1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
/*
# This file is part of the Astrometry.net suite.
# Licensed under a 3-clause BSD style license - see LICENSE
*/
/**
Reads a .code or .ckdt file, projects each code onto each pair of axes,
and histograms the results. Writes out the histograms as Matlab literals.
Pipe the output to a file like "hists.m", then in Matlab run the
"codeprojections.m" script.
HACK - I haven't looked at how code dimensionality (dimcodes)
influences the "volume_at_value()" function. The volume-corrected plots
may therefore be wrong.
*/
#include <string.h>
#include <limits.h>
#include <math.h>
#include "starutil.h"
#include "codekd.h"
#include "kdtree_fits_io.h"
#include "keywords.h"
#include "boilerplate.h"
#define OPTIONS "hd"
static void print_help(char* progname)
{
BOILERPLATE_HELP_HEADER(stderr);
fprintf(stderr, "Usage: %s <code kdtree>\n"
" [-d]: normalize by volume (produce density plots)\n\n",
progname);
}
// 2-D hists
int** hists = NULL;
double** dhists = NULL;
int Nbins = 40;
int Dims;
// 2-D hist of {C,D}x,{C,D}y
int* xyhist = NULL;
double* dxyhist = NULL;
// 1-D hists
int* single = NULL;
double* dsingle = NULL;
int Nsingle = 100;
anbool do_density = FALSE;
double minvalue;
double scale;
static Const double volume_at_value(double x) {
// codes in a circle live inside the circle
// (x-1/2)^2 + (y-1/2)^2 = 1/2
// we are given "x" and want to find the distance
// between the upper and lower arcs of the circle;
// ie y(x)_upper - y(x)_lower. Hence we don't care
// about the y offset of the center of the circle and
// we want twice the value y(x)_upper. Ie, solve
// (x-1/2)^2 + y^2 = 1/2
// for y, and return twice that.
// y = sqrt(1/2 - (x - 1/2)^2).
// = sqrt(1/2 - (x^2 - x + 1/4)
// = sqrt(-x^2 + x + 1/4)
return 2.0 * sqrt(-x*x + x + 0.25);
}
static int value_to_bin(double val, int Nbins) {
int bin = (int)((val - minvalue) * scale * Nbins);
if (bin >= Nbins) {
bin = Nbins-1;
printf("truncating value %g\n", val);
}
if (bin < 0) {
bin = 0;
printf("truncating (up) value %g\n", val);
}
return bin;
}
static void add_to_single_histogram(int dim, double val) {
int* hist = single + Nsingle * dim;
int bin = value_to_bin(val, Nsingle);
hist[bin]++;
if (do_density) {
double* dhist = dsingle + Nsingle * dim;
dhist[bin] += 1.0 / volume_at_value(val);
}
}
static void add_to_histogram(int dim1, int dim2, double val1, double val2) {
int xbin, ybin;
int* hist = hists[dim1 * Dims + dim2];
xbin = value_to_bin(val1, Nbins);
ybin = value_to_bin(val2, Nbins);
hist[xbin * Nbins + ybin]++;
if (do_density) {
double* dhist = dhists[dim1 * Dims + dim2];
double inc;
if (dim1/2 == dim2/2)
// (cx vs cy) or (dx vs dy); the other two dimensions are independent.
