File: CMRRestFrameConversion.py

package info (click to toggle)
astlib 0.13.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,520 kB
  • sloc: ansic: 37,511; sed: 8,839; python: 3,881; makefile: 17
file content (459 lines) | stat: -rw-r--r-- 15,465 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
#!/usr/bin/env python
#File: CMRRestFrameConversion.py
#Created: Sat Dec 15 17:03:04 2012
#Last Change: Sat Dec 15 17:03:50 2012
# -*- coding: utf-8 -*-
#
# Calculates (U-V)z slopes, scatters and intercepts of a given color--magnitude
# relation.
# Follows the procedure in Appendix II of Mei et al. 2009 (ApJ, 690, 42),
# except here we convert
# mags to apparent mags at the distance of the Coma cluster.

from astLib import astSED
from astLib import astStats
from astLib import astCalc
from scipy import stats
from scipy import optimize
from scipy import interpolate
import numpy
import pylab
import os
import sys
import random
import math
import pickle
import string
random.seed()

#-----------------------------------------------------------------------------
# Constants etc.

# number of bootstrap samples, for estimating errors
BOOTSTRAPS = 1000
# number of galaxies, gets * number of models, having same age in each
# metallicity bin
NGAL = 25
FILTER_DIR = "../../../testingData/filters/"

# Map between short filter names on command line and paths, labels etc..
filterMap=[]
filterMap.append({'shortName': 'r625', 'filePath': FILTER_DIR+'F625W_WFC.res',
'plotLabel': 'r625'})
filterMap.append({'shortName': 'i775', 'filePath': FILTER_DIR+'F775W_WFC.res',
'plotLabel': 'i775'})
filterMap.append({'shortName': 'z850', 'filePath': FILTER_DIR+'F850LP_WFC.res',
'plotLabel': 'z850'})
filterMap.append({'shortName': 'U', 'filePath': FILTER_DIR+'U_Johnson.res',
'plotLabel': 'U'})
filterMap.append({'shortName': 'V', 'filePath': FILTER_DIR+'V_Johnson.res',
'plotLabel': 'V'})

# Literature CMR results we want to convert, in their native format
litCMRs = []
litCMRs.append({'name': 'RX J0152.7-1357 (Mei et al. 2009)',
                'redshift': 0.83,
                'colour': 'r625-z850',
                'mag': 'i775',
                'slope': -0.040,
                'slopeErr': 0.017,
                'intercept': 1.93,
                'interceptErr': 0.02,
                'zeroMag': 22.5,
                'scatter': 0.079,
                'scatterErr': 0.008,
                'magType': "AB"})

#-----------------------------------------------------------------------------
def GetCMR(nameFragment, dictList):
    """Finds the CMR dictionary in the litCMRs or results list, by looking for
    nameFragment in name.

    """

    foundCMR = None

    for dict in dictList:
        if nameFragment in dict['name']:
            foundCMR = dict

    return foundCMR

#------------------------------------------------------------------------------
def CalcTransformedCMRWithZM(obsCMR, fitMags, fitCols):
    """Calculates the CMR transformed to the rest frame, using the results of
    the magnitude and colour
    conversion fits. See handwritten notes for the tedious algebra involved.

    """

    # we use the following notation s, zp for slope, zeropoint, append Err for
    # errors
    # CMR for CMR, Mag for fitMags, Col for fitCols
    sCMR = obsCMR['slope']
    zpCMR = obsCMR['intercept']
    zmCMR = obsCMR['zeroMag']

    sMag = fitMags['slope']
    zpMag=fitMags['intercept']

    sCol = fitCols['slope']
    zpCol = fitCols['intercept']

    transformedZeroMag = obsCMR['transformedZeroMag']

    a = sCMR**-1+sMag
    b = sCol/a
    c = zpCMR/sCMR
    d = c-zpMag-zmCMR
    e = d/a
    f = sCol*e
    # this last term is if we want to transform to e.g. match Mei et al.
    g = zpCol+f+(b*transformedZeroMag)

    restCMRSlope = b
    restCMRIntercept = g
    restCMRScatter = obsCMR['scatter']*fitCols['slope']

    return ({'slope': restCMRSlope, 'intercept': restCMRIntercept,
                'scatter': restCMRScatter})

#-----------------------------------------------------------------------------
def BootstrapTransformedCMRErrorsWithZM(obsCMR, fitMags, fitCols):
    """Estimates errors on transformed CMR fit (i.e., into rest frame), by
    assuming the errors on the observed CMR fit, colour transformation fit, and
    mag. transformation fit have Gaussian
    distributions.

