1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
# -----------------------------------------------------------------------
# Copyright: 2010-2022, imec Vision Lab, University of Antwerp
# 2013-2022, CWI, Amsterdam
#
# Contact: astra@astra-toolbox.com
# Website: http://www.astra-toolbox.com/
#
# This file is part of the ASTRA Toolbox.
#
#
# The ASTRA Toolbox is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# The ASTRA Toolbox is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#
# -----------------------------------------------------------------------
from __future__ import print_function
import numpy as np
import math
from . import data2d
from . import data3d
from . import projector
from . import projector3d
from . import algorithm
from .log import AstraError
def astra_dict(intype):
"""Creates a dict to use with the ASTRA Toolbox.
:param intype: Type of the ASTRA object.
:type intype: :class:`string`
:returns: :class:`dict` -- An ASTRA dict of type ``intype``.
"""
if intype == 'SIRT_CUDA2':
intype = 'SIRT_CUDA'
print('SIRT_CUDA2 has been deprecated. Use SIRT_CUDA instead.')
elif intype == 'FP_CUDA2':
intype = 'FP_CUDA'
print('FP_CUDA2 has been deprecated. Use FP_CUDA instead.')
return {'type': intype}
def create_vol_geom(*varargin):
"""Create a volume geometry structure.
This method can be called in a number of ways:
``create_vol_geom(n_rows_and_cols)``:
:returns: A 2D volume geometry of size :math:`N \\times N`.
``create_vol_geom((n_rows, n_cols))``:
:returns: A 2D volume geometry of size :math:`n_rows \\times n_cols`.
``create_vol_geom(n_rows, n_cols)``:
:returns: A 2D volume geometry of size :math:`n_rows \\times n_cols`.
``create_vol_geom(n_rows, n_cols, minx, maxx, miny, maxy)``:
:returns: A 2D volume geometry of size :math:`n_rows \\times n_cols`,
windowed as :math:`minx \\leq x \\leq maxx` and :math:`miny \\leq y \\leq
maxy`. Note that rows are oriented along the Y axis, and columns along the
X axis.
``create_vol_geom((n_rows, n_cols, n_slices))``:
:returns: A 3D volume geometry of size :math:`n_rows \\times n_cols \\times
n_slices`.
``create_vol_geom(n_rows, n_cols, n_slices)``:
:returns: A 3D volume geometry of size :math:`n_rows \\times n_cols \\times
n_slices`.
``create_vol_geom(n_rows, n_cols, n_slices, minx, maxx, miny, maxy, minz, maxz)``:
:returns: A 3D volume geometry of size :math:`n_rows \\times n_cols \\times
n_slices`, windowed as :math:`minx \\leq x \\leq maxx`,
:math:`miny \\leq y \\leq maxy`, and :math:`minz \\leq z \\leq maxz`. Note
that rows are oriented along the Y axis, columns along the X axis, and
slices along the Z axis.
"""
vol_geom = {'option': {}}
# astra_create_vol_geom(row_count)
if len(varargin) == 1 and isinstance(varargin[0], int) == 1:
vol_geom['GridRowCount'] = varargin[0]
vol_geom['GridColCount'] = varargin[0]
# astra_create_vol_geom([row_count col_count])
elif len(varargin) == 1 and len(varargin[0]) == 2:
vol_geom['GridRowCount'] = varargin[0][0]
vol_geom['GridColCount'] = varargin[0][1]
# astra_create_vol_geom([row_count col_count slice_count])
elif len(varargin) == 1 and len(varargin[0]) == 3:
vol_geom['GridRowCount'] = varargin[0][0]
vol_geom['GridColCount'] = varargin[0][1]
vol_geom['GridSliceCount'] = varargin[0][2]
# astra_create_vol_geom(row_count, col_count)
elif len(varargin) == 2:
vol_geom['GridRowCount'] = varargin[0]
vol_geom['GridColCount'] = varargin[1]
# astra_create_vol_geom(row_count, col_count, min_x, max_x, min_y, max_y)
elif len(varargin) == 6:
vol_geom['GridRowCount'] = varargin[0]
vol_geom['GridColCount'] = varargin[1]