inc = 1.0;
else
inc = 1.0 / (volume_at_value(val1) * volume_at_value(val2));
dhist[xbin * Nbins + ybin] += inc;
}
}
static void add_to_cd_histogram(double val1, double val2) {
int xbin, ybin;
xbin = value_to_bin(val1, Nbins);
ybin = value_to_bin(val2, Nbins);
xyhist[xbin * Nbins + ybin]++;
if (do_density)
dxyhist[xbin * Nbins + ybin] += 1.0 / (volume_at_value(val1) * volume_at_value(val2));
}
int main(int argc, char *argv[])
{
int argchar;
char *ckdtfname = NULL;
int i, j, d, e;
anbool circle;
codetree* ct = NULL;
kdtree_t* ckdt = NULL;
int Ncodes;
int dimcodes;
if (argc <= 2) {
print_help(argv[0]);
return (OPT_ERR);
}
while ((argchar = getopt (argc, argv, OPTIONS)) != -1)
switch (argchar) {
case 'd':
do_density = TRUE;
break;
case 'h':
print_help(argv[0]);
return (HELP_ERR);
default:
return (OPT_ERR);
}
if (optind != argc-1) {
print_help(argv[0]);
printf("You must give a code kdtree filename!\n");
exit(-1);
}
ckdtfname = argv[optind];
ct = codetree_open(ckdtfname);
if (!ct) {
fprintf(stderr, "Failed to read code kdtree file %s.\n", ckdtfname);
exit(-1);
}
circle = qfits_header_getboolean(ct->header, "CIRCLE", 0);
ckdt = ct->tree;
Ncodes = ckdt->ndata;
dimcodes = ckdt->ndim;
fprintf(stderr, "Index %s the CIRCLE property.\n",
(circle ? "has" : "does not have"));
if (circle) {
double margin = 0.1;
minvalue = 0.5 - M_SQRT1_2 - (0.5 * margin);
//scale = M_SQRT1_2 + margin;
scale = 1.0 / (M_SQRT2 + margin);
} else {
double margin = 0.06;
minvalue = 0.0 - (0.5 * margin);
scale = 1.0 / (1.0 + margin);
if (do_density) {
fprintf(stderr, "Warning: this index does not have the CIRCLE property "
"so the -d flag has no effect.\n");
do_density = FALSE;
}
}
// Allocate memory for projection histograms
hists = calloc(dimcodes * dimcodes, sizeof(int*));
dhists = calloc(dimcodes * dimcodes, sizeof(double*));
for (d = 0; d < dimcodes; d++) {
for (e = 0; e < d; e++) {
hists [d*dimcodes + e] = calloc(Nbins * Nbins, sizeof(int));
dhists[d*dimcodes + e] = calloc(Nbins * Nbins, sizeof(double));
}
// Since the 4x4 matrix of histograms is actually symmetric,
// only make half
for (; e < dimcodes; e++) {
hists [d*dimcodes + e] = NULL;
dhists[d*dimcodes + e] = NULL;
}
}
xyhist = calloc(Nbins * Nbins, sizeof(int));
dxyhist = calloc(Nbins * Nbins, sizeof(double));
single = calloc(dimcodes * Nsingle, sizeof(int));
dsingle = calloc(dimcodes * Nsingle, sizeof(double));
for (i=0; i<Ncodes; i++) {
double code[dimcodes];
codetree_get(ct, i, code);
for (d = 0; d < dimcodes; d++) {
for (e = 0; e < d; e++)
add_to_histogram(d, e, code[d], code[e]);
add_to_single_histogram(d, code[d]);
}
for (d=0; d<dimcodes/2; d++)
add_to_cd_histogram(code[2*d], code[2*d+1]);
}
codetree_close(ct);
for (d = 0; d < dimcodes; d++) {
for (e = 0; e < d; e++) {
int* hist;
printf("hist_%i_%i=zeros([%i,%i]);\n",
d, e, Nbins, Nbins);
hist = hists[d * dimcodes + e];
for (i = 0; i < Nbins; i++) {
int j;
printf("hist_%i_%i(%i,:)=[", d, e, i + 1);
for (j = 0; j < Nbins; j++) {
printf("%i,", hist[i*Nbins + j]);
}
printf("];\n");
}
free(hist);
if (do_density) {
double* dhist;
printf("dhist_%i_%i=zeros([%i,%i]);\n",
d, e, Nbins, Nbins);
dhist = dhists[d * dimcodes + e];
for (i = 0; i < Nbins; i++) {
printf("dhist_%i_%i(%i,:)=[", d, e, i + 1);
for (j = 0; j < Nbins; j++)
printf("%g,", dhist[i*Nbins + j]);
printf("];\n");
}
free(dhist);
}
}
printf("hist_%i=[", d);
for (i = 0; i < Nsingle; i++)
printf("%i,", single[d*Nsingle + i]);
printf("];\n");
if (do_density) {
printf("dhist_%i=[", d);
for (i = 0; i < Nsingle; i++)
printf("%g,", dsingle[d*Nsingle + i]);
printf("];\n");
}
}
printf("hist_xy=[");
for (i=0; i<Nbins; i++) {
for (j=0; j<Nbins; j++)
printf("%i,", xyhist[i*Nbins+j]);
printf(";");
}
printf("];\n");
if (do_density) {
printf("dhist_xy=[");
for (i=0; i<Nbins; i++) {
for (j=0; j<Nbins; j++)
printf("%g,", dxyhist[i*Nbins+j]);
printf(";");
}
printf("];\n");
}
free(xyhist);
free(hists);
free(single);
if (do_density) {
free(dxyhist);
free(dhists);
free(dsingle);
}
fprintf(stderr, "Done!\n");
return 0;
}
|