    """

    # we use the following notation s, zp for slope, zeropoint, append Err for
    # errors
    # CMR for CMR, Mag for fitMags, Col for fitCols
    sCMR = obsCMR['slope']
    sCMRErr = obsCMR['slopeErr']
    zpCMR = obsCMR['intercept']
    zpCMRErr = obsCMR['interceptErr']

    sMag = fitMags['slope']
    sMagErr = fitMags['slopeError']
    zpMag = fitMags['intercept']
    zpMagErr = fitMags['interceptError']

    sCol = fitCols['slope']
    sColErr = fitCols['slopeError']
    zpCol = fitCols['intercept']
    zpColErr = fitCols['interceptError']

    bsFitResults = []
    for n in range(BOOTSTRAPS):

        bsCMR = {}
        bsMag = {}
        bsCol = {}

        bsCMR['slope'] = random.normalvariate(sCMR, sCMRErr)
        bsCMR['intercept'] = random.normalvariate(zpCMR, zpCMRErr)
        bsCMR['zeroMag'] = obsCMR['zeroMag']
        bsMag['slope'] = random.normalvariate(sMag, sMagErr)
        bsMag['intercept'] = random.normalvariate(zpMag, zpMagErr)
        bsCol['slope'] = random.normalvariate(sCol, sColErr)
        bsCol['intercept'] = random.normalvariate(zpCol, zpColErr)

        bsCMR['scatter'] = random.normalvariate(obsCMR['scatter'],
                        obsCMR['scatterErr'])

        bsCMR['transformedZeroMag'] = obsCMR['transformedZeroMag']

        bsFitResults.append(CalcTransformedCMRWithZM(bsCMR, bsMag, bsCol))

    bsSlopes = []
    bsIntercepts = []
    bsScatters = []
    for bsResult in bsFitResults:
        bsSlopes.append(bsResult['slope'])
        bsIntercepts.append(bsResult['intercept'])
        bsScatters.append(bsResult['scatter'])

    bsSlopes = numpy.array(bsSlopes)
    bsIntercepts = numpy.array(bsIntercepts)
    bsScatters = numpy.array(bsScatters)

    restCMRSlopeErr = numpy.std(bsSlopes)
    restCMRInterceptErr = numpy.std(bsIntercepts)
    restCMRScatterErr = numpy.std(bsScatters)

    return ({'slopeErr': restCMRSlopeErr, 'interceptErr':restCMRInterceptErr,
                'scatterErr': restCMRScatterErr})

#-----------------------------------------------------------------------------
def LoadModels(fileNameList, modelType = "bc03"):
    """Creates a list of stellar population models from the given list of model
    file names.

    """

    models = []
    for f in fileNameList:
        if modelType == "bc03":
            models.append(astSED.BC03Model(f))
        elif modelType == "m05":
            models.append(astSED.M05Model(f))

    return models

#-----------------------------------------------------------------------------
def GetPassbandFileNames(inputColour):
    """Given a mag (e.g. i775) or colour string e.g. r625-z850, lookup the
    appropriate file name(s) in the filterMap, and return the paths in a list.

    """

    bands = inputColour.split("-")
    p = []
    for b in bands:
        p.append(None)
    for row in filterMap:
        for i in range(len(bands)):
            if row['shortName'] == bands[i]:
                p[i]=row['filePath']

    if None in p:
        print("ERROR : couldn't parse colour using filterMap")
        sys.exit()
    else:
        return p

#-----------------------------------------------------------------------------
def LoadPassbands(fileNameList, redshift = None, redshiftPassbands = False):
    """Creates a list of passband objects from the given list of passband file
    names.