vol_geom['option']['WindowMinX'] = varargin[2]
vol_geom['option']['WindowMaxX'] = varargin[3]
vol_geom['option']['WindowMinY'] = varargin[4]
vol_geom['option']['WindowMaxY'] = varargin[5]
# astra_create_vol_geom(row_count, col_count, slice_count)
elif len(varargin) == 3:
vol_geom['GridRowCount'] = varargin[0]
vol_geom['GridColCount'] = varargin[1]
vol_geom['GridSliceCount'] = varargin[2]
# astra_create_vol_geom(row_count, col_count, slice_count, min_x, max_x, min_y, max_y, min_z, max_z)
elif len(varargin) == 9:
vol_geom['GridRowCount'] = varargin[0]
vol_geom['GridColCount'] = varargin[1]
vol_geom['GridSliceCount'] = varargin[2]
vol_geom['option']['WindowMinX'] = varargin[3]
vol_geom['option']['WindowMaxX'] = varargin[4]
vol_geom['option']['WindowMinY'] = varargin[5]
vol_geom['option']['WindowMaxY'] = varargin[6]
vol_geom['option']['WindowMinZ'] = varargin[7]
vol_geom['option']['WindowMaxZ'] = varargin[8]
# set the window options, if not set already.
if not 'WindowMinX' in vol_geom['option']:
vol_geom['option']['WindowMinX'] = -vol_geom['GridColCount'] / 2.
vol_geom['option']['WindowMaxX'] = vol_geom['GridColCount'] / 2.
vol_geom['option']['WindowMinY'] = -vol_geom['GridRowCount'] / 2.
vol_geom['option']['WindowMaxY'] = vol_geom['GridRowCount'] / 2.
if 'GridSliceCount' in vol_geom:
vol_geom['option']['WindowMinZ'] = -vol_geom['GridSliceCount'] / 2.
vol_geom['option']['WindowMaxZ'] = vol_geom['GridSliceCount'] / 2.
return vol_geom
def create_proj_geom(intype, *args):
"""Create a projection geometry.
This method can be called in a number of ways:
``create_proj_geom('parallel', detector_spacing, det_count, angles)``:
:param detector_spacing: Distance between two adjacent detector pixels.
:type detector_spacing: :class:`float`
:param det_count: Number of detector pixels.
:type det_count: :class:`int`
:param angles: Array of angles in radians.
:type angles: :class:`numpy.ndarray`
:returns: A parallel projection geometry.
``create_proj_geom('parallel_vec', det_count, V)``:
:param det_count: Number of detector pixels.
:type det_count: :class:`int`
:param V: Vector array.
:type V: :class:`numpy.ndarray`
:returns: A parallel-beam projection geometry.
``create_proj_geom('fanflat', det_width, det_count, angles, source_origin, origin_det)``:
:param det_width: Size of a detector pixel.
:type det_width: :class:`float`
:param det_count: Number of detector pixels.
:type det_count: :class:`int`
:param angles: Array of angles in radians.
:type angles: :class:`numpy.ndarray`
:param source_origin: Position of the source.
:param origin_det: Position of the detector
:returns: A fan-beam projection geometry.
``create_proj_geom('fanflat_vec', det_count, V)``:
:param det_count: Number of detector pixels.
:type det_count: :class:`int`
:param V: Vector array.
:type V: :class:`numpy.ndarray`
:returns: A fan-beam projection geometry.
``create_proj_geom('parallel3d', detector_spacing_x, detector_spacing_y, det_row_count, det_col_count, angles)``:
:param detector_spacing_*: Distance between two adjacent detector pixels.
:type detector_spacing_*: :class:`float`
:param det_row_count: Number of detector pixel rows.
:type det_row_count: :class:`int`
:param det_col_count: Number of detector pixel columns.
:type det_col_count: :class:`int`
:param angles: Array of angles in radians.
:type angles: :class:`numpy.ndarray`
:returns: A parallel projection geometry.
``create_proj_geom('cone', detector_spacing_x, detector_spacing_y, det_row_count, det_col_count, angles, source_origin, origin_det)``:
:param detector_spacing_*: Distance between two adjacent detector pixels.
