1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
import numpy as np
import astra
import astra.experimental
import math
import pytest
DISPLAY=False
def VolumeGeometries(is3D,noncube,singleslice):
if not is3D:
for s in [0.8, 1.0, 1.25]:
yield astra.create_vol_geom(128, 128, -64*s, 64*s, -64*s, 64*s)
elif noncube:
for sx in [0.8, 1.0]:
for sy in [0.8, 1.0]:
for sz in [0.8, 1.0]:
yield astra.create_vol_geom(64, 64, 64, -32*sx, 32*sx, -32*sy, 32*sy, -32*sz, 32*sz)
if singleslice:
yield astra.create_vol_geom(64, 64, 1, -32*sx, 32*sx, -32*sy, 32*sy, -0.5*sz, 0.5*sz)
else:
for s in [0.8, 1.0]:
yield astra.create_vol_geom(64, 64, 64, -32*s, 32*s, -32*s, 32*s, -32*s, 32*s)
def ProjectionGeometries(type,shortscan,singleslice):
if type == 'parallel':
for dU in [0.8, 1.0, 1.25]:
yield astra.create_proj_geom('parallel', dU, 256, np.linspace(0,np.pi,180,False))
elif type == 'fanflat':
for dU in [0.8, 1.0, 1.25]:
for src in [500, 1000]:
for det in [0, 250, 500]:
yield astra.create_proj_geom('fanflat', dU, 256, np.linspace(0,2*np.pi,180,False), src, det)
elif type == 'parallel3d':
for dU in [0.8, 1.0]:
for dV in [0.8, 1.0]:
if singleslice:
yield astra.create_proj_geom('parallel3d', dU, dV, 1, 128, np.linspace(0,np.pi,180,False))
else:
yield astra.create_proj_geom('parallel3d', dU, dV, 128, 128, np.linspace(0,np.pi,180,False))
elif type == 'parallel3d_vec':
for j in range(10):
Vectors = np.zeros([180,12])
wu = 0.6 + 0.8 * np.random.random()
wv = 0.6 + 0.8 * np.random.random()
for i in range(Vectors.shape[0]):
l = 0.6 + 0.8 * np.random.random()
angle1 = 2*np.pi*np.random.random()
angle2 = angle1 + 0.5 * np.random.random()
angle3 = 0.1*np.pi*np.random.random()
detc = 10 * np.random.random(size=3)
detu = [ math.cos(angle1) * wu, math.sin(angle1) * wu, 0 ]
detv = [ -math.sin(angle1) * math.sin(angle3) * wv, math.cos(angle1) * math.sin(angle3) * wv, math.cos(angle3) * wv ]
ray = [ math.sin(angle2) * l, -math.cos(angle2) * l, 0 ]
Vectors[i, :] = [ ray[0], ray[1], ray[2], detc[0], detc[1], detc[2], detu[0], detu[1], detu[2], detv[0], detv[1], detv[2] ]
pg = astra.create_proj_geom('parallel3d_vec', 128, 128, Vectors)
yield pg
elif type == 'cone':
A = [1.5, 2] if shortscan else [ 2 ]
for dU in [0.8, 1.0]:
for dV in [0.8, 1.0]:
for src in [500, 1000]:
for det in [0, 250]:
for a in A:
if singleslice:
yield astra.create_proj_geom('cone', dU, dV, 1, 128, np.linspace(0,a*np.pi,180,False), src, det)
else:
yield astra.create_proj_geom('cone', dU, dV, 128, 128, np.linspace(0,a*np.pi,180,False), src, det)
elif type == 'cone_vec':
for j in range(10):
Vectors = np.zeros([180,12])
wu = 0.6 + 0.8 * np.random.random()
wv = 0.6 + 0.8 * np.random.random()
for i in range(Vectors.shape[0]):
l = 256 * (0.5 * np.random.random())
angle1 = 2*np.pi*np.random.random()
angle2 = angle1 + 0.5 * np.random.random()
angle3 = 0.1*np.pi*np.random.random()
detc = 10 * np.random.random(size=3)
detu = [ math.cos(angle1) * wu, math.sin(angle1) * wu, 0 ]
detv = [ -math.sin(angle1) * math.sin(angle3) * wv, math.cos(angle1) * math.sin(angle3) * wv, math.cos(angle3) * wv ]
src = [ math.sin(angle2) * l, -math.cos(angle2) * l, 0 ]
Vectors[i, :] = [ src[0], src[1], src[2], detc[0], detc[1], detc[2], detu[0], detu[1], detu[2], detv[0], detv[1], detv[2] ]
pg = astra.create_proj_geom('parallel3d_vec', 128, 128, Vectors)
yield pg
@pytest.mark.slow
class TestRecScale:
def single_test(self, geom_type, proj_type, alg, iters, vss, dss):
if alg == 'FBP' and 'fanflat' in geom_type:
pytest.skip('CPU FBP is parallel-beam only')
is3D = (geom_type in ['parallel3d', 'cone'])
for vg in VolumeGeometries(is3D, 'FDK' not in alg, False):
for pg in ProjectionGeometries(geom_type, 'FDK' in alg, False):
if not is3D:
vol = np.zeros((128,128),dtype=np.float32)
vol[50:70,50:70] = 1
else:
vol = np.zeros((64,64,64),dtype=np.float32)
vol[25:35,25:35,25:35] = 1
options = {}
if vss > 1:
options["VoxelSuperSampling"] = vss
if dss > 1:
options["DetectorSuperSampling"] = vss
proj_id = astra.create_projector(proj_type, pg, vg, options=options)
if not is3D:
sino_id, sinogram = astra.create_sino(vol, proj_id)
else:
sino_id, sinogram = astra.create_sino3d_gpu(vol, pg, vg)
if not is3D:
DATA = astra.data2d
else:
DATA = astra.data3d
rec_id = DATA.create('-vol', vg, 0.0 if 'EM' not in alg else 1.0)
cfg = astra.astra_dict(alg)
cfg['ReconstructionDataId'] = rec_id
cfg['ProjectionDataId'] = sino_id
cfg['ProjectorId'] = proj_id
if 'FDK' in alg and geom_type == "cone" and pg["ProjectionAngles"][-1] < 1.8*np.pi:
cfg['option'] = { 'ShortScan': True }
alg_id = astra.algorithm.create(cfg)
for i in range(iters):
astra.algorithm.run(alg_id, 1)
rec = DATA.get(rec_id)
astra.astra.delete([sino_id, alg_id, alg_id, proj_id])
if not is3D:
val = np.sum(rec[55:65,55:65]) / 100.
