File: mctweak.py

package info (click to toggle)
astrometry.net 0.93%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 19,372 kB
  • sloc: ansic: 163,192; python: 18,357; makefile: 1,522; sh: 138; cpp: 78; pascal: 67; awk: 56; perl: 9
file content (237 lines) | stat: -rw-r--r-- 6,756 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# This file is part of the Astrometry.net suite.
# Licensed under a 3-clause BSD style license - see LICENSE
from __future__ import print_function
import matplotlib
matplotlib.use('Agg')
import pylab as plt
import numpy as np

import emcee
import triangle

from astrometry.util.util import *
from astrometry.util.plotutils import *
from astrometry.util.fits import *
from astrometry.solver.solver import *


class McTweak(object):
    def __init__(self, wcs, xy, rd):
        self.refra  = rd.ra
        self.refdec = rd.dec
        self.testxy = np.vstack((xy.x, xy.y)).T
        nt = len(xy)
        sig2 = 1.
        self.testsig2 = np.zeros(nt) + sig2

        self.W = wcs.get_width()
        self.H = wcs.get_height()
        self.distractors = 0.25
        ## Accept: set to ~inf?
        self.logodds_bail = -1e100
        self.logodds_accept = 1e12

        self.wcs = wcs
        
    def __call__(self, args):
        # plug args into wcs

        # make a local copy...
        wcs = Sip(self.wcs)
        set_sip_args(wcs, args)

        # sip.radec2pixelxy uses the *inverse* SIP polynomials... compute 'em
        sip_compute_inverse_polynomials(wcs, 20, 20, 1, self.W, 1, self.H)
        
        ok,x,y = wcs.radec2pixelxy(self.refra, self.refdec)
        refxy = np.vstack((x,y)).T
        
        logodds = verify_star_lists_np(refxy, self.testxy, self.testsig2,
                                       self.W * self.H, self.distractors,
                                       self.logodds_bail, self.logodds_accept)
        return logodds



def set_sip_args(wcs, args):
    args = list(reversed(args))
    r = args.pop()
    d = args.pop()
    wcs.set_crval((r,d))
    CD = (args.pop(), args.pop(), args.pop(), args.pop())
    wcs.set_cd(CD)

    order = wcs.a_order
    for p in range(0, order+1):
        for q in range(0, order+1-p):
            if p+q <= 1:
                continue
            assert(p + q <= order)
            wcs.set_a_term(p, q, args.pop())

    order = wcs.b_order
    for p in range(0, order+1):
        for q in range(0, order+1-p):
            if p+q <= 1:
                continue
            assert(p + q <= order)
            wcs.set_b_term(p, q, args.pop())

    assert(len(args) == 0)

def get_sip_args(wcs):
    W,H = wcs.get_width(), wcs.get_height()
    S = max(W, H)
    args = []
    sigs = []
    r,d = wcs.get_crval()
    pixscale = wcs.pixel_scale()
    args.extend([r,d])
    sigs.extend([pixscale/3600.]*2)

    cd1,cd2,cd3,cd4 = wcs.get_cd()
    args.extend([cd1,cd2,cd3,cd4])
    sigs.extend([max(x/1000., pixscale/3600./S) for x in [cd1,cd2,cd3,cd4]])
    
    order = wcs.a_order
    for p in range(0, order+1):
        for q in range(0, order+1-p):
            if p+q <= 1:
                continue
            assert(p + q <= order)
            args.append(wcs.get_a_term(p, q))
            sigs.append(S**-(p+q))
    order = wcs.b_order
    for p in range(0, order+1):
        for q in range(0, order+1-p):
            if p+q <= 1:
                continue
            assert(p + q <= order)
            args.append(wcs.get_b_term(p, q))
            sigs.append(S**-(p+q))
    return args, sigs


def mctweak(wcs, xy, rd):
    obj = McTweak(wcs, xy, rd)

