1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
import astra
import pytest
import numpy as np
import scipy
DET_SPACING_X = 1.0
DET_SPACING_Y = 1.0
DET_ROW_COUNT = 20
DET_COL_COUNT = 45
N_ANGLES = 180
ANGLES = np.linspace(0, 2 * np.pi, N_ANGLES, endpoint=False)
N_ROWS = 40
N_COLS = 30
N_SLICES = 50
@pytest.fixture
def op_tomo(dimensionality):
if dimensionality == '2d':
vol_geom = astra.create_vol_geom(N_ROWS, N_COLS)
proj_geom = astra.create_proj_geom('parallel', DET_SPACING_Y, DET_COL_COUNT, ANGLES)
projector_id = astra.create_projector('cuda', proj_geom, vol_geom)
elif dimensionality == '3d':
vol_geom = astra.create_vol_geom(N_ROWS, N_COLS, N_SLICES)
proj_geom = astra.create_proj_geom('parallel3d', DET_SPACING_X, DET_SPACING_Y,
DET_ROW_COUNT, DET_COL_COUNT, ANGLES)
projector_id = astra.create_projector('cuda3d', proj_geom, vol_geom)
yield astra.OpTomo(projector_id)
astra.projector.delete(projector_id)
@pytest.fixture
def vol_data(dimensionality):
if dimensionality == '2d':
return np.ones([N_ROWS, N_COLS], dtype=np.float32)
elif dimensionality == '3d':
return np.ones([N_SLICES, N_ROWS, N_COLS], dtype=np.float32)
@pytest.fixture
def vol_buffer(dimensionality):
if dimensionality == '2d':
return np.zeros([N_ROWS, N_COLS], dtype=np.float32)
elif dimensionality == '3d':
return np.zeros([N_SLICES, N_ROWS, N_COLS], dtype=np.float32)
@pytest.fixture
def proj_data(dimensionality):
if dimensionality == '2d':
return np.ones([N_ANGLES, DET_COL_COUNT], dtype=np.float32)
elif dimensionality == '3d':
return np.ones([DET_ROW_COUNT, N_ANGLES, DET_COL_COUNT], dtype=np.float32)
@pytest.fixture
def proj_buffer(dimensionality):
if dimensionality == '2d':
return np.zeros([N_ANGLES, DET_COL_COUNT], dtype=np.float32)
elif dimensionality == '3d':
return np.zeros([DET_ROW_COUNT, N_ANGLES, DET_COL_COUNT], dtype=np.float32)
@pytest.fixture
def algorithm(dimensionality):
if dimensionality == '2d':
return 'SIRT_CUDA'
elif dimensionality == '3d':
return 'SIRT3D_CUDA'
@pytest.mark.parametrize('dimensionality', ['2d', '3d'])
class TestAll:
def test_fp(self, dimensionality, op_tomo, vol_data):
fp = op_tomo.FP(vol_data)
assert not np.allclose(fp, 0.0)
def test_fp_flattened(self, dimensionality, op_tomo, vol_data):
fp = op_tomo.FP(vol_data.flatten())
assert not np.allclose(fp, 0.0)
def test_fp_out_arg(self, dimensionality, op_tomo, vol_data, proj_buffer):
op_tomo.FP(vol_data, out=proj_buffer)
assert not np.allclose(proj_buffer, 0.0)
def test_bp(self, dimensionality, op_tomo, proj_data):
bp = op_tomo.BP(proj_data)
assert not np.allclose(bp, 0.0)
def test_bp_flattened(self, dimensionality, op_tomo, proj_data):
bp = op_tomo.BP(proj_data.flatten())
assert not np.allclose(bp, 0.0)
def test_bp_out_arg(self, dimensionality, op_tomo, proj_data, vol_buffer):
op_tomo.BP(proj_data, out=vol_buffer)
assert not np.allclose(vol_buffer, 0.0)
def test_matvec(self, dimensionality, op_tomo, vol_data):
fp = op_tomo(vol_data)
assert not np.allclose(fp, 0.0)
def test_rmatvec(self, dimensionality, op_tomo, proj_data):
bp = op_tomo.T(proj_data)
assert not np.allclose(bp, 0.0)
def test_mul(self, dimensionality, op_tomo, vol_data):
fp = op_tomo * vol_data
assert not np.allclose(fp, 0.0)
def test_reconstruct(self, dimensionality, op_tomo, proj_data, algorithm):
rec = op_tomo.reconstruct(algorithm, proj_data, iterations=2,
extraOptions={'MinConstraint': 0.0})
assert not np.allclose(rec, 0.0)
def test_scipy_solver(self, dimensionality, op_tomo, proj_data):
result = scipy.sparse.linalg.lsqr(op_tomo, proj_data.flatten(), iter_lim=2)
rec = result[0]
assert not np.allclose(rec, 0.0)
|