1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/************************************************************************************
AstroMenace (Hardcore 3D space shooter with spaceship upgrade possibilities)
Copyright © 2006-2013 Michael Kurinnoy, Viewizard
AstroMenace is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
AstroMenace is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with AstroMenace. If not, see <http://www.gnu.org/licenses/>.
Web Site: http://www.viewizard.com/
Project: http://sourceforge.net/projects/openastromenace/
E-mail: viewizard@viewizard.com
*************************************************************************************/
#include "Texture.h"
//------------------------------------------------------------------------------------
// загрузка данных из TGA файла в DIB массив
//------------------------------------------------------------------------------------
#define TGA_RGB 2 // This tells us it's a normal RGB (really BGR) file
#define TGA_A 3 // This tells us it's a ALPHA file
#define TGA_RLE 10 // This tells us that the targa is Run-Length Encoded (RLE)
int ReadTGA(BYTE **DIB, eFILE *pFile, int *DWidth, int *DHeight, int *DChanels)
{
BYTE length = 0; // The length in bytes to the pixels
BYTE imageType = 0; // The image type (RLE, RGB, Alpha...)
BYTE bits = 0; // The bits per pixel for the image (16, 24, 32)
int channels = 0; // The channels of the image (3 = RGA : 4 = RGBA)
size_t stride = 0; // The stride (channels * width)
int i = 0; // A counter
// Read in the length in bytes from the header to the pixel data
pFile->fread(&length, sizeof(BYTE), 1);
// Jump over one byte
pFile->fseek(1, SEEK_CUR);
// Read in the imageType (RLE, RGB, etc...)
pFile->fread(&imageType, sizeof(BYTE), 1);
// Skip past general information we don't care about
pFile->fseek(9, SEEK_CUR);
// Read the width, height and bits per pixel (16, 24 or 32)
WORD TmpReadData;
pFile->fread(&TmpReadData, sizeof(WORD), 1);
*DWidth = TmpReadData;
pFile->fread(&TmpReadData, sizeof(WORD), 1);
*DHeight = TmpReadData;
pFile->fread(&bits, sizeof(BYTE), 1);
// Now we move the file pointer to the pixel data
pFile->fseek(length + 1, SEEK_CUR);
// Check if the image is RLE compressed or not
if(imageType != TGA_RLE)
{
// Check if the image is a 24 or 32-bit image
if(bits == 24 || bits == 32)
{
// Calculate the channels (3 or 4) - (use bits >> 3 for more speed).
// Next, we calculate the stride and allocate enough memory for the pixels.
channels = bits / 8;
stride = channels * (*DWidth);
*DIB = 0;
*DIB = new BYTE[stride * (*DHeight)];
if (*DIB == 0) return 0;
// Load in all the pixel data line by line
for(int y = 0; y < (*DHeight); y++)
{
// Store a pointer to the current line of pixels
BYTE *pLine = (*DIB+stride * y);
// Read in the current line of pixels
pFile->fread(pLine, stride, 1);
}
}
// Check if the image is a 16 bit image (RGB stored in 1 unsigned short)
else if(bits == 16)
{
unsigned short pixels = 0;
int r=0, g=0, b=0;
// Since we convert 16-bit images to 24 bit, we hardcode the channels to 3.
// We then calculate the stride and allocate memory for the pixels.
channels = 3;
stride = channels * (*DWidth);
*DIB = 0;
*DIB = new BYTE[stride * (*DHeight)];
if (*DIB == 0) return 0;
// Load in all the pixel data pixel by pixel
for(i = 0; i < (*DWidth)*(*DHeight); i++)
{
// Read in the current pixel
pFile->fread(&pixels, sizeof(unsigned short), 1);
// To convert a 16-bit pixel into an R, G, B, we need to
// do some masking and such to isolate each color value.
// 0x1f = 11111 in binary, so since 5 bits are reserved in
// each unsigned short for the R, G and B, we bit shift and mask
// to find each value. We then bit shift up by 3 to get the full color.
b = (pixels & 0x1f) << 3;
g = ((pixels >> 5) & 0x1f) << 3;
r = ((pixels >> 10) & 0x1f) << 3;
// This essentially assigns the color to our array and swaps the
// B and R values at the same time.
memcpy(*DIB+i*3+2, &r, sizeof(BYTE));
memcpy(*DIB+i*3+1, &g, sizeof(BYTE));
memcpy(*DIB+i*3+0, &b, sizeof(BYTE));
}
}
// Else return a NULL for a bad or unsupported pixel format
else
return 0;
}
// Else, it must be Run-Length Encoded (RLE)
else
{
// Create some variables to hold the rleID, current colors read, channels, & stride.
BYTE rleID = 0;
int colorsRead = 0;
channels = bits / 8;
stride = channels * (*DWidth);
// Next we want to allocate the memory for the pixels and create an array,
// depending on the channel count, to read in for each pixel.
*DIB = 0;
*DIB = new BYTE[stride * (*DHeight)];
if (*DIB == 0) return 0;
BYTE *pColors = 0;
pColors = new BYTE[channels];
if (pColors == 0) return 0;
// Load in all the pixel data
while(i < (*DWidth)*(*DHeight))
{
// Read in the current color count + 1
pFile->fread(&rleID, sizeof(BYTE), 1);
// Check if we don't have an encoded string of colors
if(rleID < 128)
{
// Increase the count by 1
rleID++;
// Go through and read all the unique colors found
while(rleID)
{
// Read in the current color
pFile->fread(pColors, sizeof(BYTE) * channels, 1);
// Store the current pixel in our image array
memcpy(*DIB+colorsRead+0, &pColors[0], sizeof(BYTE));
memcpy(*DIB+colorsRead+1, &pColors[1], sizeof(BYTE));
memcpy(*DIB+colorsRead+2, &pColors[2], sizeof(BYTE));
// If we have a 4 channel 32-bit image, assign one more for the alpha
if(bits == 32)
memcpy(*DIB+colorsRead+3, &pColors[3], sizeof(BYTE));
// Increase the current pixels read, decrease the amount
// of pixels left, and increase the starting index for the next pixel.
i++;
rleID--;
colorsRead += channels;
}
}
// Else, let's read in a string of the same character
else
{
// Minus the 128 ID + 1 (127) to get the color count that needs to be read
rleID -= 127;
// Read in the current color, which is the same for a while
pFile->fread(pColors, sizeof(BYTE) * channels, 1);
// Go and read as many pixels as are the same
while(rleID)
{
// Assign the current pixel to the current index in our pixel array
memcpy(*DIB+colorsRead+0, &pColors[0], sizeof(BYTE));
memcpy(*DIB+colorsRead+1, &pColors[1], sizeof(BYTE));
memcpy(*DIB+colorsRead+2, &pColors[2], sizeof(BYTE));
// If we have a 4 channel 32-bit image, assign one more for the alpha
if(bits == 32)
*DIB[colorsRead + 3] = pColors[3];
// Increase the current pixels read, decrease the amount
// of pixels left, and increase the starting index for the next pixel.
i++;
rleID--;
colorsRead += channels;
}
}
}
}
*DChanels = channels;
// меняем местами цвета...
BYTE TmpColorSwap;
int k=0;
for (i=0; i<(*DHeight); i++)
for (int j=0; j<(*DWidth); j++)
{
memcpy(&TmpColorSwap, *DIB+k, 1);
memcpy(*DIB+k, *DIB+k+2, 1);
memcpy(*DIB+k+2, &TmpColorSwap, 1);
k+=*DChanels;
}
return 1;
}
|