1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
|
import numpy as np
import astra
import math
import pytest
# Display sinograms with mismatch on test failure
DISPLAY=False
NONUNITDET=True
OBLIQUE=True
FLEXVOL=True
NONSQUARE=False # non-square pixels not supported yet by most projectors
# Round interpolation weight to 8 bits to emulate CUDA texture unit precision
CUDA_8BIT_LINEAR=True
CUDA_TOL=2e-2
nloops = 50
seed = 123
# KNOWN FAILURES:
# fan/strip relatively high numerical errors around 45 degrees
# return length of intersection of the line through points src = (x,y)
# and det (x,y), and the rectangle defined by xmin, ymin, xmax, ymax
def intersect_line_rectangle(src, det, xmin, xmax, ymin, ymax):
EPS = 1e-5
if np.abs(src[0] - det[0]) < EPS:
if src[0] >= xmin and src[0] < xmax:
return ymax - ymin
else:
return 0.0
if np.abs(src[1] - det[1]) < EPS:
if src[1] >= ymin and src[1] < ymax:
return xmax - xmin
else:
return 0.0
n = np.sqrt((det[0] - src[0]) ** 2 + (det[1] - src[1]) ** 2)
check = [ (-(xmin - src[0]), -(det[0] - src[0]) / n ),
(xmax - src[0], (det[0] - src[0]) / n ),
(-(ymin - src[1]), -(det[1] - src[1]) / n ),
(ymax - src[1], (det[1] - src[1]) / n ) ]
pre = [ -np.inf ]
post = [ np.inf ]
for p, q in check:
r = p / (1.0 * q)
if q > 0:
post.append(r) # exiting half-plane
else:
pre.append(r) # entering half-plane
end_r = np.min(post)
start_r = np.max(pre)
if end_r > start_r:
return end_r - start_r
else:
return 0.0
def intersect_line_rectangle_feather(src, det, xmin, xmax, ymin, ymax, feather):
return intersect_line_rectangle(src, det,
xmin-feather, xmax+feather,
ymin-feather, ymax+feather)
def intersect_line_rectangle_interval(src, det, xmin, xmax, ymin, ymax, f):
a = intersect_line_rectangle_feather(src, det, xmin, xmax, ymin, ymax, -f)
b = intersect_line_rectangle(src, det, xmin, xmax, ymin, ymax)
c = intersect_line_rectangle_feather(src, det, xmin, xmax, ymin, ymax, f)
return (a,b,c)
# x-coord of intersection of the line (src, det) with the horizontal line at y
def intersect_line_horizontal(src, det, y):
EPS = 1e-5
if np.abs(src[1] - det[1]) < EPS:
return np.nan
t = (y - src[1]) / (det[1] - src[1])
return src[0] + t * (det[0] - src[0])
# y-coord of intersection of the line (src, det) with the vertical line at x
def intersect_line_vertical(src, det, x):
src = ( src[1], src[0] )
det = ( det[1], det[0] )
return intersect_line_horizontal(src, det, x)
# length of the intersection of the strip with boundaries edge1, edge2 with the horizontal
# segment at y, with horizontal extent x_seg
def intersect_ray_horizontal_segment(edge1, edge2, y, x_seg):
e1 = intersect_line_horizontal(edge1[0], edge1[1], y)
e2 = intersect_line_horizontal(edge2[0], edge2[1], y)
if not (np.isfinite(e1) and np.isfinite(e2)):
return np.nan
(e1, e2) = np.sort([e1, e2])
(x1, x2) = np.sort(x_seg)
l = np.max([e1, x1])
r = np.min([e2, x2])
return np.max([r-l, 0.0])