:type detector_spacing_*: :class:`float`
:param det_row_count: Number of detector pixel rows.
:type det_row_count: :class:`int`
:param det_col_count: Number of detector pixel columns.
:type det_col_count: :class:`int`
:param angles: Array of angles in radians.
:type angles: :class:`numpy.ndarray`
:param source_origin: Distance between point source and origin.
:type source_origin: :class:`float`
:param origin_det: Distance between the detector and origin.
:type origin_det: :class:`float`
:returns: A cone-beam projection geometry.
``create_proj_geom('cone_vec', det_row_count, det_col_count, V)``:
:param det_row_count: Number of detector pixel rows.
:type det_row_count: :class:`int`
:param det_col_count: Number of detector pixel columns.
:type det_col_count: :class:`int`
:param V: Vector array.
:type V: :class:`numpy.ndarray`
:returns: A cone-beam projection geometry.
``create_proj_geom('parallel3d_vec', det_row_count, det_col_count, V)``:
:param det_row_count: Number of detector pixel rows.
:type det_row_count: :class:`int`
:param det_col_count: Number of detector pixel columns.
:type det_col_count: :class:`int`
:param V: Vector array.
:type V: :class:`numpy.ndarray`
:returns: A parallel projection geometry.
``create_proj_geom('sparse_matrix', det_width, det_count, angles, matrix_id)``:
:param det_width: Size of a detector pixel.
:type det_width: :class:`float`
:param det_count: Number of detector pixels.
:type det_count: :class:`int`
:param angles: Array of angles in radians.
:type angles: :class:`numpy.ndarray`
:param matrix_id: ID of the sparse matrix.
:type matrix_id: :class:`int`
:returns: A projection geometry based on a sparse matrix.
"""
if intype == 'parallel':
if len(args) < 3:
raise AstraError(
'Not enough variables. Usage: astra.create_proj_geom(parallel, detector_spacing, det_count, angles)')
return {'type': 'parallel', 'DetectorWidth': args[0], 'DetectorCount': args[1], 'ProjectionAngles': args[2]}
elif intype == 'parallel_vec':
if len(args) < 2:
raise AstraError('Not enough variables. Usage: astra.create_proj_geom(parallel_vec, det_count, V)')
if not args[1].shape[1] == 6:
raise AstraError('V should be a Nx6 matrix, with N the number of projections')
return {'type':'parallel_vec', 'DetectorCount':args[0], 'Vectors':args[1]}
elif intype == 'fanflat':
if len(args) < 5:
raise AstraError('Not enough variables. Usage: astra.create_proj_geom(fanflat, det_width, det_count, angles, source_origin, origin_det)')
return {'type': 'fanflat', 'DetectorWidth': args[0], 'DetectorCount': args[1], 'ProjectionAngles': args[2], 'DistanceOriginSource': args[3], 'DistanceOriginDetector': args[4]}
elif intype == 'fanflat_vec':
if len(args) < 2:
raise AstraError('Not enough variables. Usage: astra.create_proj_geom(fanflat_vec, det_count, V)')
if not args[1].shape[1] == 6:
raise AstraError('V should be a Nx6 matrix, with N the number of projections')
return {'type':'fanflat_vec', 'DetectorCount':args[0], 'Vectors':args[1]}
elif intype == 'parallel3d':
if len(args) < 5:
raise AstraError('Not enough variables. Usage: astra.reate_proj_geom(parallel3d, detector_spacing_x, detector_spacing_y, det_row_count, det_col_count, angles)')
return {'type':'parallel3d', 'DetectorSpacingX':args[0], 'DetectorSpacingY':args[1], 'DetectorRowCount':args[2], 'DetectorColCount':args[3],'ProjectionAngles':args[4]}
elif intype == 'cone':
if len(args) < 7:
raise AstraError('Not enough variables. Usage: astra.create_proj_geom(cone, detector_spacing_x, detector_spacing_y, det_row_count, det_col_count, angles, source_origin, origin_det)')
return {'type': 'cone','DetectorSpacingX':args[0], 'DetectorSpacingY':args[1], 'DetectorRowCount':args[2],'DetectorColCount':args[3],'ProjectionAngles':args[4],'DistanceOriginSource': args[5],'DistanceOriginDetector':args[6]}
