1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
|
# MIT License
# Copyright (c) 2016 Martin Beroiz
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
ASTROALIGN is a simple package that will try to align two stellar astronomical
images, especially when there is no WCS information available.
It does so by finding similar 3-point asterisms (triangles) in both images and
deducing the affine transformation between them.
General registration routines try to match feature points, using corner
detection routines to make the point correspondence.
These generally fail for stellar astronomical images, since stars have very
little stable structure and so, in general, indistinguishable from each other.
Asterism matching is more robust, and closer to the human way of matching
stellar images.
Astroalign can match images of very different field of view, point-spread
functions, seeing and atmospheric conditions.
(c) Martin Beroiz
"""
__version__ = "2.4.1"
__all__ = [
"MIN_MATCHES_FRACTION",
"MaxIterError",
"NUM_NEAREST_NEIGHBORS",
"PIXEL_TOL",
"apply_transform",
"estimate_transform",
"find_transform",
"matrix_transform",
"register",
]
try:
import bottleneck as bn
except ImportError:
HAS_BOTTLENECK = False
else:
HAS_BOTTLENECK = True
import numpy as _np
from skimage.transform import estimate_transform
from skimage.transform import matrix_transform
PIXEL_TOL = 2
"""The pixel distance tolerance to assume two invariant points are the same.
Default: 2"""
MIN_MATCHES_FRACTION = 0.8
"""The minimum fraction of triangle matches to accept a transformation.
If the minimum fraction yields more than 10 triangles, 10 is used instead.
Default: 0.8
"""
NUM_NEAREST_NEIGHBORS = 5
"""
The number of nearest neighbors of a given star (including itself) to construct
the triangle invariants.
Default: 5
"""
_default_median = bn.nanmedian if HAS_BOTTLENECK else _np.nanmedian # pragma: no cover
"""
Default median function when/if optional bottleneck is available
"""
_default_average = bn.nanmean if HAS_BOTTLENECK else _np.nanmean # pragma: no cover
"""
Default mean function when/if optional bottleneck is available
"""
_default_sum = bn.nansum if HAS_BOTTLENECK else _np.nansum # pragma: no cover
"""
Default sum function when/if optional bottleneck is available
"""
_default_std = bn.nanstd if HAS_BOTTLENECK else _np.nanstd # pragma: no cover
"""
Default std deviation function when/if optional bottleneck is available
"""
def _invariantfeatures(x1, x2, x3):
"Given 3 points x1, x2, x3, return the invariant features for the set."
sides = _np.sort(
[
_np.linalg.norm(x1 - x2),
_np.linalg.norm(x2 - x3),
_np.linalg.norm(x1 - x3),
]
)
return [sides[2] / sides[1], sides[1] / sides[0]]
def _arrangetriplet(sources, vertex_indices):
"""Return vertex_indices ordered in an (a, b, c) form where:
a is the vertex defined by L1 & L2
b is the vertex defined by L2 & L3
c is the vertex defined by L3 & L1
and L1 < L2 < L3 are the sides of the triangle
defined by vertex_indices."""
ind1, ind2, ind3 = vertex_indices
x1, x2, x3 = sources[vertex_indices]
side_ind = _np.array([(ind1, ind2), (ind2, ind3), (ind3, ind1)])
side_lengths = list(map(_np.linalg.norm, (x1 - x2, x2 - x3, x3 - x1)))
l1_ind, l2_ind, l3_ind = _np.argsort(side_lengths)
# the most common vertex in the list of vertices for two sides is the
# point at which they meet.
from collections import Counter
count = Counter(side_ind[[l1_ind, l2_ind]].flatten())
a = count.most_common(1)[0][0]
count = Counter(side_ind[[l2_ind, l3_ind]].flatten())
b = count.most_common(1)[0][0]
count = Counter(side_ind[[l3_ind, l1_ind]].flatten())
c = count.most_common(1)[0][0]
return _np.array([a, b, c])
def _generate_invariants(sources):
"""Return an array of (unique) invariants derived from the array `sources`.