def intersect_ray_vertical_segment(edge1, edge2, x, y_seg):
# mirror edge1 and edge2
edge1 = [ (a[1], a[0]) for a in edge1 ]
edge2 = [ (a[1], a[0]) for a in edge2 ]
return intersect_ray_horizontal_segment(edge1, edge2, x, y_seg)
# weight of the intersection of line with the horizontal segment at y, with horizontal extent x_seg
# using linear interpolation
def intersect_line_horizontal_segment_linear(src, det, y, x_seg, inter_width):
EPS = 1e-5
x = intersect_line_horizontal(src, det, y)
assert(x_seg[1] - x_seg[0] + EPS >= inter_width)
if x < x_seg[0] - 0.5*inter_width:
return 0.0
elif x < x_seg[0] + 0.5*inter_width:
return (x - (x_seg[0] - 0.5*inter_width)) / inter_width
elif x < x_seg[1] - 0.5*inter_width:
return 1.0
elif x < x_seg[1] + 0.5*inter_width:
return (x_seg[1] + 0.5*inter_width - x) / inter_width
else:
return 0.0
def intersect_line_vertical_segment_linear(src, det, x, y_seg, inter_height):
src = ( src[1], src[0] )
det = ( det[1], det[0] )
return intersect_line_horizontal_segment_linear(src, det, x, y_seg, inter_height)
def area_signed(a, b):
return a[0] * b[1] - a[1] * b[0]
# is c to the left of ab
def is_left_of(a, b, c):
EPS = 1e-5
return area_signed( (b[0] - a[0], b[1] - a[1]), (c[0] - a[0], c[1] - a[1]) ) > EPS
# compute area of rect on left side of line
def halfarea_rect_line(src, det, xmin, xmax, ymin, ymax):
pts = ( (xmin,ymin), (xmin,ymax), (xmax,ymin), (xmax,ymax) )
pts_left = list(filter( lambda p: is_left_of(src, det, p), pts ))
npts_left = len(pts_left)
if npts_left == 0:
return 0.0
elif npts_left == 1:
# triangle
p = pts_left[0]
xd = intersect_line_horizontal(src, det, p[1]) - p[0]
yd = intersect_line_vertical(src, det, p[0]) - p[1]
ret = 0.5 * abs(xd) * abs(yd)
return ret
elif npts_left == 2:
p = pts_left[0]
q = pts_left[1]
if p[0] == q[0]:
# vertical intersection
x1 = intersect_line_horizontal(src, det, p[1]) - p[0]
x2 = intersect_line_horizontal(src, det, q[1]) - q[0]
ret = 0.5 * (ymax - ymin) * (abs(x1) + abs(x2))
return ret
else:
assert(p[1] == q[1])
# horizontal intersection
y1 = intersect_line_vertical(src, det, p[0]) - p[1]
y2 = intersect_line_vertical(src, det, q[0]) - q[1]
ret = 0.5 * (xmax - xmin) * (abs(y1) + abs(y2))
return ret
else:
# mirror and invert
ret = ((xmax - xmin) * (ymax - ymin)) - halfarea_rect_line(det, src, xmin, xmax, ymin, ymax)
return ret
# area of intersection of the strip with boundaries edge1, edge2 with rectangle
def intersect_ray_rect(edge1, edge2, xmin, xmax, ymin, ymax):
s1 = halfarea_rect_line(edge1[0], edge1[1], xmin, xmax, ymin, ymax)
s2 = halfarea_rect_line(edge2[0], edge2[1], xmin, xmax, ymin, ymax)
return abs(s1 - s2)
# width of projection of detector orthogonal to ray direction
# i.e., effective detector width
def effective_detweight(src, det, u):
ray = np.array(det) - np.array(src)
ray = ray / np.linalg.norm(ray, ord=2)
return abs(area_signed(ray, u))