elif intype == 'cone_vec':
if len(args) < 3:
raise AstraError('Not enough variables. Usage: astra.create_proj_geom(cone_vec, det_row_count, det_col_count, V)')
if not args[2].shape[1] == 12:
raise AstraError('V should be a Nx12 matrix, with N the number of projections')
return {'type': 'cone_vec','DetectorRowCount':args[0],'DetectorColCount':args[1],'Vectors':args[2]}
elif intype == 'parallel3d_vec':
if len(args) < 3:
raise AstraError('Not enough variables. Usage: astra.create_proj_geom(parallel3d_vec, det_row_count, det_col_count, V)')
if not args[2].shape[1] == 12:
raise AstraError('V should be a Nx12 matrix, with N the number of projections')
return {'type': 'parallel3d_vec','DetectorRowCount':args[0],'DetectorColCount':args[1],'Vectors':args[2]}
elif intype == 'sparse_matrix':
if len(args) < 4:
raise AstraError(
'Not enough variables. Usage: astra.create_proj_geom(sparse_matrix, det_width, det_count, angles, matrix_id)')
return {'type': 'sparse_matrix', 'DetectorWidth': args[0], 'DetectorCount': args[1], 'ProjectionAngles': args[2], 'MatrixID': args[3]}
else:
raise AstraError('Unknown projection geometry type: ' + intype)
def create_backprojection(data, proj_id, returnData=True):
"""Create a backprojection of a sinogram (2D).
:param data: Sinogram data or ID.
:type data: :class:`numpy.ndarray` or :class:`int`
:param proj_id: ID of the projector to use.
:type proj_id: :class:`int`
:param returnData: If False, only return the ID of the backprojection.
:type returnData: :class:`bool`
:returns: :class:`int` or (:class:`int`, :class:`numpy.ndarray`) -- If ``returnData=False``, returns the ID of the backprojection. Otherwise, returns a tuple containing the ID of the backprojection and the backprojection itself, in that order.
"""
proj_geom = projector.projection_geometry(proj_id)
vol_geom = projector.volume_geometry(proj_id)
if isinstance(data, np.ndarray):
sino_id = data2d.create('-sino', proj_geom, data)
else:
sino_id = data
vol_id = data2d.create('-vol', vol_geom, 0)
if projector.is_cuda(proj_id):
algString = 'BP_CUDA'
else:
algString = 'BP'
cfg = astra_dict(algString)
cfg['ProjectorId'] = proj_id
cfg['ProjectionDataId'] = sino_id
cfg['ReconstructionDataId'] = vol_id
alg_id = algorithm.create(cfg)
algorithm.run(alg_id)
algorithm.delete(alg_id)
if isinstance(data, np.ndarray):
data2d.delete(sino_id)
if returnData:
return vol_id, data2d.get(vol_id)
else:
return vol_id
def create_backprojection3d_gpu(data, proj_geom, vol_geom, returnData=True):
"""Create a backprojection of a sinogram (3D) using CUDA.
:param data: Sinogram data or ID.
:type data: :class:`numpy.ndarray` or :class:`int`
:param proj_geom: Projection geometry.
:type proj_geom: :class:`dict`
:param vol_geom: Volume geometry.
:type vol_geom: :class:`dict`
:param returnData: If False, only return the ID of the backprojection.
:type returnData: :class:`bool`
:returns: :class:`int` or (:class:`int`, :class:`numpy.ndarray`) -- If ``returnData=False``, returns the ID of the backprojection. Otherwise, returns a tuple containing the ID of the backprojection and the backprojection itself, in that order.
"""
if isinstance(data, np.ndarray):
sino_id = data3d.create('-sino', proj_geom, data)
else:
sino_id = data
vol_id = data3d.create('-vol', vol_geom, 0)
cfg = astra_dict('BP3D_CUDA')
cfg['ProjectionDataId'] = sino_id
cfg['ReconstructionDataId'] = vol_id
alg_id = algorithm.create(cfg)
algorithm.run(alg_id)
algorithm.delete(alg_id)
if isinstance(data, np.ndarray):
data3d.delete(sino_id)
if returnData:
return vol_id, data3d.get(vol_id)
else:
return vol_id
def create_sino(data, proj_id, returnData=True, gpuIndex=None):
"""Create a forward projection of an image (2D).
