1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
# For details: https://github.com/pylint-dev/astroid/blob/main/LICENSE
# Copyright (c) https://github.com/pylint-dev/astroid/blob/main/CONTRIBUTORS.txt
import unittest
try:
import numpy # pylint: disable=unused-import
HAS_NUMPY = True
except ImportError:
HAS_NUMPY = False
from astroid import builder
@unittest.skipUnless(HAS_NUMPY, "This test requires the numpy library.")
class BrainNumpyCoreMultiarrayTest(unittest.TestCase):
"""Test the numpy core multiarray brain module."""
numpy_functions_returning_array = (
("array", "[1, 2]"),
("bincount", "[1, 2]"),
("busday_count", "('2011-01', '2011-02')"),
("busday_offset", "'2012-03', -1, roll='forward'"),
("concatenate", "([1, 2], [1, 2])"),
("datetime_as_string", "['2012-02', '2012-03']"),
("dot", "[1, 2]", "[1, 2]"),
("empty_like", "[1, 2]"),
("inner", "[1, 2]", "[1, 2]"),
("is_busday", "['2011-07-01', '2011-07-02', '2011-07-18']"),
("lexsort", "(('toto', 'tutu'), ('riri', 'fifi'))"),
("packbits", "np.array([1, 2])"),
("unpackbits", "np.array([[1], [2], [3]], dtype=np.uint8)"),
("vdot", "[1, 2]", "[1, 2]"),
("where", "[True, False]", "[1, 2]", "[2, 1]"),
("empty", "[1, 2]"),
("zeros", "[1, 2]"),
)
numpy_functions_returning_bool = (
("can_cast", "np.int32, np.int64"),
("may_share_memory", "np.array([1, 2])", "np.array([3, 4])"),
("shares_memory", "np.array([1, 2])", "np.array([3, 4])"),
)
numpy_functions_returning_dtype = (
# ("min_scalar_type", "10"), # Not yet tested as it returns np.dtype
# ("result_type", "'i4'", "'c8'"), # Not yet tested as it returns np.dtype
)
numpy_functions_returning_none = (("copyto", "([1, 2], [1, 3])"),)
numpy_functions_returning_tuple = (
(
"unravel_index",
"[22, 33, 44]",
"(6, 7)",
), # Not yet tested as is returns a tuple
)
def _inferred_numpy_func_call(self, func_name, *func_args):
node = builder.extract_node(
f"""
import numpy as np
func = np.{func_name:s}
func({','.join(func_args):s})
"""
)
return node.infer()
def _inferred_numpy_no_alias_func_call(self, func_name, *func_args):
node = builder.extract_node(
f"""
import numpy
func = numpy.{func_name:s}
func({','.join(func_args):s})
"""
)
return node.infer()
def test_numpy_function_calls_inferred_as_ndarray(self):
"""Test that calls to numpy functions are inferred as numpy.ndarray."""
for infer_wrapper in (
self._inferred_numpy_func_call,
self._inferred_numpy_no_alias_func_call,
):
for func_ in self.numpy_functions_returning_array:
with self.subTest(typ=func_):
inferred_values = list(infer_wrapper(*func_))
self.assertTrue(
len(inferred_values) == 1,
msg="Too much inferred values ({}) for {:s}".format(
inferred_values, func_[0]
),
)
self.assertTrue(
inferred_values[-1].pytype() == ".ndarray",
msg="Illicit type for {:s} ({})".format(
func_[0], inferred_values[-1].pytype()
),
)
def test_numpy_function_calls_inferred_as_bool(self):
"""Test that calls to numpy functions are inferred as bool."""
for infer_wrapper in (
self._inferred_numpy_func_call,
self._inferred_numpy_no_alias_func_call,
):
for func_ in self.numpy_functions_returning_bool:
with self.subTest(typ=func_):
inferred_values = list(infer_wrapper(*func_))
self.assertTrue(
len(inferred_values) == 1,
msg="Too much inferred values ({}) for {:s}".format(
inferred_values, func_[0]
),
)
self.assertTrue(
inferred_values[-1].pytype() == "builtins.bool",
msg="Illicit type for {:s} ({})".format(
func_[0], inferred_values[-1].pytype()
),
)
def test_numpy_function_calls_inferred_as_dtype(self):
"""Test that calls to numpy functions are inferred as numpy.dtype."""
for infer_wrapper in (
self._inferred_numpy_func_call,
self._inferred_numpy_no_alias_func_call,
):
for func_ in self.numpy_functions_returning_dtype:
with self.subTest(typ=func_):
inferred_values = list(infer_wrapper(*func_))
self.assertTrue(
len(inferred_values) == 1,
msg="Too much inferred values ({}) for {:s}".format(
inferred_values, func_[0]
),
)
self.assertTrue(
inferred_values[-1].pytype() == "numpy.dtype",
msg="Illicit type for {:s} ({})".format(
func_[0], inferred_values[-1].pytype()
),
)
def test_numpy_function_calls_inferred_as_none(self):
"""Test that calls to numpy functions are inferred as None."""
for infer_wrapper in (
self._inferred_numpy_func_call,
self._inferred_numpy_no_alias_func_call,
):
for func_ in self.numpy_functions_returning_none:
with self.subTest(typ=func_):
inferred_values = list(infer_wrapper(*func_))
self.assertTrue(
len(inferred_values) == 1,
msg="Too much inferred values ({}) for {:s}".format(
inferred_values, func_[0]
),
)
self.assertTrue(
inferred_values[-1].pytype() == "builtins.NoneType",
msg="Illicit type for {:s} ({})".format(
func_[0], inferred_values[-1].pytype()
),
)
def test_numpy_function_calls_inferred_as_tuple(self):
"""Test that calls to numpy functions are inferred as tuple."""
for infer_wrapper in (
self._inferred_numpy_func_call,
self._inferred_numpy_no_alias_func_call,
):
for func_ in self.numpy_functions_returning_tuple:
with self.subTest(typ=func_):
inferred_values = list(infer_wrapper(*func_))
self.assertTrue(
len(inferred_values) == 1,
msg="Too much inferred values ({}) for {:s}".format(
inferred_values, func_[0]
),
)
self.assertTrue(
inferred_values[-1].pytype() == "builtins.tuple",
msg="Illicit type for {:s} ({})".format(
func_[0], inferred_values[-1].pytype()
),
)
|