# LINE GENERATORS
# ---------------
#
# Per ray these yield three lines, at respectively the center and two edges of the detector pixel.
# Each line is given by two points on the line.
# ( ( (p0x, p0y), (q0x, q0y) ), ( (p1x, p1y), (q1x, q1y) ), ( (p2x, p2y), (q2x, q2y) ) )
def gen_lines_fanflat(proj_geom):
angles = proj_geom['ProjectionAngles']
for theta in angles:
#theta = -theta
src = ( math.sin(theta) * proj_geom['DistanceOriginSource'],
-math.cos(theta) * proj_geom['DistanceOriginSource'] )
detc= (-math.sin(theta) * proj_geom['DistanceOriginDetector'],
math.cos(theta) * proj_geom['DistanceOriginDetector'] )
detu= ( math.cos(theta) * proj_geom['DetectorWidth'],
math.sin(theta) * proj_geom['DetectorWidth'] )
src = np.array(src, dtype=np.float64)
detc= np.array(detc, dtype=np.float64)
detu= np.array(detu, dtype=np.float64)
detb= detc + (0.5 - 0.5*proj_geom['DetectorCount']) * detu
for i in range(proj_geom['DetectorCount']):
yield ((src, detb + i * detu),
(src, detb + (i - 0.5) * detu),
(src, detb + (i + 0.5) * detu))
def gen_lines_fanflat_vec(proj_geom):
v = proj_geom['Vectors']
for i in range(v.shape[0]):
src = v[i,0:2]
detc = v[i,2:4]
detu = v[i,4:6]
detb = detc + (0.5 - 0.5*proj_geom['DetectorCount']) * detu
for i in range(proj_geom['DetectorCount']):
yield ((src, detb + i * detu),
(src, detb + (i - 0.5) * detu),
(src, detb + (i + 0.5) * detu))
def gen_lines_parallel(proj_geom):
angles = proj_geom['ProjectionAngles']
for theta in angles:
ray = ( math.sin(theta),
-math.cos(theta) )
detc= (0, 0 )
detu= ( math.cos(theta) * proj_geom['DetectorWidth'],
math.sin(theta) * proj_geom['DetectorWidth'] )
ray = np.array(ray, dtype=np.float64)
detc= np.array(detc, dtype=np.float64)
detu= np.array(detu, dtype=np.float64)
detb= detc + (0.5 - 0.5*proj_geom['DetectorCount']) * detu
for i in range(proj_geom['DetectorCount']):
yield ((detb + i * detu - ray, detb + i * detu),
(detb + (i - 0.5) * detu - ray, detb + (i - 0.5) * detu),
(detb + (i + 0.5) * detu - ray, detb + (i + 0.5) * detu))
def gen_lines_parallel_vec(proj_geom):
v = proj_geom['Vectors']
for i in range(v.shape[0]):
ray = v[i,0:2]
detc = v[i,2:4]
detu = v[i,4:6]
detb = detc + (0.5 - 0.5*proj_geom['DetectorCount']) * detu
for i in range(proj_geom['DetectorCount']):
yield ((detb + i * detu - ray, detb + i * detu),
(detb + (i - 0.5) * detu - ray, detb + (i - 0.5) * detu),
(detb + (i + 0.5) * detu - ray, detb + (i + 0.5) * detu))
def gen_lines(proj_geom):
g = { 'fanflat': gen_lines_fanflat,
'fanflat_vec': gen_lines_fanflat_vec,
'parallel': gen_lines_parallel,
'parallel_vec': gen_lines_parallel_vec }
for l in g[proj_geom['type']](proj_geom):
yield l
range2d = ( 8, 64 )
def gen_random_geometry_fanflat():
if not NONUNITDET:
w = 1.0
else:
w = 0.6 + 0.8 * np.random.random()
pg = astra.create_proj_geom('fanflat', w, np.random.randint(*range2d), np.linspace(0, 2*np.pi, np.random.randint(*range2d), endpoint=False), 256 * (0.5 + np.random.random()), 256 * np.random.random())
return pg
def gen_random_geometry_parallel():
if not NONUNITDET:
w = 1.0
else:
w = 0.8 + 0.4 * np.random.random()
pg = astra.create_proj_geom('parallel', w, np.random.randint(*range2d), np.linspace(0, 2*np.pi, np.random.randint(*range2d), endpoint=False))
return pg
def gen_random_geometry_fanflat_vec():
Vectors = np.zeros([16,6])
# We assume constant detector width in these tests
if not NONUNITDET:
w = 1.0
else:
w = 0.6 + 0.8 * np.random.random()
for i in range(Vectors.shape[0]):
angle1 = 2*np.pi*np.random.random()
if OBLIQUE:
angle2 = angle1 + 0.5 * np.random.random()
else:
angle2 = angle1