Return an array of the indices of `sources` that correspond to each
invariant, arranged as described in _arrangetriplet."""
from scipy.spatial import KDTree
from itertools import combinations
from functools import partial
arrange = partial(_arrangetriplet, sources=sources)
inv = []
triang_vrtx = []
coordtree = KDTree(sources)
# The number of nearest neighbors to request (to work with few sources)
knn = min(len(sources), NUM_NEAREST_NEIGHBORS)
for asrc in sources:
__, indx = coordtree.query(asrc, knn)
# Generate all possible triangles with the 5 indx provided, and store
# them with the order (a, b, c) defined in _arrangetriplet
all_asterism_triang = [
arrange(vertex_indices=list(cmb)) for cmb in combinations(indx, 3)
]
triang_vrtx.extend(all_asterism_triang)
inv.extend(
[
_invariantfeatures(*sources[triplet])
for triplet in all_asterism_triang
]
)
# Remove here all possible duplicate triangles
uniq_ind = [
pos for (pos, elem) in enumerate(inv) if elem not in inv[pos + 1 :]
]
inv_uniq = _np.array(inv)[uniq_ind]
triang_vrtx_uniq = _np.array(triang_vrtx)[uniq_ind]
return inv_uniq, triang_vrtx_uniq
class _MatchTransform:
def __init__(self, source, target):
self.source = source
self.target = target
def fit(self, data):
"""
Return the best 2D similarity transform from the points given in data.
data: N sets of similar corresponding triangles.
3 indices for a triangle in ref
and the 3 indices for the corresponding triangle in target;
arranged in a (N, 3, 2) array.
"""
d1, d2, d3 = data.shape
s, d = data.reshape(d1 * d2, d3).T
approx_t = estimate_transform(
"similarity", self.source[s], self.target[d]
)
return approx_t
def get_error(self, data, approx_t):
d1, d2, d3 = data.shape
s, d = data.reshape(d1 * d2, d3).T
resid = approx_t.residuals(self.source[s], self.target[d]).reshape(
d1, d2
)
error = resid.max(axis=1)
return error
def _data(image):
if hasattr(image, "data") and isinstance(image.data, _np.ndarray):
return image.data
else:
return _np.asarray(image)
def _bw(image):
"Return a 2D numpy array for an array of arbitrary channels"
if image.ndim == 2:
return image
return _default_average(image, axis=-1)
def _shape(image):
"Return a 2D shape for the image, ignoring channel info"
if image.ndim == 2:
return image.shape
h, w, ch = image.shape
return h, w
def find_transform(
source, target, max_control_points=50, detection_sigma=5, min_area=5
):
"""Estimate the transform between ``source`` and ``target``.
Return a SimilarityTransform object ``T`` that maps pixel x, y indices from
the source image s = (x, y) into the target (destination) image t = (x, y).
T contains parameters of the tranformation: ``T.rotation``,
``T.translation``, ``T.scale``, ``T.params``.
Args:
source (array-like): Either a NumPy, CCData or NDData array of the
source image to be transformed or an interable of (x, y)
coordinates of the target control points.
target (array-like): Either a NumPy, CCData or NDData array of the
target (destination) image or an interable of (x, y) coordinates of
the target control points.
max_control_points: The maximum number of control point-sources to find
the transformation.
detection_sigma: Factor of background std-dev above which is considered
a detection. This value is ignored if input are not images.
min_area: Minimum number of connected pixels to be considered a source.
This value is ignored if input are not images.
Returns:
The transformation object and a tuple of corresponding star positions
in source and target.::
T, (source_pos_array, target_pos_array)
Raises:
TypeError: If input type of ``source`` or ``target`` is not supported.
ValueError: If it cannot find more than 3 stars on any input.
"""
from scipy.spatial import KDTree
try:
if len(_data(source)[0]) == 2:
# Assume it's a list of (x, y) pairs
source_controlp = _np.array(source)[:max_control_points]
else:
# Assume it's a 2D image
source_controlp = _find_sources(
_bw(_data(source)),
detection_sigma=detection_sigma,
min_area=min_area,
)[:max_control_points]
except Exception:
raise TypeError("Input type for source not supported.")
try:
if len(_data(target)[0]) == 2:
# Assume it's a list of (x, y) pairs
target_controlp = _np.array(target)[:max_control_points]
else:
# Assume it's a 2D image
target_controlp = _find_sources(
_bw(_data(target)),
detection_sigma=detection_sigma,
min_area=min_area,
)[:max_control_points]
except Exception:
raise TypeError("Input type for target not supported.")
