File: flux_bench.py

package info (click to toggle)
astroalign 2.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,596 kB
  • sloc: python: 1,616; makefile: 184
file content (359 lines) | stat: -rw-r--r-- 11,862 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# MIT License

# Copyright (c) 2016-2019 Martin Beroiz, Juan B. Cabral, Bruno Sanchez

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.


# =============================================================================
# IMPORTS
# =============================================================================

import sys
import os
import datetime as dt
import argparse

import numpy as np

import astroalign as aa

import pandas as pd

import sep

from skimage.transform import SimilarityTransform

from scipy import stats


test_path = os.path.abspath(os.path.dirname(aa.__file__))
sys.path.insert(0, test_path)

from tests.test_align import simulate_image_single  # noqa


# =============================================================================
# CONSTANTS
# =============================================================================

SIZE = 256

STARS = 300

NOISE = 100

REPEATS = 35

DEFAULT_SIZE = 6.4, 4.8


# =============================================================================
# FUNCTIONS
# =============================================================================

def get_image(size, stars, noise, seed):
    """Retrieves a single image"""
    if seed is not None:
        np.random.seed(seed)
    shape = (size, size)
    image = simulate_image_single(
        shape=shape, num_stars=stars, noise_level=noise)[:2]
    return image


def benchmark(size=SIZE, stars=STARS, noise=NOISE, repeats=REPEATS, seed=None):
    # get image
    image = get_image(size, stars, noise, seed)
    imagedata = np.ascontiguousarray(image[0])

    # detect sources (we know where they are, actually)
    bkg = sep.Background(imagedata)
    thresh = 3. * bkg.globalrms
    sources = sep.extract(imagedata - bkg.back(), thresh)
    sources.sort(order='flux')

    # perform photometry
    flux, fluxerr, flag = sep.sum_circle(
        imagedata-bkg.back(), sources['x'],
        sources['y'], 3.0, err=bkg.globalrms, gain=1.0)

    dframes = []
    # transform it
    for i_trsf in range(repeats):
        dx, dy = np.random.randint(
            low=-1 * size / 32., high=size / 32., size=2)
        theta = (np.random.random()-0.5)*0.125*np.pi
        s = 0.85+np.random.random()*0.3
        trf = SimilarityTransform(
            translation=(dx, dy), rotation=theta, scale=s)

        target = np.zeros(shape=np.array(imagedata.shape) * 2)
        newimage = aa.apply_transform(trf, imagedata - bkg.back(), target)

        # perform photometry on new places
        src_coords = np.array([sources['x'], sources['y']]).T
        new_coords = trf(src_coords).T
        nflux, nfluxerr, nflag = sep.sum_circle(
            newimage[0], new_coords[0], new_coords[1], 3.0 * s,
            err=bkg.globalrms, gain=1.0)

        # compare fluxes
        good_flux = nflag == 0
        new_to_orig = nflux[good_flux]/flux[good_flux]

        # put everything in a pd dataframe
        df = pd.DataFrame()

        df["idx"] = np.array([i_trsf] * sum(good_flux))
        df["seed"] = np.array([seed] * sum(good_flux))
        df["repeats"] = np.array([repeats] * sum(good_flux))

        df['orig_x'] = sources['x'][good_flux]
        df['orig_y'] = sources['y'][good_flux]
        df['orig_flux'] = flux[good_flux]
        df['orig_fluxerr'] = fluxerr[good_flux]
        df['orig_flag'] = flag[good_flux]

        df['new_x'] = new_coords[0][good_flux]
        df['new_y'] = new_coords[1][good_flux]
        df['new_flux'] = nflux[good_flux]
        df['new_fluxerr'] = nfluxerr[good_flux]
        df['new_flag'] = nflag[good_flux]

        df['flux_ratio'] = new_to_orig

        df['trf_theta'] = theta
        df['trf_dx'] = dx
        df['trf_dy'] = dy
        df['trf_scale'] = s

        slp, intpt, r_val, p_val, std_err = stats.linregress(
            flux[good_flux], nflux[good_flux])
        df['stats_slope'] = slp
        df['stats_intpt'] = intpt
        df['flux_per_area_ratio'] = df['flux_ratio'] / (df['trf_scale'] ** 2)

        dframes.append(df)

    final_df = pd.concat(dframes)

    return final_df


def describe(results):
    repetitions = results.repeats.values[0]
    resume = results[["flux_per_area_ratio"]].describe()
    return repetitions, resume


def plot(results, ax):

    bins = np.arange(0.95, 1.05, 0.001)
    ax.hist(
        results.flux_per_area_ratio, normed=True,
        histtype='step', bins=bins, label='Data')

    ax.plot(
        bins + (bins[1] - bins[0]) / 2.,
        stats.norm.pdf(
            bins,
            loc=np.mean(results.flux_per_area_ratio),
            scale=np.std(results.flux_per_area_ratio)),
        label='Gaussian')

    ax.legend(loc='best')

    ax.set_title("Flux ratio per unit area")
    ax.set_xlabel('Flux ratio per unit area')
    ax.set_ylabel('Normalized N')

    return ax


# =============================================================================
# CLI MAIN
# =============================================================================

class CLI:

    def __init__(self):
        self._parser = argparse.ArgumentParser(
                description="Astroalign flux benchmark tool")
        self._parser.set_defaults(
            callback=lambda ns: self.parser.print_usage())

        self._parser.add_argument(
            '--version', action='version', version='%(prog)s 2019.10')

        subparsers = self._parser.add_subparsers()