else:
val = np.sum(rec[27:32,27:32,27:32]) / 125.
TOL = 5e-2
if DISPLAY and abs(val-1.0) >= TOL:
import pylab
print(geom_type, proj_type, alg, vg, pg)
print(val)
pylab.gray()
if not is3D:
pylab.imshow(rec)
else:
pylab.imshow(rec[:,32,:])
pylab.show()
assert abs(val-1.0) < TOL
def single_test_adjoint3D(self, geom_type, proj_type):
for vg in VolumeGeometries(True, True, 'vec' not in geom_type):
for pg in ProjectionGeometries(geom_type, False, vg['GridSliceCount'] == 1):
for i in range(5):
X = np.random.random(astra.geom_size(vg)).astype(np.float32)
Y = np.random.random(astra.geom_size(pg)).astype(np.float32)
projector_cfg = astra.astra_dict('cuda3d')
projector_cfg['ProjectionGeometry'] = pg
projector_cfg['VolumeGeometry'] = vg
if vg['GridSliceCount'] == 1:
projector_cfg['ProjectionKernel'] = '2d_weighting'
projector_id = astra.projector3d.create(projector_cfg)
fX = np.zeros(astra.geom_size(pg), dtype=np.float32)
astra.experimental.direct_FP3D(projector_id, X, fX)
fTY = np.zeros(astra.geom_size(vg), dtype=np.float32)
astra.experimental.direct_BP3D(projector_id, fTY, Y)
astra.projector3d.delete(projector_id)
da = np.dot(fX.ravel(), Y.ravel())
db = np.dot(X.ravel(), fTY.ravel())
m = np.abs(da - db)
TOL = 1e-1
if m / da >= TOL:
print(vg)
print(pg)
print(m/da, da/db, da, db)
assert m / da < TOL
__combinations = {
'parallel': [ 'line', 'linear', 'distance_driven', 'strip', 'cuda' ],
'fanflat': [ 'line_fanflat', 'strip_fanflat', 'cuda' ],
'parallel3d': [ 'cuda3d' ],
'cone': [ 'cuda3d' ],
}
__combinations_adjoint = {
'parallel3d': [ 'cuda3d' ],
'cone': [ 'cuda3d' ],
'parallel3d_vec': [ 'cuda3d' ],
'cone_vec': [ 'cuda3d' ],
}
__algs = {
'SIRT': 50, 'SART': 10*180, 'CGLS': 30,
'FBP': 1
}
__algs_CUDA = {
'SIRT_CUDA': 50, 'SART_CUDA': 10*180, 'CGLS_CUDA': 30, 'EM_CUDA': 50,
'FBP_CUDA': 1
}
__algs_parallel3d = {
'SIRT3D_CUDA': 200, 'CGLS3D_CUDA': 20,
}
__algs_cone = {
'SIRT3D_CUDA': 200, 'CGLS3D_CUDA': 20,
'FDK_CUDA': 1
}
__combinations_ss = {
'parallel': [ { 'projector': 'cuda', 'alg': 'SIRT_CUDA', 'iters': 50 } ],
'fanflat': [ { 'projector': 'cuda', 'alg': 'SIRT_CUDA', 'iters': 50 } ],
'parallel3d': [ { 'projector': 'cuda3d', 'alg': 'SIRT3D_CUDA', 'iters': 200 } ],
'cone': [ { 'projector': 'cuda3d', 'alg': 'SIRT3D_CUDA', 'iters': 200 } ]
}
for k, l in __combinations.items():
for v in l:
is3D = (k in ['parallel3d', 'cone'])
if k == 'parallel3d':
A = __algs_parallel3d
elif k == 'cone':
A = __algs_cone
elif v == 'cuda':
A = __algs_CUDA
else:
A = __algs
for a, i in A.items():
def f(k, v, a, i):
return lambda self: self.single_test(k, v, a, i, 1, 1)
setattr(TestRecScale, 'test_' + a + '_' + k + '_' + v, f(k,v,a,i))
for k, l in __combinations_adjoint.items():
for v in l:
def g(k, v):
return lambda self: self.single_test_adjoint3D(k, v)
setattr(TestRecScale, 'test_adjoint_' + k + '_' + v, g(k,v))
for k, l in __combinations_ss.items():
for A in l:
for vss in [1, 2]:
for dss in [1, 2]:
def h(k, v, a, i, vss, dss):
return lambda self: self.single_test(k, v, a, i, vss, dss)
setattr(TestRecScale, 'test_ss_' + a + '_' + k + '_' + v + '_' + str(vss) + '_' + str(dss), h(k, A['projector'], A['alg'], A['iters'], vss, dss))
|