1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
/*
# This file is part of the Astrometry.net suite.
# Licensed under a 3-clause BSD style license - see LICENSE
*/
#include <stdio.h>
#include <assert.h>
#include <math.h>
#include <string.h>
#include "healpix.h"
#include "mathutil.h"
#include "pnpoly.h"
/* Size of the line buffer */
#define BUFSIZE 1000
/* Need to extend this structure to handle more complicated polygons */
typedef struct {
double *corners;
} rect_field;
/* Dead simple linked list */
struct ll_node {
int data;
struct ll_node *next;
};
/* TODO: factor this out into mathutil or something similar. Eventually
* this file won't need it anymore anyway if the healpix code is rewritten
* to abandon the current behaviour of using hierarchical numbering for
* powers of 4. */
static Inline anbool ispowerof4(unsigned int x) {
if (x >= 0x40000)
return ( x == 0x40000 ||
x == 0x100000 || x == 0x400000 ||
x == 0x1000000 || x == 0x4000000 ||
x == 0x10000000 || x == 0x40000000);
else
return (x == 0x1 || x == 0x4 ||
x == 0x10 || x == 0x40 ||
x == 0x100 || x == 0x400 ||
x == 0x1000 || x == 0x4000 ||
x == 0x10000);
}
/* Compute the min of n doubles */
static double nmin(double *p, int n)
{
int i;
double cmin;
assert (n > 0);
cmin = p[0];
for (i = 1; i < n; i++)
{
if (p[i] < cmin)
cmin = p[i];
}
return cmin;
}
/* Compute the min of n doubles and return the index rather than value */
static int nminind(double *p, int n)
{
int i;
int cminind;
assert (n > 0);
cminind = 0;
for (i = 1; i < n; i++)
{
if (p[i] < p[cminind])
{
cminind = i;
}
}
return cminind;
}
/* Compute the max of n doubles */
static double nmax(double *p, int n)
{
int i;
double cmax;
assert (n > 0);
cmax = p[0];
for (i = 1; i < n; i++)
{
if (p[i] > cmax)
cmax = p[i];
}
return cmax;
}
/* Compute the range from max to min of n points stored in a double vector. */
static double range(double *p, int n)
{
double max = nmax (p, n);
double min = nmin (p, n);
return fabs (max - min);
}
/* Wraps around point_in_poly to choose the axis along which the corners
* have minimum variance in order to do the chop-off projection.
*
* TODO: generalize this to n-point convex polygons. Notes have been made
* as to where changes need to occur and what.
*/
int is_inside_field(rect_field *f, double *p)
{
// DIMQUADS
/* FIXME assumes 4 points, will need malloc'ing */
double coordtrans[12];
double *coord1;
double *coord2;
/* FIXME assumes 4 points */
double *x = coordtrans;
double *y = coordtrans + 4;
double *z = coordtrans + 8;
double t_coord1, t_coord2;
double ranges[3];
int i;
int xgot = 0, ygot = 0, zgot = 0;
/* FIXME Assumes 4 points */
for (i = 0; i < 12; i++)
{
int j = i % 3;
switch (j)
{
case 0:
coordtrans[xgot++] = f->corners[i];
break;
case 1:
/* FIXME 4+ should be n+ */
coordtrans[4 + ygot++] = f->corners[i];
break;
case 2:
/* FIXME 4+ should be n+ */
coordtrans[8 + zgot++] = f->corners[i];
break;
}
}
/* FIXME all these calls should use n */
ranges[0] = range(x, 4);
ranges[1] = range(y, 4);
ranges[2] = range(z, 4);
switch (nminind(ranges, 3))
{
case 0:
coord1 = y;
coord2 = z;
t_coord1 = p[1];
t_coord2 = p[2];
break;
case 1:
coord1 = x;
coord2 = z;
t_coord1 = p[0];
t_coord2 = p[2];
break;
case 2:
coord1 = x;
coord2 = y;
t_coord1 = p[0];
t_coord2 = p[1];
break;
default:
return -1;
}
/* FIXME should call with n rather than 4 */
return point_in_poly(coord1, coord2, 4, t_coord1, t_coord2);
}
/* An ugly recursive implementation written while still trying to get
* the algorithm right, left here for... some reason */
#if 0
void fill_maps_recursive(char *minmap, char *maxmap, uint hpx, uint Nside,
rect_field *curfield, char *visited)
{