    """

    passbands = []
    for f in fileNameList:
        p = astSED.Passband(f)
        if redshiftPassbands == True and redshift != None:
            p.wavelength=p.wavelength*(1.0+redshift)
        passbands.append(p)

    return passbands

#-----------------------------------------------------------------------------
def CalcColourMagTransformation(cmr, restColPassbands, restMagPassband):
    """Calculates the transformation equations needed to convert the given cmr
    into the rest frame at Coma, for the given passbands.

    """

    print((">>> Calculating colour, mag transform for CMR " +
        litCMR['name']+"..."))

    inputColour = cmr['colour']
    inputMag = cmr['mag']
    zCluster = cmr['redshift']

    # Range of formation zs to match Mei et al. 2008
    zfMax = 7.0
    zfMin = 2.0

    observedColPassbandFileNames = GetPassbandFileNames(inputColour)
    observedMagPassbandFileName = GetPassbandFileNames(inputMag)

    observedColLabel = inputColour
    observedMagLabel = inputMag

    # Load stuff
    observedColPassbands = LoadPassbands(observedColPassbandFileNames)
    observedMagPassband = LoadPassbands(observedMagPassbandFileName)[0]

    # Generate galaxy models, we'll hold them all in memory here and use them
    # all in a bit
    print("--> Generating simulated galaxy sample ...")
    restGalaxies = []
    observedGalaxies = []
    for n in range(NGAL):

        print("... n = "+str(n+1)+"/"+str(NGAL)+" ...")

        zfChoice = random.uniform(zfMin, zfMax)
        ageChoice = astCalc.tl(zfChoice)-astCalc.tl(zCluster)

        for i in range(len(models)):

            modelChoice = i
            restGalaxies.append(models[modelChoice].getSED(ageChoice, z=0.02))
            observedGalaxies.append(models[modelChoice].getSED(ageChoice,
                z=zCluster))

    # Fit for colour conversion
    observedColours = []
    restColours = []
    for o, r in zip(observedGalaxies, restGalaxies):
        restColours.append(r.calcColour(restColPassbands[0],
            restColPassbands[1], magType="Vega"))
        observedColours.append(o.calcColour(observedColPassbands[0],
            observedColPassbands[1], magType=cmr['magType']))

    restColours = numpy.array(restColours)
    observedColours = numpy.array(observedColours)

    fitColData = []
    for x, y in zip(observedColours, restColours):
        fitColData.append([x, y])

    fitCols=astStats.OLSFit(fitColData)

    res = restColours-(fitCols['slope']*observedColours+fitCols['intercept'])
    # scatter of residuals, use as fit error
    scatter = astStats.biweightScale(res, 6.0)

    # Fit for mag conversion
    restMinusObservedAppMags = []
    for o, r, obsCol, restCol in zip(observedGalaxies, restGalaxies,
        observedColours, restColours):

        restMinusObservedAppMags.append(r.calcMag(restMagPassband,
            magType="Vega")-o.calcMag(observedMagPassband,
            magType=cmr['magType']))

    restMinusObservedAppMags = numpy.array(restMinusObservedAppMags)

    fitMagData = []
    for x, y in zip(observedColours, restMinusObservedAppMags):
        fitMagData.append([x, y])

    fitMags = astStats.OLSFit(fitMagData)

    trans = {'name': cmr['name'],
            'fitCols': fitCols,
            'fitMags': fitMags,
            'observedColours': observedColours,
            'restColours': restColours,
            'restMinusObservedAppMags': restMinusObservedAppMags}

    return trans

#-----------------------------------------------------------------------------
def GetCSPModel(labelToFind, models, modelLabels):
    """Given a list of models and a matching list of labels, returns the model
    matching the given label.

    """

    foundModel = None
    for m, l in zip(models, modelLabels):
        if l == labelToFind:
            foundModel = m

    return foundModel

#-----------------------------------------------------------------------------
def ApplyCMRTransformation(cmr, trans):
    """Applies the magnitude and colour transformations stored in trans to the
CMR.

    """

    print((">>> Transforming CMR "+cmr['name']+" to Coma rest frame"+
        restColour+" ..."))

