newstate = DSP_TONE_STATE_SILENCE;
}
break;
case PROG_MODE_UK:
if (hz[HZ_400UK] > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_HUNGUP;
} else if (pair_there(hz[HZ_350UK], hz[HZ_440UK], hz[HZ_400UK], hz[HZ_400UK], dsp->genergy)) {
newstate = DSP_TONE_STATE_DIALTONE;
}
break;
default:
ast_log(LOG_WARNING, "Can't process in unknown prog mode '%u'\n", dsp->progmode);
}
if (newstate == dsp->tstate) {
dsp->tcount++;
if (dsp->ringtimeout) {
dsp->ringtimeout++;
}
switch (dsp->tstate) {
case DSP_TONE_STATE_RINGING:
if ((dsp->features & DSP_PROGRESS_RINGING) &&
(dsp->tcount == THRESH_RING)) {
res = AST_CONTROL_RINGING;
dsp->ringtimeout = 1;
}
break;
case DSP_TONE_STATE_BUSY:
if ((dsp->features & DSP_PROGRESS_BUSY) &&
(dsp->tcount == THRESH_BUSY)) {
res = AST_CONTROL_BUSY;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
break;
case DSP_TONE_STATE_TALKING:
if ((dsp->features & DSP_PROGRESS_TALK) &&
(dsp->tcount == THRESH_TALK)) {
res = AST_CONTROL_ANSWER;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
break;
case DSP_TONE_STATE_SPECIAL3:
if ((dsp->features & DSP_PROGRESS_CONGESTION) &&
(dsp->tcount == THRESH_CONGESTION)) {
res = AST_CONTROL_CONGESTION;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
break;
case DSP_TONE_STATE_HUNGUP:
if ((dsp->features & DSP_FEATURE_CALL_PROGRESS) &&
(dsp->tcount == THRESH_HANGUP)) {
res = AST_CONTROL_HANGUP;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
break;
}
if (dsp->ringtimeout == THRESH_RING2ANSWER) {
ast_debug(1, "Consider call as answered because of timeout after last ring\n");
res = AST_CONTROL_ANSWER;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
} else {
ast_debug(5, "Stop state %d with duration %d\n", dsp->tstate, dsp->tcount);
ast_debug(5, "Start state %d\n", newstate);
dsp->tstate = newstate;
dsp->tcount = 1;
}
/* Reset goertzel */
for (x = 0; x < 7; x++) {
dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
}
dsp->gsamps = 0;
dsp->genergy = 0.0;
}
}
return res;
}
int ast_dsp_call_progress(struct ast_dsp *dsp, struct ast_frame *inf)
{
if (inf->frametype != AST_FRAME_VOICE) {
ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
return 0;
}
if (!ast_format_is_slinear(&inf->subclass.format)) {
ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
return 0;
}
return __ast_dsp_call_progress(dsp, inf->data.ptr, inf->datalen / 2);
}
static int __ast_dsp_silence_noise(struct ast_dsp *dsp, short *s, int len, int *totalsilence, int *totalnoise, int *frames_energy)
{
int accum;
int x;
int res = 0;
if (!len) {
return 0;
}
accum = 0;
for (x = 0; x < len; x++) {
accum += abs(s[x]);
}
accum /= len;
if (accum < dsp->threshold) {
/* Silent */
dsp->totalsilence += len / (dsp->sample_rate / 1000);
if (dsp->totalnoise) {
/* Move and save history */
memmove(dsp->historicnoise + DSP_HISTORY - dsp->busycount, dsp->historicnoise + DSP_HISTORY - dsp->busycount + 1, dsp->busycount * sizeof(dsp->historicnoise[0]));