        # =====================================================================
        # benchmark subparser
        # =====================================================================

        benchmark = subparsers.add_parser(
            "benchmark",
            help="Execute and collect the flux benchmark data of astroalign")
        benchmark.set_defaults(callback=self.benchmark_command)

        benchmark.add_argument(
            "--size", dest="size", type=int, default=SIZE,
            help=("The size in pixels of the image. This parameter creates "
                  f"square figure (defaults={SIZE})."))

        benchmark.add_argument(
            "--stars", dest="stars", type=int, default=STARS,
            help=("The total numbers of stars in the image "
                  f"(defaults={STARS})."))

        benchmark.add_argument(
            "--noise", dest="noise", type=int, default=NOISE,
            help=f"lambda parameter for poisson noise (default={NOISE})")

        benchmark.add_argument(
            "--number", dest="repeats", type=int, default=REPEATS,
            help=f"How many flux tests must be executed (default={REPEATS})")

        benchmark.add_argument(
            "--seed", dest="seed", type=int, default=None,
            help=("Random seed used to initialize the pseudo-random number "
                  "generator. if seed is None, then random-state will try to "
                  "read data from /dev/urandom (or the Windows analogue) if "
                  "available or seed from the clock otherwise "
                  "(default=None)."))

        benchmark.add_argument(
            "--out", "-o", dest="out", required=True,
            type=argparse.FileType('w'),
            help="Output file path. The data was stored in CSV format")

        # =====================================================================
        # describe subparser
        # =====================================================================

        describe = subparsers.add_parser(
            "describe",
            help="Show a resume and (optionally) of the benchmark results")
        describe.set_defaults(callback=self.describe_command)

        describe.add_argument(
            "--file", "-f", dest="file", required=True,
            type=argparse.FileType('r'),
            help="File path of the flux benchmark data in CSV format")

        # =====================================================================
        # plot subparser
        # =====================================================================

        plot = subparsers.add_parser(
            "plot", help="Show the histogram of a given results")
        plot.set_defaults(callback=self.plot_command)

        plot.add_argument(
            "--file", "-f", dest="file", required=True,
            type=argparse.FileType('r'),
            help="File path of the flux benchmark data in CSV format")

        plot.add_argument(
            "--size", dest="size", nargs=2, type=float,
            help=("The size of the entire figure in inches in the format "
                  f"'width height' (default={DEFAULT_SIZE})."))

        plot.add_argument(
            "--out", "-o", dest="out",
            help=("A file to store the generated plot. "
                  "By default the default matplotlib backend shows the plot"))

    def parse_and_run(self, *args, **kwargs):
        ns = self._parser.parse_args(*args, **kwargs)
        return ns.callback(ns)

    def plot_command(self, ns):
        import matplotlib.pyplot as plt

        results = pd.read_csv(ns.file)

        size = ns.size if ns.size else DEFAULT_SIZE

        fig, ax = plt.subplots()
        fig.set_size_inches(*size)

        plot(results, ax)

        fig.suptitle("")
        plt.tight_layout()
        if ns.out is None:
            print(f"Showing plot for data stored in '{ns.file.name}'...")
            fig.canvas.set_window_title(f"{self.parser.prog} - {ns.file.name}")
            plt.show()
        else:
            print(
                f"Storing plot for data in '{ns.file.name}' -> '{ns.out}'...")
            plt.savefig(ns.out)
            print("DONE!")

    def describe_command(self, ns):
        results = pd.read_csv(ns.file)

        repetitions, resume = describe(results)

        print(f"Data size: {len(results)}")
        print(f"\twith {repetitions} repetitions \n")
        print(">>>>> Resume <<<<<")
        print(resume)
        print("")

    def benchmark_command(self, ns):
        if ns.repeats <= 0:
            self._parser.error(f"'repeats' must be > 0. Found {ns.repeats}")

        now = dt.datetime.now

        print(
            f"[{now()}] Starting flux benchmark "
            f"for astroalign {aa.__version__}...")
        print("")
        results = benchmark(
            size=ns.size, stars=ns.stars, noise=ns.noise,
            repeats=ns.repeats, seed=ns.seed)

        repetitions, resume = describe(results)

        print(f"[{now()}] Data size: {len(results)}")
        print(f"\twith {repetitions} repetitions \n")

        print(">>>>> Resume <<<<<")
        print(resume)
        print("")

        results.to_csv(ns.out, index=False)

    @property
    def parser(self):
        return self._parser


# =============================================================================
# MAIN
# =============================================================================

if __name__ == "__main__":
    parser = CLI()
    parser.parse_and_run()