:param data: Image data or ID.
:type data: :class:`numpy.ndarray` or :class:`int`
:param proj_id: ID of the projector to use.
:type proj_id: :class:`int`
:param returnData: If False, only return the ID of the forward projection.
:type returnData: :class:`bool`
:param gpuIndex: Optional GPU index.
:type gpuIndex: :class:`int`
:returns: :class:`int` or (:class:`int`, :class:`numpy.ndarray`)
If ``returnData=False``, returns the ID of the forward
projection. Otherwise, returns a tuple containing the ID of the
forward projection and the forward projection itself, in that
order.
"""
proj_geom = projector.projection_geometry(proj_id)
vol_geom = projector.volume_geometry(proj_id)
if isinstance(data, np.ndarray):
volume_id = data2d.create('-vol', vol_geom, data)
else:
volume_id = data
sino_id = data2d.create('-sino', proj_geom, 0)
if projector.is_cuda(proj_id):
algString = 'FP_CUDA'
else:
algString = 'FP'
cfg = astra_dict(algString)
cfg['ProjectorId'] = proj_id
if gpuIndex is not None:
cfg['option'] = {'GPUindex': gpuIndex}
cfg['ProjectionDataId'] = sino_id
cfg['VolumeDataId'] = volume_id
alg_id = algorithm.create(cfg)
algorithm.run(alg_id)
algorithm.delete(alg_id)
if isinstance(data, np.ndarray):
data2d.delete(volume_id)
if returnData:
return sino_id, data2d.get(sino_id)
else:
return sino_id
def create_sino3d_gpu(data, proj_geom, vol_geom, returnData=True, gpuIndex=None):
"""Create a forward projection of an image (3D).
:param data: Image data or ID.
:type data: :class:`numpy.ndarray` or :class:`int`
:param proj_geom: Projection geometry.
:type proj_geom: :class:`dict`
:param vol_geom: Volume geometry.
:type vol_geom: :class:`dict`
:param returnData: If False, only return the ID of the forward projection.
:type returnData: :class:`bool`
:param gpuIndex: Optional GPU index.
:type gpuIndex: :class:`int`
:returns: :class:`int` or (:class:`int`, :class:`numpy.ndarray`) -- If ``returnData=False``, returns the ID of the forward projection. Otherwise, returns a tuple containing the ID of the forward projection and the forward projection itself, in that order.
"""
if isinstance(data, np.ndarray):
volume_id = data3d.create('-vol', vol_geom, data)
else:
volume_id = data
sino_id = data3d.create('-sino', proj_geom, 0)
algString = 'FP3D_CUDA'
cfg = astra_dict(algString)
if not gpuIndex==None:
cfg['option']={'GPUindex':gpuIndex}
cfg['ProjectionDataId'] = sino_id
cfg['VolumeDataId'] = volume_id
alg_id = algorithm.create(cfg)
algorithm.run(alg_id)
algorithm.delete(alg_id)
if isinstance(data, np.ndarray):
data3d.delete(volume_id)
if returnData:
return sino_id, data3d.get(sino_id)
else:
return sino_id
def create_reconstruction(rec_type, proj_id, sinogram, iterations=1, use_mask='no', mask=np.array([]), use_minc='no', minc=0, use_maxc='no', maxc=255, returnData=True, filterType=None, filterData=None):
"""Create a reconstruction of a sinogram (2D).
:param rec_type: Name of the reconstruction algorithm.
:type rec_type: :class:`string`
:param proj_id: ID of the projector to use.
:type proj_id: :class:`int`
:param sinogram: Sinogram data or ID.
:type sinogram: :class:`numpy.ndarray` or :class:`int`
:param iterations: Number of iterations to run.
:type iterations: :class:`int`
:param use_mask: Whether to use a mask.