dsp->historicnoise[DSP_HISTORY - 1] = dsp->totalnoise;
/* we don't want to check for busydetect that frequently */
#if 0
dsp->busymaybe = 1;
#endif
}
dsp->totalnoise = 0;
res = 1;
} else {
/* Not silent */
dsp->totalnoise += len / (dsp->sample_rate / 1000);
if (dsp->totalsilence) {
int silence1 = dsp->historicsilence[DSP_HISTORY - 1];
int silence2 = dsp->historicsilence[DSP_HISTORY - 2];
/* Move and save history */
memmove(dsp->historicsilence + DSP_HISTORY - dsp->busycount, dsp->historicsilence + DSP_HISTORY - dsp->busycount + 1, dsp->busycount * sizeof(dsp->historicsilence[0]));
dsp->historicsilence[DSP_HISTORY - 1] = dsp->totalsilence;
/* check if the previous sample differs only by BUSY_PERCENT from the one before it */
if (silence1 < silence2) {
if (silence1 + silence1 * BUSY_PERCENT / 100 >= silence2) {
dsp->busymaybe = 1;
} else {
dsp->busymaybe = 0;
}
} else {
if (silence1 - silence1 * BUSY_PERCENT / 100 <= silence2) {
dsp->busymaybe = 1;
} else {
dsp->busymaybe = 0;
}
}
}
dsp->totalsilence = 0;
}
if (totalsilence) {
*totalsilence = dsp->totalsilence;
}
if (totalnoise) {
*totalnoise = dsp->totalnoise;
}
if (frames_energy) {
*frames_energy = accum;
}
return res;
}
int ast_dsp_busydetect(struct ast_dsp *dsp)
{
int res = 0, x;
#ifndef BUSYDETECT_TONEONLY
int avgsilence = 0, hitsilence = 0;
#endif
int avgtone = 0, hittone = 0;
/* if we have a 4 length pattern, the way busymaybe is set doesn't help us. */
if (dsp->busy_cadence.length != 4) {
if (!dsp->busymaybe) {
return res;
}
}
for (x = DSP_HISTORY - dsp->busycount; x < DSP_HISTORY; x++) {
#ifndef BUSYDETECT_TONEONLY
avgsilence += dsp->historicsilence[x];
#endif
avgtone += dsp->historicnoise[x];
}
#ifndef BUSYDETECT_TONEONLY
avgsilence /= dsp->busycount;
#endif
avgtone /= dsp->busycount;
for (x = DSP_HISTORY - dsp->busycount; x < DSP_HISTORY; x++) {
#ifndef BUSYDETECT_TONEONLY
if (avgsilence > dsp->historicsilence[x]) {
if (avgsilence - (avgsilence * BUSY_PERCENT / 100) <= dsp->historicsilence[x]) {
hitsilence++;
}
} else {
if (avgsilence + (avgsilence * BUSY_PERCENT / 100) >= dsp->historicsilence[x]) {
hitsilence++;
}
}
#endif
if (avgtone > dsp->historicnoise[x]) {
if (avgtone - (avgtone * BUSY_PERCENT / 100) <= dsp->historicnoise[x]) {
hittone++;
}
} else {
if (avgtone + (avgtone * BUSY_PERCENT / 100) >= dsp->historicnoise[x]) {
hittone++;
}
}
}
#ifndef BUSYDETECT_TONEONLY
if ((hittone >= dsp->busycount - 1) && (hitsilence >= dsp->busycount - 1) &&
(avgtone >= BUSY_MIN && avgtone <= BUSY_MAX) &&
(avgsilence >= BUSY_MIN && avgsilence <= BUSY_MAX)) {
#else
if ((hittone >= dsp->busycount - 1) && (avgtone >= BUSY_MIN && avgtone <= BUSY_MAX)) {
#endif
#ifdef BUSYDETECT_COMPARE_TONE_AND_SILENCE
if (avgtone > avgsilence) {
if (avgtone - avgtone*BUSY_PERCENT/100 <= avgsilence) {
res = 1;
}
} else {
if (avgtone + avgtone*BUSY_PERCENT/100 >= avgsilence) {
res = 1;
}
}
#else
res = 1;
#endif
}