dist1 = 256 * (0.5 + np.random.random())
detc = 10 * np.random.random(size=2)
detu = [ math.cos(angle1) * w, math.sin(angle1) * w ]
src = [ math.sin(angle2) * dist1, -math.cos(angle2) * dist1 ]
Vectors[i, :] = [ src[0], src[1], detc[0], detc[1], detu[0], detu[1] ]
pg = astra.create_proj_geom('fanflat_vec', np.random.randint(*range2d), Vectors)
return pg
def gen_random_geometry_parallel_vec():
Vectors = np.zeros([16,6])
# We assume constant detector width in these tests
if not NONUNITDET:
w = 1.0
else:
w = 0.6 + 0.8 * np.random.random()
for i in range(Vectors.shape[0]):
l = 0.6 + 0.8 * np.random.random()
angle1 = 2*np.pi*np.random.random()
if OBLIQUE:
angle2 = angle1 + 0.5 * np.random.random()
else:
angle2 = angle1
detc = 10 * np.random.random(size=2)
detu = [ math.cos(angle1) * w, math.sin(angle1) * w ]
ray = [ math.sin(angle2) * l, -math.cos(angle2) * l ]
Vectors[i, :] = [ ray[0], ray[1], detc[0], detc[1], detu[0], detu[1] ]
pg = astra.create_proj_geom('parallel_vec', np.random.randint(*range2d), Vectors)
return pg
def proj_type_to_fan(t):
if t == 'cuda':
return t
else:
return t + '_fanflat'
def display_mismatch(data, sinogram, a):
import pylab
pylab.gray()
pylab.imshow(data)
pylab.figure()
pylab.imshow(sinogram)
pylab.figure()
pylab.imshow(a)
pylab.figure()
pylab.imshow(sinogram-a)
pylab.show()
def display_mismatch_triple(data, sinogram, a, b, c):
import pylab
pylab.gray()
pylab.imshow(data)
pylab.figure()
pylab.imshow(sinogram)
pylab.figure()
pylab.imshow(b)
pylab.figure()
pylab.imshow(a)
pylab.figure()
pylab.imshow(c)
pylab.figure()
pylab.imshow(sinogram-a)
pylab.figure()
pylab.imshow(c-sinogram)
pylab.show()
@pytest.mark.slow
class Test2DKernel:
def single_test(self, type, proj_type):
shape = np.random.randint(*range2d, size=2)
# these rectangles are biased, but that shouldn't matter
rect_min = [ np.random.randint(0, a) for a in shape ]
rect_max = [ np.random.randint(rect_min[i]+1, shape[i]+1) for i in range(len(shape))]
if FLEXVOL:
if not NONSQUARE:
pixsize = np.array([0.5, 0.5]) + np.random.random()
else:
pixsize = 0.5 + np.random.random(size=2)
origin = 10 * np.random.random(size=2)
else:
pixsize = (1.,1.)
origin = (0.,0.)
vg = astra.create_vol_geom(shape[1], shape[0],
origin[0] - 0.5 * shape[0] * pixsize[0],
origin[0] + 0.5 * shape[0] * pixsize[0],
origin[1] - 0.5 * shape[1] * pixsize[1],
origin[1] + 0.5 * shape[1] * pixsize[1])
if type == 'parallel':
pg = gen_random_geometry_parallel()
projector_id = astra.create_projector(proj_type, pg, vg)
elif type == 'parallel_vec':
pg = gen_random_geometry_parallel_vec()
projector_id = astra.create_projector(proj_type, pg, vg)
elif type == 'fanflat':
pg = gen_random_geometry_fanflat()
projector_id = astra.create_projector(proj_type_to_fan(proj_type), pg, vg)
elif type == 'fanflat_vec':
pg = gen_random_geometry_fanflat_vec()
projector_id = astra.create_projector(proj_type_to_fan(proj_type), pg, vg)
data = np.zeros((shape[1], shape[0]), dtype=np.float32)
data[rect_min[1]:rect_max[1],rect_min[0]:rect_max[0]] = 1
sinogram_id, sinogram = astra.create_sino(data, projector_id)
assert np.all(np.isfinite(sinogram))
#print(pg)
#print(vg)
astra.data2d.delete(sinogram_id)
astra.projector.delete(projector_id)
# NB: Flipped y-axis here, since that is how astra interprets 2D volumes
xmin = origin[0] + (-0.5 * shape[0] + rect_min[0]) * pixsize[0]
xmax = origin[0] + (-0.5 * shape[0] + rect_max[0]) * pixsize[0]
ymin = origin[1] + (+0.5 * shape[1] - rect_max[1]) * pixsize[1]
ymax = origin[1] + (+0.5 * shape[1] - rect_min[1]) * pixsize[1]
if proj_type == 'line':
a = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
b = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
c = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
(src, det) = center
# We compute line intersections with slightly bigger (cw) and
# smaller (aw) rectangles, and see if the kernel falls
# between these two values.
(aw,bw,cw) = intersect_line_rectangle_interval(src, det,
xmin, xmax, ymin, ymax,
1e-3)
a[i] = aw
b[i] = bw
c[i] = cw
a = a.reshape(astra.functions.geom_size(pg))
b = b.reshape(astra.functions.geom_size(pg))
c = c.reshape(astra.functions.geom_size(pg))
if not np.all(np.isfinite(a)):
raise RuntimeError("Invalid value in reference sinogram")
if not np.all(np.isfinite(b)):
raise RuntimeError("Invalid value in reference sinogram")
if not np.all(np.isfinite(c)):
raise RuntimeError("Invalid value in reference sinogram")
assert np.all(np.isfinite(sinogram))
# Check if sinogram lies between a and c
y = np.min(sinogram-a)
z = np.min(c-sinogram)
if DISPLAY and (z < 0 or y < 0):
display_mismatch_triple(data, sinogram, a, b, c)
assert not(z < 0 or y < 0)
elif proj_type == 'linear' or proj_type == 'cuda':
a = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
(src, det) = center
(xd, yd) = det - src
l = 0.0
if np.abs(xd) > np.abs(yd): # horizontal ray
length = math.sqrt(1.0 + abs(yd/xd)**2) * pixsize[0]
y_seg = (ymin, ymax)
for j in range(rect_min[0], rect_max[0]):
x = origin[0] + (-0.5 * shape[0] + j + 0.5) * pixsize[0]
w = intersect_line_vertical_segment_linear(center[0], center[1], x, y_seg, pixsize[1])
# limited interpolation precision with cuda
if CUDA_8BIT_LINEAR and proj_type == 'cuda':
w = np.round(w * 256.0) / 256.0
l += w * length
else:
length = math.sqrt(1.0 + abs(xd/yd)**2) * pixsize[1]
x_seg = (xmin, xmax)
for j in range(rect_min[1], rect_max[1]):
y = origin[1] + (+0.5 * shape[1] - j - 0.5) * pixsize[1]
w = intersect_line_horizontal_segment_linear(center[0], center[1], y, x_seg, pixsize[0])
# limited interpolation precision with cuda
if CUDA_8BIT_LINEAR and proj_type == 'cuda':
w = np.round(w * 256.0) / 256.0
l += w * length
a[i] = l
a = a.reshape(astra.functions.geom_size(pg))
if not np.all(np.isfinite(a)):
raise RuntimeError("Invalid value in reference sinogram")
x = np.max(np.abs(sinogram-a))
TOL = 2e-3 if proj_type != 'cuda' else CUDA_TOL
if DISPLAY and x > TOL:
display_mismatch(data, sinogram, a)
assert not(x > TOL)
elif proj_type == 'distance_driven' and 'par' in type:
a = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
(src, det) = center
try:
detweight = pg['DetectorWidth']
except KeyError:
detweight = effective_detweight(src, det, pg['Vectors'][i//pg['DetectorCount'],4:6])
(xd, yd) = det - src
l = 0.0
if np.abs(xd) > np.abs(yd): # horizontal ray
y_seg = (ymin, ymax)
for j in range(rect_min[0], rect_max[0]):
x = origin[0] + (-0.5 * shape[0] + j + 0.5) * pixsize[0]
l += intersect_ray_vertical_segment(edge1, edge2, x, y_seg) * pixsize[0] / detweight
else:
x_seg = (xmin, xmax)
for j in range(rect_min[1], rect_max[1]):
y = origin[1] + (+0.5 * shape[1] - j - 0.5) * pixsize[1]
l += intersect_ray_horizontal_segment(edge1, edge2, y, x_seg) * pixsize[1] / detweight
a[i] = l
a = a.reshape(astra.functions.geom_size(pg))
if not np.all(np.isfinite(a)):
raise RuntimeError("Invalid value in reference sinogram")
x = np.max(np.abs(sinogram-a))
TOL = 2e-3
if DISPLAY and x > TOL:
display_mismatch(data, sinogram, a)
assert not(x > TOL)
elif proj_type == 'strip' and 'fan' in type:
a = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
(src, det) = center
detweight = effective_detweight(src, det, edge2[1] - edge1[1])
det_dist = np.linalg.norm(src-det, ord=2)
l = 0.0
for j in range(rect_min[0], rect_max[0]):
xmin = origin[0] + (-0.5 * shape[0] + j) * pixsize[0]
xmax = origin[0] + (-0.5 * shape[0] + j + 1) * pixsize[0]
