1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
# -----------------------------------------------------------------------
# Copyright: 2010-2022, imec Vision Lab, University of Antwerp
# 2013-2022, CWI, Amsterdam
#
# Contact: astra@astra-toolbox.com
# Website: http://www.astra-toolbox.com/
#
# This file is part of the ASTRA Toolbox.
#
#
# The ASTRA Toolbox is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# The ASTRA Toolbox is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
#
# -----------------------------------------------------------------------
from . import data2d
from . import data3d
from . import projector
from . import projector3d
from . import creators
from . import algorithm
from . import functions
import numpy as np
from functools import reduce
import operator
import scipy.sparse.linalg
class OpTomo(scipy.sparse.linalg.LinearOperator):
"""Object that imitates a projection matrix with a given projector.
This object can do forward projection by using the ``*`` operator::
W = astra.OpTomo(proj_id)
fp = W*image
bp = W.T*sinogram
It can also be used in minimization methods of the :mod:`scipy.sparse.linalg` module::
W = astra.OpTomo(proj_id)
output = scipy.sparse.linalg.lsqr(W,sinogram)
:param proj_id: ID to a projector.
:type proj_id: :class:`int`
"""
def __init__(self,proj_id):
self.dtype = np.float32
try:
self.vg = projector.volume_geometry(proj_id)
self.pg = projector.projection_geometry(proj_id)
self.data_mod = data2d
self.appendString = ""
if projector.is_cuda(proj_id):
self.appendString += "_CUDA"
except Exception:
self.vg = projector3d.volume_geometry(proj_id)
self.pg = projector3d.projection_geometry(proj_id)
self.data_mod = data3d
self.appendString = "3D"
if projector3d.is_cuda(proj_id):
self.appendString += "_CUDA"
self.vshape = functions.geom_size(self.vg)
self.vsize = reduce(operator.mul,self.vshape)
self.sshape = functions.geom_size(self.pg)
self.ssize = reduce(operator.mul,self.sshape)
self.shape = (self.ssize, self.vsize)
self.proj_id = proj_id
self.transposeOpTomo = OpTomoTranspose(self)
try:
self.T = self.transposeOpTomo
except AttributeError:
# Scipy >= 0.16 defines self.T using self._transpose()
pass
def _transpose(self):
return self.transposeOpTomo
# real operator
_adjoint = _transpose
def __checkArray(self, arr, shp):
if len(arr.shape)==1:
arr = arr.reshape(shp)
if arr.dtype != np.float32:
arr = arr.astype(np.float32)
if arr.flags['C_CONTIGUOUS']==False:
arr = np.ascontiguousarray(arr)
return arr
def _matvec(self,v):
"""Implements the forward operator.
:param v: Volume to forward project.
:type v: :class:`numpy.ndarray`
"""
return self.FP(v, out=None).ravel()
def rmatvec(self,s):
"""Implements the transpose operator.
:param s: The projection data.
:type s: :class:`numpy.ndarray`
"""
return self.BP(s, out=None).ravel()
def __mul__(self,v):
"""Provides easy forward operator by *.
:param v: Volume to forward project.
:type v: :class:`numpy.ndarray`
"""
# Catch the case of a forward projection of a 2D/3D image
if isinstance(v, np.ndarray) and v.shape==self.vshape:
return self._matvec(v)
return scipy.sparse.linalg.LinearOperator.__mul__(self, v)
def reconstruct(self, method, s, iterations=1, extraOptions = None):
"""Reconstruct an object.
:param method: Method to use for reconstruction.
:type method: :class:`string`
:param s: The projection data.
:type s: :class:`numpy.ndarray`
:param iterations: Number of iterations to use.
:type iterations: :class:`int`
:param extraOptions: Extra options to use during reconstruction (i.e. for cfg['option']).
:type extraOptions: :class:`dict`
"""
if extraOptions is None:
extraOptions={}
s = self.__checkArray(s, self.sshape)
sid = self.data_mod.link('-sino',self.pg,s)
v = np.zeros(self.vshape,dtype=np.float32)
vid = self.data_mod.link('-vol',self.vg,v)
cfg = creators.astra_dict(method)
cfg['ProjectionDataId'] = sid
cfg['ReconstructionDataId'] = vid
cfg['ProjectorId'] = self.proj_id
cfg['option'] = extraOptions
alg_id = algorithm.create(cfg)
algorithm.run(alg_id,iterations)
algorithm.delete(alg_id)
self.data_mod.delete([vid,sid])
return v
def FP(self,v,out=None):
"""Perform forward projection.
Output must have the right 2D/3D shape. Input may also be flattened.
Output must also be contiguous and float32. This isn't required for the
input, but it is more efficient if it is.
:param v: Volume to forward project.
:type v: :class:`numpy.ndarray`
:param out: Array to store result in.
:type out: :class:`numpy.ndarray`
"""
v = self.__checkArray(v, self.vshape)
vid = self.data_mod.link('-vol',self.vg,v)
if out is None:
out = np.zeros(self.sshape,dtype=np.float32)
sid = self.data_mod.link('-sino',self.pg,out)
cfg = creators.astra_dict('FP'+self.appendString)
cfg['ProjectionDataId'] = sid
cfg['VolumeDataId'] = vid
cfg['ProjectorId'] = self.proj_id
fp_id = algorithm.create(cfg)
algorithm.run(fp_id)
algorithm.delete(fp_id)
self.data_mod.delete([vid,sid])
return out
def BP(self,s,out=None):
"""Perform backprojection.
Output must have the right 2D/3D shape. Input may also be flattened.
Output must also be contiguous and float32. This isn't required for the
input, but it is more efficient if it is.
:param : The projection data.
:type s: :class:`numpy.ndarray`
:param out: Array to store result in.
:type out: :class:`numpy.ndarray`
"""
s = self.__checkArray(s, self.sshape)
sid = self.data_mod.link('-sino',self.pg,s)
if out is None:
out = np.zeros(self.vshape,dtype=np.float32)
vid = self.data_mod.link('-vol',self.vg,out)
cfg = creators.astra_dict('BP'+self.appendString)
cfg['ProjectionDataId'] = sid
cfg['ReconstructionDataId'] = vid
cfg['ProjectorId'] = self.proj_id
bp_id = algorithm.create(cfg)
algorithm.run(bp_id)
algorithm.delete(bp_id)
self.data_mod.delete([vid,sid])
return out
class OpTomoTranspose(scipy.sparse.linalg.LinearOperator):
"""This object provides the transpose operation (``.T``) of the OpTomo object.
Do not use directly, since it can be accessed as member ``.T`` of
an :class:`OpTomo` object.
"""
def __init__(self,parent):
self.parent = parent
self.dtype = np.float32
self.shape = (parent.shape[1], parent.shape[0])
try:
self.T = self.parent
except AttributeError:
# Scipy >= 0.16 defines self.T using self._transpose()
pass
def _matvec(self, s):
return self.parent.rmatvec(s)
def rmatvec(self, v):
return self.parent.matvec(v)
def _transpose(self):
return self.parent
# real operator
_adjoint = _transpose
def __mul__(self,s):
# Catch the case of a backprojection of 2D/3D data
if isinstance(s, np.ndarray) and s.shape==self.parent.sshape:
return self._matvec(s)
return scipy.sparse.linalg.LinearOperator.__mul__(self, s)
|