/* If we have a 4-length pattern, we can go ahead and just check it in a different way. */
if (dsp->busy_cadence.length == 4) {
int x;
int errors = 0;
int errors_max = ((4 * dsp->busycount) / 100.0) * BUSY_PAT_PERCENT;
for (x = DSP_HISTORY - (dsp->busycount); x < DSP_HISTORY; x += 2) {
int temp_error;
temp_error = abs(dsp->historicnoise[x] - dsp->busy_cadence.pattern[0]);
if ((temp_error * 100) / dsp->busy_cadence.pattern[0] > BUSY_PERCENT) {
errors++;
}
temp_error = abs(dsp->historicnoise[x + 1] - dsp->busy_cadence.pattern[2]);
if ((temp_error * 100) / dsp->busy_cadence.pattern[2] > BUSY_PERCENT) {
errors++;
}
temp_error = abs(dsp->historicsilence[x] - dsp->busy_cadence.pattern[1]);
if ((temp_error * 100) / dsp->busy_cadence.pattern[1] > BUSY_PERCENT) {
errors++;
}
temp_error = abs(dsp->historicsilence[x + 1] - dsp->busy_cadence.pattern[3]);
if ((temp_error * 100) / dsp->busy_cadence.pattern[3] > BUSY_PERCENT) {
errors++;
}
}
ast_debug(5, "errors = %d max = %d\n", errors, errors_max);
if (errors <= errors_max) {
return 1;
}
}
/* If we know the expected busy tone length, check we are in the range */
if (res && (dsp->busy_cadence.pattern[0] > 0)) {
if (abs(avgtone - dsp->busy_cadence.pattern[0]) > MAX(dsp->busy_cadence.pattern[0]*BUSY_PAT_PERCENT/100, 20)) {
#ifdef BUSYDETECT_DEBUG
ast_debug(5, "busy detector: avgtone of %d not close enough to desired %d\n",
avgtone, dsp->busy_cadence.pattern[0]);
#endif
res = 0;
}
}
#ifndef BUSYDETECT_TONEONLY
/* If we know the expected busy tone silent-period length, check we are in the range */
if (res && (dsp->busy_cadence.pattern[1] > 0)) {
if (abs(avgsilence - dsp->busy_cadence.pattern[1]) > MAX(dsp->busy_cadence.pattern[1]*BUSY_PAT_PERCENT/100, 20)) {
#ifdef BUSYDETECT_DEBUG
ast_debug(5, "busy detector: avgsilence of %d not close enough to desired %d\n",
avgsilence, dsp->busy_cadence.pattern[1]);
#endif
res = 0;
}
}
#endif
#if !defined(BUSYDETECT_TONEONLY) && defined(BUSYDETECT_DEBUG)
if (res) {
ast_debug(5, "ast_dsp_busydetect detected busy, avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
} else {
ast_debug(5, "busy detector: FAILED with avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
}
#endif
return res;
}
static int ast_dsp_silence_noise_with_energy(struct ast_dsp *dsp, struct ast_frame *f, int *total, int *frames_energy, int noise)
{
short *s;
int len;
int x;
unsigned char *odata;
if (!f) {
return 0;
}
if (f->frametype != AST_FRAME_VOICE) {
ast_log(LOG_WARNING, "Can't calculate silence on a non-voice frame\n");
return 0;
}
if (!ast_format_is_slinear(&f->subclass.format)) {
odata = f->data.ptr;
len = f->datalen;
switch (f->subclass.format.id) {
case AST_FORMAT_ULAW:
s = ast_alloca(len * 2);
for (x = 0;x < len; x++) {
s[x] = AST_MULAW(odata[x]);
}
break;
case AST_FORMAT_ALAW:
s = ast_alloca(len * 2);
for (x = 0;x < len; x++) {
s[x] = AST_ALAW(odata[x]);
}
break;
default:
ast_log(LOG_WARNING, "Can only calculate silence on signed-linear, alaw or ulaw frames :(\n");
return 0;
}
} else {
s = f->data.ptr;
len = f->datalen/2;
}
if (noise) {
return __ast_dsp_silence_noise(dsp, s, len, NULL, total, frames_energy);
} else {
return __ast_dsp_silence_noise(dsp, s, len, total, NULL, frames_energy);
}
}
int ast_dsp_silence_with_energy(struct ast_dsp *dsp, struct ast_frame *f, int *totalsilence, int *frames_energy)
{
return ast_dsp_silence_noise_with_energy(dsp, f, totalsilence, frames_energy, 0);
}
int ast_dsp_silence(struct ast_dsp *dsp, struct ast_frame *f, int *totalsilence)
{
return ast_dsp_silence_noise_with_energy(dsp, f, totalsilence, NULL, 0);
}
int ast_dsp_noise(struct ast_dsp *dsp, struct ast_frame *f, int *totalnoise)
{
return ast_dsp_silence_noise_with_energy(dsp, f, totalnoise, NULL, 1);
}
struct ast_frame *ast_dsp_process(struct ast_channel *chan, struct ast_dsp *dsp, struct ast_frame *af)
{
int silence;
int res;
int digit = 0, fax_digit = 0;
int x;
short *shortdata;
unsigned char *odata;
int len;
struct ast_frame *outf = NULL;
if (!af) {
return NULL;
}
if (af->frametype != AST_FRAME_VOICE) {
return af;
}
odata = af->data.ptr;
len = af->datalen;
/* Make sure we have short data */
if (ast_format_is_slinear(&af->subclass.format)) {
shortdata = af->data.ptr;
len = af->datalen / 2;
} else {
switch (af->subclass.format.id) {
case AST_FORMAT_ULAW:
case AST_FORMAT_TESTLAW:
shortdata = ast_alloca(af->datalen * 2);
for (x = 0;x < len; x++) {
shortdata[x] = AST_MULAW(odata[x]);
}
break;
case AST_FORMAT_ALAW:
shortdata = ast_alloca(af->datalen * 2);
for (x = 0; x < len; x++) {
shortdata[x] = AST_ALAW(odata[x]);
}
break;
default:
/*Display warning only once. Otherwise you would get hundreds of warnings every second */
if (dsp->display_inband_dtmf_warning)
ast_log(LOG_WARNING, "Inband DTMF is not supported on codec %s. Use RFC2833\n", ast_getformatname(&af->subclass.format));
dsp->display_inband_dtmf_warning = 0;
return af;
}
}
/* Initially we do not want to mute anything */
dsp->mute_fragments = 0;
/* Need to run the silence detection stuff for silence suppression and busy detection */
if ((dsp->features & DSP_FEATURE_SILENCE_SUPPRESS) || (dsp->features & DSP_FEATURE_BUSY_DETECT)) {
res = __ast_dsp_silence_noise(dsp, shortdata, len, &silence, NULL, NULL);
}
if ((dsp->features & DSP_FEATURE_SILENCE_SUPPRESS) && silence) {
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_NULL;
ast_frfree(af);
return ast_frisolate(&dsp->f);
}
if ((dsp->features & DSP_FEATURE_BUSY_DETECT) && ast_dsp_busydetect(dsp)) {
ast_channel_softhangup_internal_flag_add(chan, AST_SOFTHANGUP_DEV);
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_CONTROL;
dsp->f.subclass.integer = AST_CONTROL_BUSY;
ast_frfree(af);
ast_debug(1, "Requesting Hangup because the busy tone was detected on channel %s\n", ast_channel_name(chan));
return ast_frisolate(&dsp->f);
}
if ((dsp->features & DSP_FEATURE_FAX_DETECT)) {