:type use_mask: ``'yes'`` or ``'no'``
:param mask: Mask data or ID
:type mask: :class:`numpy.ndarray` or :class:`int`
:param use_minc: Whether to force a minimum value on the reconstruction pixels.
:type use_minc: ``'yes'`` or ``'no'``
:param minc: Minimum value to use.
:type minc: :class:`float`
:param use_maxc: Whether to force a maximum value on the reconstruction pixels.
:type use_maxc: ``'yes'`` or ``'no'``
:param maxc: Maximum value to use.
:type maxc: :class:`float`
:param returnData: If False, only return the ID of the reconstruction.
:type returnData: :class:`bool`
:param filterType: Which type of filter to use for filter-based methods.
:type filterType: :class:`string`
:param filterData: Optional filter data for filter-based methods.
:type filterData: :class:`numpy.ndarray`
:returns: :class:`int` or (:class:`int`, :class:`numpy.ndarray`) -- If ``returnData=False``, returns the ID of the reconstruction. Otherwise, returns a tuple containing the ID of the reconstruction and reconstruction itself, in that order.
"""
proj_geom = projector.projection_geometry(proj_id)
if isinstance(sinogram, np.ndarray):
sino_id = data2d.create('-sino', proj_geom, sinogram)
else:
sino_id = sinogram
vol_geom = projector.volume_geometry(proj_id)
recon_id = data2d.create('-vol', vol_geom, 0)
cfg = astra_dict(rec_type)
cfg['ProjectorId'] = proj_id
cfg['ProjectionDataId'] = sino_id
cfg['ReconstructionDataId'] = recon_id
cfg['options'] = {}
if use_mask == 'yes':
if isinstance(mask, np.ndarray):
mask_id = data2d.create('-vol', vol_geom, mask)
else:
mask_id = mask
cfg['options']['ReconstructionMaskId'] = mask_id
if not filterType == None:
cfg['FilterType'] = filterType
if not filterData == None:
if isinstance(filterData, np.ndarray):
nexpow = int(
pow(2, math.ceil(math.log(2 * proj_geom['DetectorCount'], 2))))
filtSize = nexpow / 2 + 1
filt_proj_geom = create_proj_geom(
'parallel', 1.0, filtSize, proj_geom['ProjectionAngles'])
filt_id = data2d.create('-sino', filt_proj_geom, filterData)
else:
filt_id = filterData
cfg['FilterSinogramId'] = filt_id
cfg['options']['UseMinConstraint'] = use_minc
cfg['options']['MinConstraintValue'] = minc
cfg['options']['UseMaxConstraint'] = use_maxc
cfg['options']['MaxConstraintValue'] = maxc
cfg['options']['ProjectionOrder'] = 'random'
alg_id = algorithm.create(cfg)
algorithm.run(alg_id, iterations)
algorithm.delete(alg_id)
if isinstance(sinogram, np.ndarray):
data2d.delete(sino_id)
if use_mask == 'yes' and isinstance(mask, np.ndarray):
data2d.delete(mask_id)
if not filterData == None:
if isinstance(filterData, np.ndarray):
data2d.delete(filt_id)
if returnData:
return recon_id, data2d.get(recon_id)
else:
return recon_id
def create_projector(proj_type, proj_geom, vol_geom, options=None):
"""Create a 2D or 3D projector.
:param proj_type: Projector type, such as ``'line'``, ``'linear'``, ...
:type proj_type: :class:`string`
:param proj_geom: Projection geometry.
:type proj_geom: :class:`dict`
:param vol_geom: Volume geometry.
:type vol_geom: :class:`dict`
:param options: Projector options structure defining ``'VoxelSuperSampling'``, ``'DetectorSuperSampling'``.
:type options: :class:`dict`
:returns: :class:`int` -- The ID of the projector.
"""
if proj_type == 'blob':
raise NotImplementedError('Blob type not yet implemented')
cfg = astra_dict(proj_type)
cfg['ProjectionGeometry'] = proj_geom
cfg['VolumeGeometry'] = vol_geom
if options is not None:
cfg['options'] = options
types3d = ['cuda3d']
if proj_type in types3d:
return projector3d.create(cfg)
else:
return projector.create(cfg)
|