double thishpx_coords[3];
uint neighbours[8];
uint nn;
if (visited[hpx / 8] & (1 << (hpx % 8)))
return;
visited[hpx / 8] |= 1 << (hpx % 8);
healpix_to_xyzarr_lex(0.5, 0.5, hpx, Nside, thishpx_coords);
//printf("Examining healpix %d, centered at (%f, %f, %f)\n", hpx,
// thishpx_coords[0], thishpx_coords[1], thishpx_coords[2]);
if (is_inside_field(curfield, thishpx_coords))
{
int j;
maxmap[hpx / 8] |= (1 << (hpx % 8));
nn = healpix_get_neighbours_nside(hpx, neighbours, Nside);
for (j = 0; j < nn; j++)
{
double ncoords[3];
healpix_to_xyzarr_lex(0.5, 0.5, neighbours[j], Nside, ncoords);
//printf("- Examining neighbour healpix %d, centered at (%f, %f, %f)\n", neighbours[j],
// ncoords[0], ncoords[1], ncoords[2]);
if (!is_inside_field(curfield, ncoords)) {
//printf("-- Not in field, breaking off neighbour search\n");
break;
}
}
if (j == nn)
minmap[(hpx / 8)] |= (1 << (hpx % 8));
for (j = 0; j < nn; j++)
{
//printf("Recursing on neighbour of %d, %d\n", hpx, neighbours[j]);
fill_maps_recursive(minmap, maxmap, neighbours[j], Nside,
curfield, visited);
}
}
}
void fill_maps(char *minmap, char *maxmap, uint hpx, uint Nside,
rect_field *curfield)
{
char *visited = malloc(2 * Nside * Nside * sizeof(char));
uint i;
uint visitedcnt = 0;
for (i = 0; i < 2 * Nside * Nside; i++)
visited[i] = 0;
fill_maps_recursive(minmap, maxmap, hpx, Nside, curfield, visited);
}
#endif
/* This basically takes two appropriately sized char[] arrays to be used
* as bitmaps for the min/max healpix mapping of the sky, as well as a
* field we'd like to process and add to the bitmaps, and a healpix number
* to start adding from, and an Nside factor.
*
* This basically starts at the healpix closest to the center of a field
* (actually it starts at hpx, see todo below) and percolates outward by
* checking neighbouring healpixes. A healpix is included in the upper bound
* map if it's center is inside the field boundaries, and included in the
* lower bound map only if all of its neighbours' centers are inside the
* field boundaries as well.
*
* TODO: bring the center-computing code from main() up here
* TODO: factor that bitmap access ugliness out into some damned macros
*/
void fill_maps(char *minmap, char *maxmap, uint hpx, uint Nside,
rect_field *curfield)
{
/* Gotta love "are we done" switch variables */
anbool done = FALSE;
/* Bitmap we'll use to keep from revisiting the same healpixes */
char *visited = malloc(2 * Nside * Nside * sizeof(char));
/* Store the head of the queue (actually a LIFO) of healpixes to examine */
struct ll_node *queue = NULL;
double thishpx_coords[3];
int i;
/* Initialize the visited map */
for (i = 0; i < 2 * Nside * Nside; i++)
visited[i] = 0;
do {
/* nn = "number of neighbours */
uint nn;
anbool found_neighbour_outside = FALSE;
/* always need room for at least 8 neighbours; actual number
* gets stored in nn */
uint neighbours[8];
if (visited[hpx / 8] & (1 << (hpx % 8)))
{
/* should never happen */
assert(1 == 0);
}
/* set that we've visited hpx */
visited[hpx / 8] |= (1 << (hpx % 8));
/* compute the xyz location of the center of hpx */
healpix_to_xyzarr(hpx, Nside, 0.5, 0.5, thishpx_coords);
/* skip the body of this loop if we can */
if (!is_inside_field(curfield, thishpx_coords))
goto getnext;
/* always include in maxmap */
maxmap[hpx / 8] |= 1 << (hpx % 8);
nn = healpix_get_neighbours(hpx, neighbours, Nside);
/* check inclusion for each neighbour and enqueue it if unvisited */
for (i = 0; i < nn; i++)
{
double ncoords[3];
healpix_to_xyzarr(neighbours[i], Nside, 0.5, 0.5, ncoords);
if (!is_inside_field(curfield, ncoords))
found_neighbour_outside = TRUE;
if (!(visited[neighbours[i] / 8] & (1 << (neighbours[i] % 8))))