if ((dsp->faxmode & DSP_FAXMODE_DETECT_CNG) && tone_detect(dsp, &dsp->cng_tone_state, shortdata, len)) {
fax_digit = 'f';
}
if ((dsp->faxmode & DSP_FAXMODE_DETECT_CED) && tone_detect(dsp, &dsp->ced_tone_state, shortdata, len)) {
fax_digit = 'e';
}
}
if (dsp->features & (DSP_FEATURE_DIGIT_DETECT | DSP_FEATURE_BUSY_DETECT)) {
if (dsp->digitmode & DSP_DIGITMODE_MF) {
digit = mf_detect(dsp, &dsp->digit_state, shortdata, len, (dsp->digitmode & DSP_DIGITMODE_NOQUELCH) == 0, (dsp->digitmode & DSP_DIGITMODE_RELAXDTMF));
} else {
digit = dtmf_detect(dsp, &dsp->digit_state, shortdata, len, (dsp->digitmode & DSP_DIGITMODE_NOQUELCH) == 0, (dsp->digitmode & DSP_DIGITMODE_RELAXDTMF));
}
if (dsp->digit_state.current_digits) {
int event = 0, event_len = 0;
char event_digit = 0;
if (!dsp->dtmf_began) {
/* We have not reported DTMF_BEGIN for anything yet */
if (dsp->features & DSP_FEATURE_DIGIT_DETECT) {
event = AST_FRAME_DTMF_BEGIN;
event_digit = dsp->digit_state.digits[0];
}
dsp->dtmf_began = 1;
} else if (dsp->digit_state.current_digits > 1 || digit != dsp->digit_state.digits[0]) {
/* Digit changed. This means digit we have reported with DTMF_BEGIN ended */
if (dsp->features & DSP_FEATURE_DIGIT_DETECT) {
event = AST_FRAME_DTMF_END;
event_digit = dsp->digit_state.digits[0];
event_len = dsp->digit_state.digitlen[0] * 1000 / dsp->sample_rate;
}
memmove(&dsp->digit_state.digits[0], &dsp->digit_state.digits[1], dsp->digit_state.current_digits);
memmove(&dsp->digit_state.digitlen[0], &dsp->digit_state.digitlen[1], dsp->digit_state.current_digits * sizeof(dsp->digit_state.digitlen[0]));
dsp->digit_state.current_digits--;
dsp->dtmf_began = 0;
if (dsp->features & DSP_FEATURE_BUSY_DETECT) {
/* Reset Busy Detector as we have some confirmed activity */
memset(dsp->historicsilence, 0, sizeof(dsp->historicsilence));
memset(dsp->historicnoise, 0, sizeof(dsp->historicnoise));
ast_debug(1, "DTMF Detected - Reset busydetector\n");
}
}
if (event) {
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = event;
dsp->f.subclass.integer = event_digit;
dsp->f.len = event_len;
outf = &dsp->f;
goto done;
}
}
}
if (fax_digit) {
/* Fax was detected - digit is either 'f' or 'e' */
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass.integer = fax_digit;
outf = &dsp->f;
goto done;
}
if ((dsp->features & DSP_FEATURE_CALL_PROGRESS)) {
res = __ast_dsp_call_progress(dsp, shortdata, len);
if (res) {
switch (res) {
case AST_CONTROL_ANSWER:
case AST_CONTROL_BUSY:
case AST_CONTROL_RINGING:
case AST_CONTROL_CONGESTION:
case AST_CONTROL_HANGUP:
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_CONTROL;
dsp->f.subclass.integer = res;
dsp->f.src = "dsp_progress";
if (chan) {
ast_queue_frame(chan, &dsp->f);
}
break;
default:
ast_log(LOG_WARNING, "Don't know how to represent call progress message %d\n", res);
}
}
} else if ((dsp->features & DSP_FEATURE_WAITDIALTONE)) {
res = __ast_dsp_call_progress(dsp, shortdata, len);
