1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
# -----------------------------------------------------------------------
# Copyright: 2010-2022, imec Vision Lab, University of Antwerp
# 2013-2022, CWI, Amsterdam
#
# Contact: astra@astra-toolbox.com
# Website: http://www.astra-toolbox.com/
#
# This file is part of the ASTRA Toolbox.
#
#
# The ASTRA Toolbox is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# The ASTRA Toolbox is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#
# -----------------------------------------------------------------------
"""Additional functions for PyAstraToolbox.
.. moduleauthor:: Daniel M. Pelt <D.M.Pelt@cwi.nl>
"""
from copy import deepcopy
from . import creators as ac
import numpy as np
from . import data2d
from . import data3d
from . import projector
from . import algorithm
from . import pythonutils
from .log import AstraError
def clear():
"""Clears all used memory of the ASTRA Toolbox.
.. note::
This is irreversible.
"""
data2d.clear()
data3d.clear()
projector.clear()
algorithm.clear()
def data_op(op, data, scalar, gpu_core, mask=None):
"""Perform data operation on data.
:param op: Operation to perform.
:param data: Data to perform operation on.
:param scalar: Scalar argument to data operation.
:param gpu_core: GPU core to perform operation on.
:param mask: Optional mask.
"""
cfg = ac.astra_dict('DataOperation_CUDA')
cfg['Operation'] = op
cfg['Scalar'] = scalar
cfg['DataId'] = data
if not mask == None:
cfg['MaskId'] = mask
cfg['option']['GPUindex'] = gpu_core
alg_id = algorithm.create(cfg)
algorithm.run(alg_id)
algorithm.delete(alg_id)
def add_noise_to_sino(sinogram_in, I0, seed=None):
"""Adds Poisson noise to a sinogram.
:param sinogram_in: Sinogram to add noise to.
:type sinogram_in: :class:`numpy.ndarray`
:param I0: Background intensity. Lower values lead to higher noise.
:type I0: :class:`float`
:returns: :class:`numpy.ndarray` -- the sinogram with added noise.
"""
if not seed==None:
curstate = np.random.get_state()
np.random.seed(seed)
if isinstance(sinogram_in, np.ndarray):
sinogramRaw = sinogram_in
else:
sinogramRaw = data2d.get(sinogram_in)
max_sinogramRaw = sinogramRaw.max()
sinogramRawScaled = sinogramRaw / max_sinogramRaw
# to detector count
sinogramCT = I0 * np.exp(-sinogramRawScaled)
# add poison noise
sinogramCT_C = np.zeros_like(sinogramCT)
for i in range(sinogramCT_C.shape[0]):
for j in range(sinogramCT_C.shape[1]):
sinogramCT_C[i, j] = np.random.poisson(sinogramCT[i, j])
# to density
sinogramCT_D = sinogramCT_C / I0
sinogram_out = -max_sinogramRaw * np.log(sinogramCT_D)
if not isinstance(sinogram_in, np.ndarray):
data2d.store(sinogram_in, sinogram_out)
if not seed==None:
np.random.set_state(curstate)
return sinogram_out
def move_vol_geom(geom, pos, is_relative=False):
"""Moves center of volume geometry to new position.
:param geom: Input volume geometry
:type geom: :class:`dict`
:param pos: Tuple (x,y[,z]) for new position, with the center of the image at (0,0[,0])
:type pos: :class:`tuple`
:param is_relative: Whether new position is relative to the old position
:type is_relative: :class:`bool`
:returns: :class:`dict` -- Volume geometry with the new center
"""
ret_geom = geom.copy()
ret_geom['option'] = geom['option'].copy()
if not is_relative:
ret_geom['option']['WindowMinX'] = -geom['GridColCount']/2.
ret_geom['option']['WindowMaxX'] = geom['GridColCount']/2.
ret_geom['option']['WindowMinY'] = -geom['GridRowCount']/2.
ret_geom['option']['WindowMaxY'] = geom['GridRowCount']/2.
if len(pos)>2:
ret_geom['option']['WindowMinZ'] = -geom['GridSliceCount']/2.
ret_geom['option']['WindowMaxZ'] = geom['GridSliceCount']/2.
ret_geom['option']['WindowMinX'] += pos[0]
ret_geom['option']['WindowMaxX'] += pos[0]
ret_geom['option']['WindowMinY'] += pos[1]
ret_geom['option']['WindowMaxY'] += pos[1]
if len(pos)>2:
ret_geom['option']['WindowMinZ'] += pos[2]
ret_geom['option']['WindowMaxZ'] += pos[2]
return ret_geom
def geom_size(geom, dim=None):
"""Returns the size of a volume or sinogram, based on the projection or volume geometry.
:param geom: Geometry to calculate size from
:type geometry: :class:`dict`
:param dim: Optional axis index to return
:type dim: :class:`int`
"""
return pythonutils.geom_size(geom,dim)
def geom_2vec(proj_geom):
"""Returns a vector-based projection geometry from a basic projection geometry.