xcen = 0.5 * (xmin + xmax)
for k in range(rect_min[1], rect_max[1]):
ymin = origin[1] + (+0.5 * shape[1] - k - 1) * pixsize[1]
ymax = origin[1] + (+0.5 * shape[1] - k) * pixsize[1]
ycen = 0.5 * (ymin + ymax)
scale = det_dist / (np.linalg.norm( src - np.array((xcen,ycen)), ord=2 ) * detweight)
w = intersect_ray_rect(edge1, edge2, xmin, xmax, ymin, ymax)
l += w * scale
a[i] = l
a = a.reshape(astra.functions.geom_size(pg))
if not np.all(np.isfinite(a)):
raise RuntimeError("Invalid value in reference sinogram")
x = np.max(np.abs(sinogram-a))
# BUG: Known bug in fan/strip code around 45 degree projections causing larger errors than desirable
TOL = 4e-2
if DISPLAY and x > TOL:
display_mismatch(data, sinogram, a)
assert not(x > TOL)
elif proj_type == 'strip':
a = np.zeros(np.prod(astra.functions.geom_size(pg)), dtype=np.float32)
for i, (center, edge1, edge2) in enumerate(gen_lines(pg)):
(src, det) = center
try:
detweight = pg['DetectorWidth']
except KeyError:
detweight = effective_detweight(src, det, pg['Vectors'][i//pg['DetectorCount'],4:6])
a[i] = intersect_ray_rect(edge1, edge2, xmin, xmax, ymin, ymax) / detweight
a = a.reshape(astra.functions.geom_size(pg))
if not np.all(np.isfinite(a)):
raise RuntimeError("Invalid value in reference sinogram")
x = np.max(np.abs(sinogram-a))
TOL = 8e-3
if DISPLAY and x > TOL:
display_mismatch(data, sinogram, a)
assert not(x > TOL)
else:
raise RuntimeError("Unsupported projector")
def single_test_adjoint(self, type, proj_type):
shape = np.random.randint(*range2d, size=2)
if FLEXVOL:
if not NONSQUARE:
pixsize = np.array([0.5, 0.5]) + np.random.random()
else:
pixsize = 0.5 + np.random.random(size=2)
origin = 10 * np.random.random(size=2)
else:
pixsize = (1.,1.)
origin = (0.,0.)
vg = astra.create_vol_geom(shape[1], shape[0],
origin[0] - 0.5 * shape[0] * pixsize[0],
origin[0] + 0.5 * shape[0] * pixsize[0],
origin[1] - 0.5 * shape[1] * pixsize[1],
origin[1] + 0.5 * shape[1] * pixsize[1])
if type == 'parallel':
pg = gen_random_geometry_parallel()
projector_id = astra.create_projector(proj_type, pg, vg)
elif type == 'parallel_vec':
pg = gen_random_geometry_parallel_vec()
projector_id = astra.create_projector(proj_type, pg, vg)
elif type == 'fanflat':
pg = gen_random_geometry_fanflat()
projector_id = astra.create_projector(proj_type_to_fan(proj_type), pg, vg)
elif type == 'fanflat_vec':
pg = gen_random_geometry_fanflat_vec()
projector_id = astra.create_projector(proj_type_to_fan(proj_type), pg, vg)
for i in range(5):
X = np.random.random((shape[1], shape[0]))
Y = np.random.random(astra.geom_size(pg))
sinogram_id, fX = astra.create_sino(X, projector_id)
bp_id, fTY = astra.create_backprojection(Y, projector_id)
astra.data2d.delete(sinogram_id)
astra.data2d.delete(bp_id)
da = np.dot(fX.ravel(), Y.ravel())
db = np.dot(X.ravel(), fTY.ravel())
m = np.abs(da - db)
TOL = 1e-3 if 'cuda' not in proj_type else 1e-1
if m / da >= TOL:
print(vg)
print(pg)
print(m/da, da/db, da, db)
assert m / da < TOL
astra.projector.delete(projector_id)
def multi_test(self, type, proj_type):
np.random.seed(seed)
for _ in range(nloops):
self.single_test(type, proj_type)
def multi_test_adjoint(self, type, proj_type):
np.random.seed(seed)
for _ in range(nloops):
self.single_test_adjoint(type, proj_type)
__combinations = { 'parallel': [ 'line', 'linear', 'distance_driven', 'strip', 'cuda' ],
'parallel_vec': [ 'line', 'linear', 'distance_driven', 'strip', 'cuda' ],
'fanflat': [ 'line', 'strip', 'cuda' ],
'fanflat_vec': [ 'line', 'cuda' ] }
for k, l in __combinations.items():
for v in l:
def f(k,v):
return lambda self: self.multi_test(k, v)
def f_adj(k,v):
return lambda self: self.multi_test_adjoint(k, v)
setattr(Test2DKernel, 'test_' + k + '_' + v, f(k,v))
setattr(Test2DKernel, 'test_' + k + '_' + v + '_adjoint', f_adj(k,v))
|