}
done:
/* Mute fragment of the frame */
for (x = 0; x < dsp->mute_fragments; x++) {
memset(shortdata + dsp->mute_data[x].start, 0, sizeof(int16_t) * (dsp->mute_data[x].end - dsp->mute_data[x].start));
}
switch (af->subclass.format.id) {
case AST_FORMAT_ULAW:
for (x = 0; x < len; x++) {
odata[x] = AST_LIN2MU((unsigned short) shortdata[x]);
}
break;
case AST_FORMAT_ALAW:
for (x = 0; x < len; x++) {
odata[x] = AST_LIN2A((unsigned short) shortdata[x]);
}
/* fall through */
default:
break;
}
if (outf) {
if (chan) {
ast_queue_frame(chan, af);
}
ast_frfree(af);
return ast_frisolate(outf);
} else {
return af;
}
}
static void ast_dsp_prog_reset(struct ast_dsp *dsp)
{
int max = 0;
int x;
dsp->gsamp_size = modes[dsp->progmode].size;
dsp->gsamps = 0;
for (x = 0; x < ARRAY_LEN(modes[dsp->progmode].freqs); x++) {
if (modes[dsp->progmode].freqs[x]) {
goertzel_init(&dsp->freqs[x], (float)modes[dsp->progmode].freqs[x], dsp->gsamp_size, dsp->sample_rate);
max = x + 1;
}
}
dsp->freqcount = max;
dsp->ringtimeout= 0;
}
unsigned int ast_dsp_get_sample_rate(const struct ast_dsp *dsp)
{
return dsp->sample_rate;
}
static struct ast_dsp *__ast_dsp_new(unsigned int sample_rate)
{
struct ast_dsp *dsp;
if ((dsp = ast_calloc(1, sizeof(*dsp)))) {
dsp->threshold = DEFAULT_THRESHOLD;
dsp->features = DSP_FEATURE_SILENCE_SUPPRESS;
dsp->busycount = DSP_HISTORY;
dsp->digitmode = DSP_DIGITMODE_DTMF;
dsp->faxmode = DSP_FAXMODE_DETECT_CNG;
dsp->sample_rate = sample_rate;
/* Initialize digit detector */
ast_digit_detect_init(&dsp->digit_state, dsp->digitmode & DSP_DIGITMODE_MF, dsp->sample_rate);
dsp->display_inband_dtmf_warning = 1;
/* Initialize initial DSP progress detect parameters */
ast_dsp_prog_reset(dsp);
/* Initialize fax detector */
ast_fax_detect_init(dsp);
}
return dsp;
}
struct ast_dsp *ast_dsp_new(void)
{
return __ast_dsp_new(DEFAULT_SAMPLE_RATE);
}
struct ast_dsp *ast_dsp_new_with_rate(unsigned int sample_rate)
{
return __ast_dsp_new(sample_rate);
}
void ast_dsp_set_features(struct ast_dsp *dsp, int features)
{
dsp->features = features;
if (!(features & DSP_FEATURE_DIGIT_DETECT)) {
dsp->display_inband_dtmf_warning = 0;
}
}
void ast_dsp_free(struct ast_dsp *dsp)
{
ast_free(dsp);
}
void ast_dsp_set_threshold(struct ast_dsp *dsp, int threshold)
{
dsp->threshold = threshold;
}
void ast_dsp_set_busy_count(struct ast_dsp *dsp, int cadences)
{
if (cadences < 4) {
cadences = 4;
}
if (cadences > DSP_HISTORY) {
cadences = DSP_HISTORY;
}
dsp->busycount = cadences;
}
void ast_dsp_set_busy_pattern(struct ast_dsp *dsp, const struct ast_dsp_busy_pattern *cadence)
{
dsp->busy_cadence = *cadence;
ast_debug(1, "dsp busy pattern set to %d,%d,%d,%d\n", cadence->pattern[0], cadence->pattern[1], (cadence->length == 4) ? cadence->pattern[2] : 0, (cadence->length == 4) ? cadence->pattern[3] : 0);
}
void ast_dsp_digitreset(struct ast_dsp *dsp)
{
int i;
dsp->dtmf_began = 0;
if (dsp->digitmode & DSP_DIGITMODE_MF) {
