File: noisesim2.py

package info (click to toggle)
astrometry.net 0.93%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 19,372 kB
  • sloc: ansic: 163,192; python: 18,357; makefile: 1,522; sh: 138; cpp: 78; pascal: 67; awk: 56; perl: 9
file content (241 lines) | stat: -rw-r--r-- 6,395 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# This file is part of the Astrometry.net suite.
# Licensed under a 3-clause BSD style license - see LICENSE
from __future__ import print_function
import sys

#from numpy import array, matrix, linalg
from numpy import *
from numpy.random import *
from numpy.linalg import *
from matplotlib.pylab import figure, plot, xlabel, ylabel, loglog, clf
from matplotlib.pylab import semilogy
#from pylab import *

class Transform(object):
    scale = None
    rotation = None
    incenter = None
    outcenter = None

    def apply(self, X):
        #print X
        dx = X - self.incenter
        #print dx
        dx = dx * self.scale
        #print dx
        dx = self.rotation * dx
        #print dx
        dx = dx + self.outcenter
        #print dx
        return dx

    def __str__(self):
        s = ('<Transform: tin (%f,%f) scale (%f) rot (%f, %f; %f, %f) tout (%f, %f)>' %
             (self.incenter[0], self.incenter[1], self.scale,
              self.rotation[0,0], self.rotation[0,1], self.rotation[1,0], self.rotation[1,1],
              self.outcenter[0], self.outcenter[1]))
        return s

def procrustes(X, Y):
    T = Transform()
    sx = X.shape
    if sx[0] != 2:
        print('X must be 2xN')
    sy = Y.shape
    if sy[0] != 2:
        print('Y must be 2xN')
    N = sx[1]

    mx = X.mean(axis=1).reshape(2,1)
    my = Y.mean(axis=1).reshape(2,1)
    #print 'mean(X) is\n', mx
    #print 'mean(Y) is\n', my
    T.incenter = mx
    T.outcenter = my

    #print 'X-mx is\n', X-mx
    #print '(X-mx)^2 is\n', (X-mx)*(X-mx)
    varx = sum(sum((X - mx)*(X - mx)), axis=1)
    vary = sum(sum((Y - my)*(Y - my)), axis=1)
    #print 'var(X) is', varx
    #print 'var(Y) is', vary
    T.scale = sqrt(vary / varx)
    #print 'scale is', T.scale

    C = zeros((2,2))
    for i in [0,1]:
        for j in [0,1]:
            C[i,j] = sum((X[i,:] - mx[i]) * (Y[j,:] - my[j]))
    #print 'cov is\n', C

    U,S,V = svd(C)
    U = matrix(U)
    V = matrix(V)
    
    #print 'U is\n', U
    #print 'U\' is\n', U.transpose()
    #print 'V is\n', V
    R = V * U.transpose()
    #print 'R is\n', R
    T.rotation = R
    return T


def test_procrustes_1():
    # Create a Transform, apply it to some points, then run procrustes to see if we
    # recover the Transform exactly.
    t1 = Transform()
    t1.scale = 3.0
    A = 48.0 * pi/180.0
    t1.rotation = matrix([[sin(A), cos(A)], [-cos(A), sin(A)]])
    t1.incenter = array([42, 500]).reshape(2,1)
    t1.outcenter = array([600, -12]).reshape(2,1)

    N = 4
    pts = zeros((2,N))
    tpts = zeros((2,N))
    for i in range(N):
        pts[0,i] = t1.incenter[0] + ((i % 2) - 0.5) * 200
        pts[1,i] = t1.incenter[1] + (((i/2) % 2) - 0.5) * 200

    for i in range(N):
        pt = pts[:,i].reshape(2,1)
        tpts[:,i] = t1.apply(pt).reshape(1,2)

    t2 = procrustes(pts, tpts)

    print('pts:', pts)
    print('tpts:', tpts)

    print('t1 is', t1)
    print('t2 is', t2)


def draw_sample(inoise=1, fnoise=0, iqnoise=-1,
                dimquads=4, quadscale=100, imgsize=1000,
                Rsteps=10, Asteps=36):

