1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
|
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
# For details: https://github.com/pylint-dev/astroid/blob/main/LICENSE
# Copyright (c) https://github.com/pylint-dev/astroid/blob/main/CONTRIBUTORS.txt
import unittest
try:
import numpy # pylint: disable=unused-import
HAS_NUMPY = True
except ImportError:
HAS_NUMPY = False
from astroid import builder
@unittest.skipUnless(HAS_NUMPY, "This test requires the numpy library.")
class BrainNumpyCoreFunctionBaseTest(unittest.TestCase):
"""Test the numpy core numeric brain module."""
numpy_functions = (
("linspace", "1, 100"),
("logspace", "1, 100"),
("geomspace", "1, 100"),
)
def _inferred_numpy_func_call(self, func_name, *func_args):
node = builder.extract_node(
f"""
import numpy as np
func = np.{func_name:s}
func({','.join(func_args):s})
"""
)
return node.infer()
def test_numpy_function_calls_inferred_as_ndarray(self):
"""Test that calls to numpy functions are inferred as numpy.ndarray."""
licit_array_types = (".ndarray",)
for func_ in self.numpy_functions:
with self.subTest(typ=func_):
inferred_values = list(self._inferred_numpy_func_call(*func_))
self.assertTrue(
len(inferred_values) == 1,
msg=f"Too much inferred value for {func_[0]:s}",
)
self.assertTrue(
inferred_values[-1].pytype() in licit_array_types,
msg="Illicit type for {:s} ({})".format(
func_[0], inferred_values[-1].pytype()
),
)
|