1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
%--------------------------------------------------------------------------
% This file is part of the ASTRA Toolbox
%
% Copyright: 2010-2022, imec Vision Lab, University of Antwerp
% 2014-2022, CWI, Amsterdam
% License: Open Source under GPLv3
% Contact: astra@astra-toolbox.com
% Website: http://www.astra-toolbox.com/
%--------------------------------------------------------------------------
classdef DARTalgorithm < matlab.mixin.Copyable
% Algorithm class for Discrete Algebraic Reconstruction Technique (DART).
%----------------------------------------------------------------------
properties (GetAccess=public, SetAccess=public)
tomography = IterativeTomography(); % POLICY: Tomography object.
segmentation = SegmentationDefault(); % POLICY: Segmentation object.
smoothing = SmoothingDefault(); % POLICY: Smoothing object.
masking = MaskingDefault(); % POLICY: Masking object.
output = OutputDefault(); % POLICY: Output object.
statistics = StatisticsDefault(); % POLICY: Statistics object.
base = struct(); % DATA(set): base structure, should contain: 'sinogram', 'proj_geom', 'phantom' (optional).
memory = 'no'; % SETTING: reduce memory usage? (disables some features)
implementation = 'linear'; % SETTING: which type of projector is used ('linear', 'nonlinear')
t = 5; % SETTING: # ARMiterations, each DART iteration.
t0 = 100; % SETTING: # ARM iterations at DART initialization.
end
%----------------------------------------------------------------------
properties (GetAccess=public, SetAccess=private)
V0 = []; % DATA(get): Initial reconstruction.
V = []; % DATA(get): Reconstruction.
S = []; % DATA(get): Segmentation.
R = []; % DATA(get): Residual projection data.
Mask = []; % DATA(get): Reconstruction Mask.
stats = struct(); % Structure containing various statistics.
iterationcount = 0; % Number of performed iterations.
start_tic = 0;
initialized = 0; % Is initialized?
end
%----------------------------------------------------------------------
properties (Access=private)
adaptparam_name = {};
adaptparam_values = {};
adaptparam_iters = {};
end
%----------------------------------------------------------------------
methods
%------------------------------------------------------------------
function this = DARTalgorithm(varargin)
% Constructor
% >> D = DARTalgorithm(base); [base is a matlab struct that
% should contain 'sinogram' and
% 'proj_geom']
% >> D = DARTalgorithm('base_path'); [path to base struct file]
% >> D = DARTalgorithm(sinogram, proj_geom)
%
narginchk(1, 2)
if nargin == 1 && ischar(varargin{1})
this.base = load(varargin{1});
elseif nargin == 1 && isstruct(varargin{1})
this.base = varargin{1};
elseif nargin == 2
this.base = struct();
this.base.sinogram = varargin{1};
this.base.proj_geom = varargin{2};
else
error('invalid arguments')
end
end
%------------------------------------------------------------------
function D = deepcopy(this)
% Create a deep copy of this object.
% >> D2 = D.deepcopy();
D = copy(this);
props = properties(this);
for i = 1:length(props)
if isa(this.(props{i}), 'handle')
D.(props{i}) = copy(this.(props{i}));
end
end
end
%------------------------------------------------------------------
function this = initialize(this)
% Initializes this object.
% >> D.initialize();
% Initialize tomography part
if ~this.tomography.initialized
this.tomography.proj_geom = this.base.proj_geom;
this.tomography.initialize();
end
% Create an Initial Reconstruction
if isfield(this.base, 'V0')
this.V0 = this.base.V0;
else
this.output.pre_initial_iteration(this);
this.V0 = this.tomography.reconstruct(this.base.sinogram, this.t0);
this.output.post_initial_iteration(this);
end
this.V = this.V0;
if strcmp(this.memory,'yes')
this.base.V0 = [];
this.V0 = [];
end
this.initialized = 1;
end
%------------------------------------------------------------------
% iterate
function this = iterate(this, iters)
% Perform several iterations of the DART algorithm.
% >> D.iterate(iterations);
if strcmp(this.implementation,'linear')
this.iterate_linear(iters);
elseif strcmp(this.implementation,'nonlinear')
this.iterate_nonlinear(iters);
end
end
%------------------------------------------------------------------
% iterate - linear projector implementation
function this = iterate_linear(this, iters)
this.start_tic = tic;
for iteration = 1:iters
this.iterationcount = this.iterationcount + 1;
% initial output
this.output.pre_iteration(this);
% update adaptive parameters
this.update_adaptiveparameter(this.iterationcount);
% segmentation
this.segmentation.estimate_grey_levels(this, this.V);
this.S = this.segmentation.apply(this, this.V);
% select update and fixed pixels
this.Mask = this.masking.apply(this, this.S);
this.V = (this.V .* this.Mask) + (this.S .* (1 - this.Mask));
F = this.V;
F(this.Mask == 1) = 0;
% compute residual projection difference
this.R = this.base.sinogram - this.tomography.project(F);
% ART update part
this.V = this.tomography.reconstruct_mask(this.R, this.V, this.Mask, this.t);
% blur
this.V = this.smoothing.apply(this, this.V);
%calculate statistics
this.stats = this.statistics.apply(this);
% output
this.output.post_iteration(this);
end
end
%------------------------------------------------------------------
% iterate - nonlinear projector implementation
function this = iterate_nonlinear(this, iters)
this.start_tic = tic;
for iteration = 1:iters
this.iterationcount = this.iterationcount + 1;
% Output
this.output.pre_iteration(this);
% update adaptive parameters
this.update_adaptiveparameter(this.iterationcount)
% Segmentation
this.segmentation.estimate_grey_levels(this, this.V);
this.S = this.segmentation.apply(this, this.V);
% Select Update and Fixed Pixels
this.Mask = this.masking.apply(this, this.S);
this.V = (this.V .* this.Mask) + (this.S .* (1 - this.Mask));
% ART update part
this.V = this.tomography.reconstruct2_mask(this.base.sinogram, this.V, this.Mask, this.t);
% blur
this.V = this.smoothing.apply(this, this.V);
% calculate statistics
this.stats = this.statistics.apply(this);
% output
this.output.post_iteration(this);
end
end
%------------------------------------------------------------------
% get data
function data = getdata(this, string)
if numel(this.(string)) == 1
data = astra_mex_data2d('get',this.(string));
else
data = this.(string);
end
end
%------------------------------------------------------------------
% add adaptive parameter
function this = adaptiveparameter(this, name, values, iterations)
this.adaptparam_name{end+1} = name;
this.adaptparam_values{end+1} = values;
this.adaptparam_iters{end+1} = iterations;
end
%------------------------------------------------------------------
% update adaptive parameter
function this = update_adaptiveparameter(this, iteration)
for i = 1:numel(this.adaptparam_name)
for j = 1:numel(this.adaptparam_iters{i})
if iteration == this.adaptparam_iters{i}(j)
new_value = this.adaptparam_values{i}(j);
eval(['this.' this.adaptparam_name{i} ' = ' num2str(new_value) ';']);
end
end
end
end
%------------------------------------------------------------------
function settings = getsettings(this)
% Returns a structure containing all settings of this object.
% >> settings = tomography.getsettings();
settings.tomography = this.tomography.getsettings();
settings.smoothing = this.smoothing.getsettings();
settings.masking = this.masking.getsettings();
settings.segmentation = this.segmentation.getsettings();
end
%------------------------------------------------------------------
end % methods
end % class
|