    # Stars that compose the field quad.
    fquad = zeros((2,dimquads))
    fquad[0,0] = imgsize/2 - quadscale/2
    fquad[1,0] = imgsize/2
    fquad[0,1] = imgsize/2 + quadscale/2
    fquad[1,1] = imgsize/2
    for i in range(2, dimquads):
        fquad[0,i] = imgsize/2 + randn(1) * quadscale
        fquad[1,i] = imgsize/2 + randn(1) * quadscale

    # Index quad is field quad plus jitter.
    iquad = fquad + randn(*fquad.shape)

    # Solve for transformation
    T = procrustes(iquad, fquad)

    # Put the index quad stars through the transformation
    itrans = zeros(fquad.shape)
    for i in range(dimquads):
        fq = fquad[:,i].reshape(2,1)
        itrans[:,i] = T.apply(fq).transpose()

    # Field quad center...
    qc = mean(fquad, axis=1)

    # Sample stars on a R^2, theta grid.
    #rads = sqrt((array(range(Rsteps))+1) / float(Rsteps)) * imgsize/2
    N = Rsteps * Asteps
    rads = sqrt((array(range(Rsteps))+0.5) / float(Rsteps)) * imgsize/2
    thetas = array(range(Asteps)) / float(Asteps) * 2.0 * pi
    fstars = zeros((2,N))
    for r in range(Rsteps):
        for a in range(Asteps):
            fstars[0, r*Asteps + a] = sin(thetas[a]) * rads[r] + qc[0]
            fstars[1, r*Asteps + a] = cos(thetas[a]) * rads[r] + qc[1]
    # Put them through the transformation...
    istars = zeros((2,N))
    for i in range(N):
        fs = fstars[:,i].reshape(2,1)
        istars[:,i] = T.apply(fs).transpose()

    R = sqrt((fstars[0,:] - qc[0])**2 + (fstars[1,:] - qc[1])**2)
    E = sqrt(sum((fstars - istars)**2, axis=0))

    # Fit to a linear model...
    xfit = R**2
    yfit = E**2
    A = zeros((2,N))
    A[0,:] = 1
    A[1,:] = xfit.transpose()
    (C,resids,rank,s) = lstsq(A.transpose(), yfit)

    return (fquad, iquad, T, itrans, qc, fstars, istars,
            R, E, C)

if __name__ == '__main__':

    test_procrustes_1()
    sys.exit(0)

    #N = 1000
    N = 100
    C = zeros((2,N))
    QD = zeros((N))
    for i in range(N):
        (fquad, iquad, T, itrans, qc, fstars, istars, R, E, c) = draw_sample()
        C[:,i] = c
        QD[i] = sqrt(sum((iquad - fquad)**2) / 4.0)

    C0 = C[0,:]
    C1 = C[1,:]

    figure(1)
    clf()
    loglog(C0, C1, 'b.')
    xlabel('E^2 vs R^2 - Fit coefficient 0')
    ylabel('E^2 vs R^2 - Fit coefficient 1')

    figure(2)
    clf()
    semilogy(QD, C1, 'b.')
    xlabel('Field-to-Index Quad Mean Distance')
    ylabel('E^2-vs-R^2 fit linear coefficient')

    #semilogy(QD, C1, 'bo')
    #xlabel('Quad Distance')
    #ylabel('C1')


    #figure(1)
    #I=[0,2,1,3,0];
    #plot(fquad[0,I], fquad[1,I], 'bo-', itrans[0,I], itrans[1,I], 'ro-')

    #figure(2)
    #plot(fstars[0,:], fstars[1,:], 'b.', istars[0,:], istars[1,:], 'r.')

    #figure(1)
    #I=[0,2,1,3,0];
    #plot(fquad[0,I], fquad[1,I], 'bo-',
    #     itrans[0,I], itrans[1,I], 'ro-',
    #     fstars[0,:], fstars[1,:], 'b.',
    #     istars[0,:], istars[1,:], 'r.')

    #figure(2)
    #plot(R, E, 'r.')
    #xlabel('R')
    #ylabel('E')

    #figure(3)
    #plot(R**2, E**2, 'r.')
    #xlabel('R^2')
    #ylabel('E^2')

    #print 'Fit coefficients are', C

    #figure(2)
    #xplot = array(range(101)) / 100.0 * max(xfit)
    #plot(R**2, E**2, 'r.',
    #     xplot, C[0] + C[1]*xplot, 'b-')
    #xlabel('R^2')
    #ylabel('E^2')

    #show()