# Check for low number of reference points
if len(source_controlp) < 3:
raise ValueError(
"Reference stars in source image are less than the "
"minimum value (3)."
)
if len(target_controlp) < 3:
raise ValueError(
"Reference stars in target image are less than the "
"minimum value (3)."
)
source_invariants, source_asterisms = _generate_invariants(source_controlp)
source_invariant_tree = KDTree(source_invariants)
target_invariants, target_asterisms = _generate_invariants(target_controlp)
target_invariant_tree = KDTree(target_invariants)
# r = 0.1 is the maximum search distance, 0.1 is an empirical value that
# returns about the same number of matches than inputs
# matches_list is a list of lists such that for each element
# source_invariant_tree.data[i], matches_list[i] is a list of the indices
# of its neighbors in target_invariant_tree.data
matches_list = source_invariant_tree.query_ball_tree(
target_invariant_tree, r=0.1
)
# matches unravels the previous list of matches into pairs of source and
# target control point matches.
# matches is a (N, 3, 2) array. N sets of similar corresponding triangles.
# 3 indices for a triangle in ref
# and the 3 indices for the corresponding triangle in target;
matches = []
# t1 is an asterism in source, t2 in target
for t1, t2_list in zip(source_asterisms, matches_list):
for t2 in target_asterisms[t2_list]:
matches.append(list(zip(t1, t2)))
matches = _np.array(matches)
inv_model = _MatchTransform(source_controlp, target_controlp)
n_invariants = len(matches)
# Set the minimum matches to be between 1 and 10 asterisms
min_matches = max(1, min(10, int(n_invariants * MIN_MATCHES_FRACTION)))
if (len(source_controlp) == 3 or len(target_controlp) == 3) and len(
matches
) == 1:
best_t = inv_model.fit(matches)
inlier_ind = _np.arange(len(matches)) # All of the indices
else:
best_t, inlier_ind = _ransac(
matches, inv_model, PIXEL_TOL, min_matches
)
triangle_inliers = matches[inlier_ind]
d1, d2, d3 = triangle_inliers.shape
inl_arr = triangle_inliers.reshape(d1 * d2, d3)
inl_unique = set(tuple(pair) for pair in inl_arr)
# In the next, multiple assignements to the same source point s are removed
# We keep the pair (s, t) with the lowest reprojection error.
inl_dict = {}
for s_i, t_i in inl_unique:
# calculate error
s_vertex = source_controlp[s_i]
t_vertex = target_controlp[t_i]
t_vertex_pred = matrix_transform(s_vertex, best_t.params)
error = _np.linalg.norm(t_vertex_pred - t_vertex)
# if s_i not in dict, or if its error is smaller than previous error
if s_i not in inl_dict or (error < inl_dict[s_i][1]):
inl_dict[s_i] = (t_i, error)
inl_arr_unique = _np.array(
[[s_i, t_i] for s_i, (t_i, e) in inl_dict.items()]
)
s, d = inl_arr_unique.T
return best_t, (source_controlp[s], target_controlp[d])
def apply_transform(
transform, source, target, fill_value=None, propagate_mask=False
):
"""Applies the transformation ``transform`` to ``source``.
The output image will have the same shape as ``target``.
Args:
transform: A scikit-image ``SimilarityTransform`` object.
source (numpy array): A 2D NumPy, CCData or NDData array of the source
image to be transformed.
target (numpy array): A 2D NumPy, CCData or NDData array of the target
image. Only used to set the output image shape.
fill_value (float): A value to fill in the areas of aligned_image
where footprint == True.
propagate_mask (bool): Wether to propagate the mask in source.mask
onto footprint.
Return:
A tuple (aligned_image, footprint).
aligned_image is a numpy 2D array of the transformed source
footprint is a mask 2D array with True on the regions
with no pixel information.