{
struct ll_node *newnode = malloc(sizeof(struct ll_node));
newnode->next = queue;
newnode->data = neighbours[i];
queue = newnode;
}
}
/* If no neighbours lie outside then include in the minmap */
if (!found_neighbour_outside)
minmap[hpx / 8] |= 1 << (hpx % 8);
/* dequeue the next one to be checked and set hpx */
getnext:
if (queue != NULL)
{
struct ll_node *newhead = queue->next;
hpx = queue->data;
free(queue);
queue = newhead;
}
else {
/* If the queue is empty and we've gone through the last iteration
* then it's okay to terminate. note that right after dequeueing
* you can have queue == NULL but still not be done, which is
* why we can't just use "queue != NULL" as our loop condition */
done = TRUE;
}
} while (!done);
free(visited);
}
static void print_help(FILE *f, char *name)
{
fprintf(f, "This program computes statistics about a set of (for the moment) rectangular\nfields on the sky.\n\n");
fprintf(f, "\tUsage: %s -N <Nside> [-I <inputfile>]\n\n", name);
fprintf(f, "In the absence of a -I switch, reads coordinates from standard input.\n");
fprintf(f, "Input should be 4 XYZ coordinates per line, with components and coordinates\nseparated by tabs (i.e. 12 tab-delimited doubles)\n");
}
int main(int argc, char **argv)
{
double max;
rect_field curfield;
int filled_min = 0, filled_max = 0;
char *hpmap_min, *hpmap_max;
char *buf = malloc(BUFSIZE * sizeof(char));
int ich, i;
int Nside = -1;
uint fields;
char *infilename = NULL;
FILE *input;
if (argc == 0)
{
print_help(stderr, argv[0]);
exit(1);
}
while ((ich = getopt(argc, argv, "N:I:")) != EOF)
{
switch (ich)
{
case 'N':
Nside = atoi(optarg);
break;
case 'I':
if (optarg == NULL)
{
print_help(stderr, argv[0]);
fprintf(stderr, "Error: -I requires argument");
exit(1);
}
infilename = strdup(optarg);
break;
}
}
if (Nside < 1)
{
print_help(stderr, argv[0]);
fprintf(stderr, "\nError: specify a positive Nside value with -N\n");
exit(1);
}
else if (ispowerof4(Nside))
{
print_help(stderr, argv[0]);
fprintf(stderr, "Error: Nside values that are powers of 4 \
are bad news at\n the moment, choose a different one\n");
exit(1);
}
if (infilename) {
input = fopen(infilename, "r");
if (input == NULL)
{
perror(argv[0]);
exit(1);
}
}
else {
input = stdin;
}
/* We could get away with allocating ceil(2/3 * Nside * Nside) */
hpmap_min = malloc(2 * Nside * Nside * sizeof(char));
hpmap_max = malloc(2 * Nside * Nside * sizeof(char));
if (hpmap_min == NULL || hpmap_max == NULL)
{
fprintf(stderr, "malloc failed!\n");
exit(1);
}
for (i = 0; i < 2 * Nside * Nside; i++) {
hpmap_min[i] = 0;
hpmap_max[i] = 0;
}
curfield.corners = malloc(3 * 4 * sizeof(double));
fields = 0;
while (fgets(buf, BUFSIZE, input) != NULL)
{
uint centerhp;
int i, j;
double center[3];
center[0] = center[1] = center[2] = 0;
fields++;
//printf("Doing field %d\n",fields);
curfield.corners[0] = atof(strtok(buf, "\t"));
/* 12 = 3 coords x 4 pts, got 1 */
for (j = 1; j < 12; j++)
{
char *tok = strtok(NULL, "\t");
if (tok == NULL)
{
fprintf(stderr, "Premature end of line!\n");
exit(1);
}
curfield.corners[j] = atof(tok);
}
for (i = 0; i < 4; i++)
{
for (j = 0; j < 3; j++)
{
center[j] += curfield.corners[3*i + j];
}
}
for (i = 0; i < 3; i++)
center[i] /= 4;
normalize_3(center);
centerhp = xyzarrtohealpix(center, (uint)Nside);
fill_maps(hpmap_min, hpmap_max, centerhp, (uint)Nside, &curfield);
}
for (i = 0; i < 12 * Nside * Nside; i++)
{
if (hpmap_min[i / 8] & (1 << (i % 8)))
filled_min++;
if (hpmap_max[i / 8] & (1 << (i % 8)))
filled_max++;
}
max = 12 * Nside * Nside;
printf("Min: %f, Max: %f\n",
((double)filled_min) / max,
((double)filled_max) / max);
fclose(input);
return 0;
}
|