    # Check that col, mag transformations and cmrs match up, otherwise
    # something is seriously screwed up
    if cmr['name'] != trans['name']:
        print("ERROR: cmrs and transformation lists not paired!")
        sys.exit()

    fitMags = trans['fitMags']
    fitCols = trans['fitCols']
    transformedCMR = CalcTransformedCMRWithZM(cmr, fitMags, fitCols)
    transformedCMRErrs = BootstrapTransformedCMRErrorsWithZM(cmr, fitMags,
                        fitCols)

    result = {'name': cmr['name'],
            'redshift': cmr['redshift'],
            'colour': restColour,
            'mag': restMag,
            'slope': transformedCMR['slope'],
            'slopeErr': transformedCMRErrs['slopeErr'],
            'intercept': transformedCMR['intercept'],
            'interceptErr': transformedCMRErrs['interceptErr'],
            'zeroMag': cmr['transformedZeroMag'],
            'scatter': transformedCMR['scatter'],
            'scatterErr': transformedCMRErrs['scatterErr']}

    return result

#-----------------------------------------------------------------------------
# Main

# Input parameters
MODEL_TYPE="bc03"

modelFileNames = ["../../../testingData/models/tau0p1Gyr_m42.20",
                "../../../testingData/models/tau0p1Gyr_m52.20",
                "../../../testingData/models/tau0p1Gyr_m62.20",
                "../../../testingData/models/tau0p1Gyr_m72.20"]
models = LoadModels(modelFileNames, modelType = MODEL_TYPE)

# Target colour and mag bands
restColPassbandFileNames = [FILTER_DIR+"U_Johnson.res",
                        FILTER_DIR+"B_Johnson.res"]
restMagPassbandFileName = [FILTER_DIR+"B_Johnson.res"]
restColour = "U-B"    # component of output file name
restMag = "B"
restColLabel = "(U-B)rest"
restMagLabel = "B"
restColPassbands = LoadPassbands(restColPassbandFileNames)
restMagPassband = LoadPassbands(restMagPassbandFileName)[0]

# Evaluate CMR zero point in the rest frame of Coma at intercept of zero
for litCMR in litCMRs:
    litCMR['transformedZeroMag'] = 0.0

# Calculate the colour, mag transformations to take each CMR to the Coma rest frame
transformations = []
for litCMR in litCMRs:
    trans = CalcColourMagTransformation(litCMR, restColPassbands,
            restMagPassband)
    transformations.append(trans)

# Transform the literature CMRs to the rest frame passbands at Coma
results = []
for litCMR, trans in zip(litCMRs, transformations):
    result = ApplyCMRTransformation(litCMR, trans)
    results.append(result)

# Write results to a text file
outFile = open("output_CMRRestConversion.txt", "w")

# Colour, mag transformation
outFile.write("# Color, mag %s rest frame transformation fit coeffs:\n" %
            (restColour))
for t in transformations:
    outFile.write("name = %s\n" % (t['name']))
    outFile.write("# Color transformation:\n")
    outFile.write("slope = %.5f\n" % (t['fitCols']['slope']))
    outFile.write("slopeError = %.5f\n" % (t['fitCols']['slopeError']))
    outFile.write("intercept = %.5f\n" % (t['fitCols']['intercept']))
    outFile.write("interceptError = %.5f\n" % (t['fitCols']['interceptError']))
    outFile.write("# Mag transformation:\n")
    outFile.write("slope = %.5f\n" % (t['fitMags']['slope']))
    outFile.write("slopeError = %.5f\n" % (t['fitMags']['slopeError']))
    outFile.write("intercept = %.5f\n" % (t['fitMags']['intercept']))
    outFile.write("interceptError = %.5f\n" % (t['fitMags']['interceptError']))

# Transformed CMR
outFile.write("# Transformed CMR:\n")
keyOrder = ["name", "redshift", "colour", "mag", "zeroMag", "slope",
            "slopeErr", "intercept", "interceptErr", "scatter", "scatterErr"]
for r in results:
    for k in keyOrder:
        for key in list(r.keys()):
            if str(key) == k:
                if type(r[key]) == str:
                    outFile.write("%s = %s\n" % (key, r[key]))
                else:
                    outFile.write("%s = %.3f\n" % (key, float(r[key])))
outFile.close()