"""
from skimage.transform import warp
source_data = _data(source)
target_shape = _data(target).shape
aligned_image = warp(
source_data,
inverse_map=transform.inverse,
output_shape=target_shape,
order=3,
mode="constant",
cval=_default_median(source_data),
clip=True,
preserve_range=True,
)
footprint = warp(
_np.zeros(_shape(source_data), dtype="float32"),
inverse_map=transform.inverse,
output_shape=target_shape,
cval=1.0,
)
footprint = footprint > 0.4
if hasattr(source, "mask") and propagate_mask:
source_mask = _np.array(source.mask)
if source_mask.shape == source_data.shape:
source_mask_rot = warp(
source_mask.astype("float32"),
inverse_map=transform.inverse,
output_shape=target_shape,
cval=1.0,
)
source_mask_rot = source_mask_rot > 0.4
footprint = footprint | source_mask_rot
if fill_value is not None:
aligned_image[footprint] = fill_value
return aligned_image, footprint
def register(
source,
target,
fill_value=None,
propagate_mask=False,
max_control_points=50,
detection_sigma=5,
min_area=5,
):
"""Transform ``source`` to coincide pixel to pixel with ``target``.
Args:
source (numpy array): A 2D NumPy, CCData or NDData array of the source
image to be transformed.
target (numpy array): A 2D NumPy, CCData or NDData array of the target
image. Used to set the output image shape as well.
fill_value (float): A value to fill in the areas of aligned_image
where footprint == True.
propagate_mask (bool): Wether to propagate the mask in source.mask
onto footprint.
max_control_points: The maximum number of control point-sources to find
the transformation.
detection_sigma: Factor of background std-dev above which is considered
a detection.
min_area: Minimum number of connected pixels to be considered a source.
Return:
A tuple (aligned_image, footprint).
aligned_image is a numpy 2D array of the transformed source
footprint is a mask 2D array with True on the regions
with no pixel information.
"""
t, __ = find_transform(
source=source,
target=target,
max_control_points=max_control_points,
detection_sigma=detection_sigma,
min_area=min_area,
)
aligned_image, footprint = apply_transform(
t, source, target, fill_value, propagate_mask
)
return aligned_image, footprint
def _find_sources(img, detection_sigma=5, min_area=5):
"Return sources (x, y) sorted by brightness."
import sep
if isinstance(img, _np.ma.MaskedArray):
image = img.filled(fill_value=_default_median(img)).astype("float32")
else:
image = img.astype("float32")
bkg = sep.Background(image)
thresh = detection_sigma * bkg.globalrms
sources = sep.extract(image - bkg.back(), thresh, minarea=min_area)
sources.sort(order="flux")
return _np.array([[asrc["x"], asrc["y"]] for asrc in sources[::-1]])
# Copyright (c) 2004-2007, Andrew D. Straw. All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of the Andrew D. Straw nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# a PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#
# Modified by Martin Beroiz
class MaxIterError(RuntimeError):
pass
def _ransac(data, model, thresh, min_matches):
"""fit model parameters to data using the RANSAC algorithm
This implementation written from pseudocode found at
http://en.wikipedia.org/w/index.php?title=RANSAC&oldid=116358182
Given:
data: a set of data points
model: a model that can be fitted to data points
thresh: a threshold value to determine when a data point fits a model
min_matches: the min number of matches required to assert that a model
fits well to data
Return:
bestfit: model parameters which best fit the data (or nil if no good
model is found)"""
good_fit = None
n_data = data.shape[0]
all_idxs = _np.arange(n_data)
_np.random.shuffle(all_idxs)
for iter_i in range(n_data):
# Partition indices into two random subsets
maybe_idxs = all_idxs[iter_i : iter_i + 1]
test_idxs = list(all_idxs[:iter_i])
test_idxs.extend(list(all_idxs[iter_i + 1 :]))
test_idxs = _np.array(test_idxs)
maybeinliers = data[maybe_idxs, :]
test_points = data[test_idxs, :]
maybemodel = model.fit(maybeinliers)
test_err = model.get_error(test_points, maybemodel)
# select indices of rows with accepted points
also_idxs = test_idxs[test_err < thresh]
alsoinliers = data[also_idxs, :]
if len(alsoinliers) >= min_matches:
good_data = _np.concatenate((maybeinliers, alsoinliers))
good_fit = model.fit(good_data)
break
if good_fit is None:
raise MaxIterError(
"List of matching triangles exhausted before an acceptable "
"transformation was found"
)
better_fit = good_fit
for i in range(3):
test_err = model.get_error(data, better_fit)
better_inlier_idxs = _np.arange(n_data)[test_err < thresh]
better_data = data[better_inlier_idxs]
better_fit = model.fit(better_data)
best_fit = better_fit
best_inlier_idxs = better_inlier_idxs
return best_fit, best_inlier_idxs
|