    # Initial args
    args,sigs = get_sip_args(wcs)

    print('Args:', args)
    print('Sigs:', sigs)
    print('Number of arguments:', len(args))
    print('Logodds:', obj(args))

    ndim, nwalkers = len(args), 100
    p0 = emcee.utils.sample_ball(args, sigs, size=nwalkers)
    print('p0', p0.shape)

    ps = PlotSequence('mctweak')

    W,H = wcs.get_width(), wcs.get_height()
    mywcs = Sip(wcs)
    
    sampler = emcee.EnsembleSampler(nwalkers, ndim, obj)
    lnp0, rstate = None, None
    pp = []
    for step in range(10000):
        print('Step', step)
        p0,lnp0,rstate = sampler.run_mcmc(p0, 1, lnprob0=lnp0, rstate0=rstate)
        print('Best logprob:', np.max(lnp0))
        i = np.argmax(lnp0)
        print('Best args:', p0[i,:])

        pp.extend(sampler.flatchain)
        sampler.reset()
        
        if step % 100 != 0:
            continue

        
        plt.clf()
        plt.plot(obj.testxy[:,0], obj.testxy[:,1], 'r.')
        for args in p0[np.random.permutation(nwalkers)[:10],:]:
            set_sip_args(mywcs, args)
            sip_compute_inverse_polynomials(mywcs, 20, 20, 1, W, 1, H)
            ok,x,y = mywcs.radec2pixelxy(obj.refra, obj.refdec)
            plt.plot(x, y, 'bo', mec='b', mfc='none', alpha=0.25)

            ex = 10.
            ngridx = ngridy = 10
            stepx = stepy = 100
            xgrid = np.linspace(0, W, ngridx)
            ygrid = np.linspace(0, H, ngridy)
            X = np.linspace(0, W, int(np.ceil(W/stepx)))
            Y = np.linspace(0, H, int(np.ceil(H/stepy)))
            for x in xgrid:
                DX,DY = [],[]
                xx,yy = [],[]
                for y in Y:
                    dx,dy = mywcs.get_distortion(x, y)
                    xx.append(x)
                    yy.append(y)
                    DX.append(dx)
                    DY.append(dy)
                DX = np.array(DX)
                DY = np.array(DY)
                xx = np.array(xx)
                yy = np.array(yy)
                EX = DX + ex * (DX - xx)
                EY = DY + ex * (DY - yy)
                #plot(xx, yy, 'k-', alpha=0.5)
                plt.plot(EX, EY, 'b-', alpha=0.1)

            for y in ygrid:
                DX,DY = [],[]
                xx,yy = [],[]
                for x in X:
                    dx,dy = mywcs.get_distortion(x, y)
                    DX.append(dx)
                    DY.append(dy)
                    xx.append(x)
                    yy.append(y)
                DX = np.array(DX)
                DY = np.array(DY)
                xx = np.array(xx)
                yy = np.array(yy)
                EX = DX + ex * (DX - xx)
                EY = DY + ex * (DY - yy)
                #plot(xx, yy, 'k-', alpha=0.5)
                plt.plot(EX, EY, 'b-', alpha=0.1)
                
        for x in xgrid:
            plt.plot(x+np.zeros_like(Y), Y, 'k-', alpha=0.5)
        for y in ygrid:
            plt.plot(X, y+np.zeros_like(X), 'k-', alpha=0.5)
                
        plt.axis([1, W, 1, H])
        plt.axis('scaled')
        ps.savefig()

        pp = np.vstack(pp)
        print('pp', pp.shape)
        
        # plt.clf()
        # triangle.corner(pp, plot_contours=False)
        # ps.savefig()

        pp = []

wcs = Tan('bok-01.wcs', 0)
sip = Sip(wcs)

# sip.a_order = 3
# sip.b_order = 3
# sip.ap_order = 4
# sip.bp_order = 4
sip.a_order = 2
sip.b_order = 2
sip.ap_order = 3
sip.bp_order = 3

xy = fits_table('bok-01.axy')
rd = fits_table('bok-01.rdls')

mctweak(sip, xy, rd)