mf_detect_state_t *s = &dsp->digit_state.td.mf;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++) {
goertzel_reset(&s->tone_out[i]);
}
s->hits[4] = s->hits[3] = s->hits[2] = s->hits[1] = s->hits[0] = s->current_hit = 0;
s->current_sample = 0;
} else {
dtmf_detect_state_t *s = &dsp->digit_state.td.dtmf;
/* Reinitialise the detector for the next block */
for (i = 0; i < 4; i++) {
goertzel_reset(&s->row_out[i]);
goertzel_reset(&s->col_out[i]);
}
s->lasthit = s->current_hit = 0;
s->energy = 0.0;
s->current_sample = 0;
s->hits = 0;
s->misses = 0;
}
dsp->digit_state.digits[0] = '\0';
dsp->digit_state.current_digits = 0;
}
void ast_dsp_reset(struct ast_dsp *dsp)
{
int x;
dsp->totalsilence = 0;
dsp->gsamps = 0;
for (x = 0; x < 4; x++) {
dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
}
memset(dsp->historicsilence, 0, sizeof(dsp->historicsilence));
memset(dsp->historicnoise, 0, sizeof(dsp->historicnoise));
dsp->ringtimeout= 0;
}
int ast_dsp_set_digitmode(struct ast_dsp *dsp, int digitmode)
{
int new;
int old;
old = dsp->digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
new = digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
if (old != new) {
/* Must initialize structures if switching from MF to DTMF or vice-versa */
ast_digit_detect_init(&dsp->digit_state, new & DSP_DIGITMODE_MF, dsp->sample_rate);
}
dsp->digitmode = digitmode;
return 0;
}
int ast_dsp_set_faxmode(struct ast_dsp *dsp, int faxmode)
{
if (dsp->faxmode != faxmode) {
dsp->faxmode = faxmode;
ast_fax_detect_init(dsp);
}
return 0;
}
int ast_dsp_set_call_progress_zone(struct ast_dsp *dsp, char *zone)
{
int x;
for (x = 0; x < ARRAY_LEN(aliases); x++) {
if (!strcasecmp(aliases[x].name, zone)) {
dsp->progmode = aliases[x].mode;
ast_dsp_prog_reset(dsp);
return 0;
}
}
return -1;
}
int ast_dsp_was_muted(struct ast_dsp *dsp)
{
return (dsp->mute_fragments > 0);
}
int ast_dsp_get_tstate(struct ast_dsp *dsp)
{
return dsp->tstate;
}
int ast_dsp_get_tcount(struct ast_dsp *dsp)
{
return dsp->tcount;
}
static int _dsp_init(int reload)
{
struct ast_config *cfg;
struct ast_variable *v;
struct ast_flags config_flags = { reload ? CONFIG_FLAG_FILEUNCHANGED : 0 };
int cfg_threshold;
float cfg_twist;
if ((cfg = ast_config_load2(CONFIG_FILE_NAME, "dsp", config_flags)) == CONFIG_STATUS_FILEUNCHANGED) {
return 0;
}
thresholds[THRESHOLD_SILENCE] = DEFAULT_SILENCE_THRESHOLD;
dtmf_normal_twist = DEF_DTMF_NORMAL_TWIST;
dtmf_reverse_twist = DEF_DTMF_REVERSE_TWIST;
relax_dtmf_normal_twist = DEF_RELAX_DTMF_NORMAL_TWIST;
relax_dtmf_reverse_twist = DEF_RELAX_DTMF_REVERSE_TWIST;
dtmf_hits_to_begin = DEF_DTMF_HITS_TO_BEGIN;
dtmf_misses_to_end = DEF_DTMF_MISSES_TO_END;
if (cfg == CONFIG_STATUS_FILEMISSING || cfg == CONFIG_STATUS_FILEINVALID) {
return 0;
}
for (v = ast_variable_browse(cfg, "default"); v; v = v->next) {
if (!strcasecmp(v->name, "silencethreshold")) {