:param proj_geom: Projection geometry to convert
:type proj_geom: :class:`dict`
"""
if proj_geom['type'] == 'parallel':
angles = proj_geom['ProjectionAngles']
vectors = np.zeros((len(angles), 6))
for i in range(len(angles)):
# source
vectors[i, 0] = np.sin(angles[i])
vectors[i, 1] = -np.cos(angles[i])
# center of detector
vectors[i, 2] = 0
vectors[i, 3] = 0
# vector from detector pixel 0 to 1
vectors[i, 4] = np.cos(angles[i]) * proj_geom['DetectorWidth']
vectors[i, 5] = np.sin(angles[i]) * proj_geom['DetectorWidth']
proj_geom_out = ac.create_proj_geom(
'parallel_vec', proj_geom['DetectorCount'], vectors)
elif proj_geom['type'] == 'fanflat':
angles = proj_geom['ProjectionAngles']
vectors = np.zeros((len(angles), 6))
for i in range(len(angles)):
# source
vectors[i, 0] = np.sin(angles[i]) * proj_geom['DistanceOriginSource']
vectors[i, 1] = -np.cos(angles[i]) * proj_geom['DistanceOriginSource']
# center of detector
vectors[i, 2] = -np.sin(angles[i]) * proj_geom['DistanceOriginDetector']
vectors[i, 3] = np.cos(angles[i]) * proj_geom['DistanceOriginDetector']
# vector from detector pixel 0 to 1
vectors[i, 4] = np.cos(angles[i]) * proj_geom['DetectorWidth']
vectors[i, 5] = np.sin(angles[i]) * proj_geom['DetectorWidth']
proj_geom_out = ac.create_proj_geom(
'fanflat_vec', proj_geom['DetectorCount'], vectors)
elif proj_geom['type'] == 'cone':
angles = proj_geom['ProjectionAngles']
vectors = np.zeros((len(angles), 12))
for i in range(len(angles)):
# source
vectors[i, 0] = np.sin(angles[i]) * proj_geom['DistanceOriginSource']
vectors[i, 1] = -np.cos(angles[i]) * proj_geom['DistanceOriginSource']
vectors[i, 2] = 0
# center of detector
vectors[i, 3] = -np.sin(angles[i]) * proj_geom['DistanceOriginDetector']
vectors[i, 4] = np.cos(angles[i]) * proj_geom['DistanceOriginDetector']
vectors[i, 5] = 0
# vector from detector pixel (0,0) to (0,1)
vectors[i, 6] = np.cos(angles[i]) * proj_geom['DetectorSpacingX']
vectors[i, 7] = np.sin(angles[i]) * proj_geom['DetectorSpacingX']
vectors[i, 8] = 0
# vector from detector pixel (0,0) to (1,0)
vectors[i, 9] = 0
vectors[i, 10] = 0
vectors[i, 11] = proj_geom['DetectorSpacingY']
proj_geom_out = ac.create_proj_geom(
'cone_vec', proj_geom['DetectorRowCount'], proj_geom['DetectorColCount'], vectors)
# PARALLEL
elif proj_geom['type'] == 'parallel3d':
angles = proj_geom['ProjectionAngles']
vectors = np.zeros((len(angles), 12))
for i in range(len(angles)):
# ray direction
vectors[i, 0] = np.sin(angles[i])
vectors[i, 1] = -np.cos(angles[i])
vectors[i, 2] = 0
# center of detector
vectors[i, 3] = 0
vectors[i, 4] = 0
vectors[i, 5] = 0
# vector from detector pixel (0,0) to (0,1)
vectors[i, 6] = np.cos(angles[i]) * proj_geom['DetectorSpacingX']
vectors[i, 7] = np.sin(angles[i]) * proj_geom['DetectorSpacingX']
vectors[i, 8] = 0
# vector from detector pixel (0,0) to (1,0)
vectors[i, 9] = 0
vectors[i, 10] = 0
vectors[i, 11] = proj_geom['DetectorSpacingY']
proj_geom_out = ac.create_proj_geom(
'parallel3d_vec', proj_geom['DetectorRowCount'], proj_geom['DetectorColCount'], vectors)
elif proj_geom['type'] in ['parallel_vec', 'fanflat_vec', 'parallel3d_vec', 'cone_vec']:
return deepcopy(proj_geom)
else:
raise AstraError('No suitable vector geometry found for type: ' + proj_geom['type'])
return proj_geom_out
def geom_postalignment(proj_geom, factor):
"""Apply a postalignment to a projection geometry. Can be used to model the
rotation axis offset.
For 2D geometries, the argument factor is a single float specifying the
distance to shift the detector (measured in detector pixels).
For 3D geometries, factor can be a pair of floats specifying the horizontal
resp. vertical distances to shift the detector. If only a single float
is specified, this is treated as a horizontal shift.
:param proj_geom: input projection geometry
:type proj_geom: :class:`dict`
:param factor: number of pixels to shift the detector
:type factor: :class:`float`
"""
proj_geom = geom_2vec(proj_geom)
if proj_geom['type'] == 'parallel_vec' or proj_geom['type'] == 'fanflat_vec':
V = proj_geom['Vectors']
V[:,2:4] = V[:,2:4] + factor * V[:,4:6]
elif proj_geom['type'] == 'parallel3d_vec' or proj_geom['type'] == 'cone_vec':
if isinstance(factor, (float, int)):
factor = factor, 0
V = proj_geom['Vectors']
V[:,3:6] = V[:,3:6] + factor[0] * V[:,6:9]
if len(factor) > 1: # Accommodate factor = (number,) semantics
V[:,3:6] = V[:,3:6] + factor[1] * V[:,9:12]
else:
raise AstraError(proj_geom['type'] + 'geometry is not suitable for postalignment')
return proj_geom
|