File: test_core_function_base.py

package info (click to toggle)
astroid 4.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,132 kB
  • sloc: python: 38,560; makefile: 24
file content (52 lines) | stat: -rw-r--r-- 1,766 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
# For details: https://github.com/pylint-dev/astroid/blob/main/LICENSE
# Copyright (c) https://github.com/pylint-dev/astroid/blob/main/CONTRIBUTORS.txt

import unittest

try:
    import numpy  # pylint: disable=unused-import

    HAS_NUMPY = True
except ImportError:
    HAS_NUMPY = False

from astroid import builder


@unittest.skipUnless(HAS_NUMPY, "This test requires the numpy library.")
class BrainNumpyCoreFunctionBaseTest(unittest.TestCase):
    """Test the numpy core numeric brain module."""

    numpy_functions = (
        ("linspace", "1, 100"),
        ("logspace", "1, 100"),
        ("geomspace", "1, 100"),
    )

    def _inferred_numpy_func_call(self, func_name, *func_args):
        node = builder.extract_node(
            f"""
        import numpy as np
        func = np.{func_name:s}
        func({','.join(func_args):s})
        """
        )
        return node.infer()

    def test_numpy_function_calls_inferred_as_ndarray(self):
        """Test that calls to numpy functions are inferred as numpy.ndarray."""
        licit_array_types = (".ndarray",)
        for func_ in self.numpy_functions:
            with self.subTest(typ=func_):
                inferred_values = list(self._inferred_numpy_func_call(*func_))
                self.assertTrue(
                    len(inferred_values) == 1,
                    msg=f"Too much inferred value for {func_[0]:s}",
                )
                self.assertTrue(
                    inferred_values[-1].pytype() in licit_array_types,
                    msg="Illicit type for {:s} ({})".format(
                        func_[0], inferred_values[-1].pytype()
                    ),
                )