if (sscanf(v->value, "%30d", &cfg_threshold) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if (cfg_threshold < 0) {
ast_log(LOG_WARNING, "Invalid silence threshold '%d' specified, using default\n", cfg_threshold);
} else {
thresholds[THRESHOLD_SILENCE] = cfg_threshold;
}
} else if (!strcasecmp(v->name, "dtmf_normal_twist")) {
if (sscanf(v->value, "%30f", &cfg_twist) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if ((cfg_twist < 2.0) || (cfg_twist > 100.0)) { /* < 3.0dB or > 20dB */
ast_log(LOG_WARNING, "Invalid dtmf_normal_twist value '%.2f' specified, using default of %.2f\n", cfg_twist, dtmf_normal_twist);
} else {
dtmf_normal_twist = cfg_twist;
}
} else if (!strcasecmp(v->name, "dtmf_reverse_twist")) {
if (sscanf(v->value, "%30f", &cfg_twist) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if ((cfg_twist < 2.0) || (cfg_twist > 100.0)) { /* < 3.0dB or > 20dB */
ast_log(LOG_WARNING, "Invalid dtmf_reverse_twist value '%.2f' specified, using default of %.2f\n", cfg_twist, dtmf_reverse_twist);
} else {
dtmf_reverse_twist = cfg_twist;
}
} else if (!strcasecmp(v->name, "relax_dtmf_normal_twist")) {
if (sscanf(v->value, "%30f", &cfg_twist) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if ((cfg_twist < 2.0) || (cfg_twist > 100.0)) { /* < 3.0dB or > 20dB */
ast_log(LOG_WARNING, "Invalid relax_dtmf_normal_twist value '%.2f' specified, using default of %.2f\n", cfg_twist, relax_dtmf_normal_twist);
} else {
relax_dtmf_normal_twist = cfg_twist;
}
} else if (!strcasecmp(v->name, "relax_dtmf_reverse_twist")) {
if (sscanf(v->value, "%30f", &cfg_twist) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if ((cfg_twist < 2.0) || (cfg_twist > 100.0)) { /* < 3.0dB or > 20dB */
ast_log(LOG_WARNING, "Invalid relax_dtmf_reverse_twist value '%.2f' specified, using default of %.2f\n", cfg_twist, relax_dtmf_reverse_twist);
} else {
relax_dtmf_reverse_twist = cfg_twist;
}
} else if (!strcasecmp(v->name, "dtmf_hits_to_begin")) {
if (sscanf(v->value, "%30d", &cfg_threshold) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if (cfg_threshold < 1) { /* must be 1 or greater */
ast_log(LOG_WARNING, "Invalid dtmf_hits_to_begin value '%d' specified, using default of %d\n", cfg_threshold, dtmf_hits_to_begin);
} else {
dtmf_hits_to_begin = cfg_threshold;
}
} else if (!strcasecmp(v->name, "dtmf_misses_to_end")) {
if (sscanf(v->value, "%30d", &cfg_threshold) < 1) {
ast_log(LOG_WARNING, "Unable to convert '%s' to a numeric value.\n", v->value);
} else if (cfg_threshold < 1) { /* must be 1 or greater */
ast_log(LOG_WARNING, "Invalid dtmf_misses_to_end value '%d' specified, using default of %d\n", cfg_threshold, dtmf_misses_to_end);
} else {
dtmf_misses_to_end = cfg_threshold;
}
}
}
ast_config_destroy(cfg);
return 0;
}
int ast_dsp_get_threshold_from_settings(enum threshold which)
{
return thresholds[which];
}
int ast_dsp_init(void)
{
return _dsp_init(0);
}
int ast_dsp_reload(void)
{
return _dsp_init(1);
}
|