1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
# This file is part of the Astrometry.net suite.
# Licensed under a 3-clause BSD style license - see LICENSE
from __future__ import print_function
import sys
#from numpy import array, matrix, linalg
from numpy import *
from numpy.random import *
from numpy.linalg import *
from matplotlib.pylab import figure, plot, xlabel, ylabel, loglog, clf
from matplotlib.pylab import semilogy
#from pylab import *
class Transform(object):
scale = None
rotation = None
incenter = None
outcenter = None
def apply(self, X):
#print X
dx = X - self.incenter
#print dx
dx = dx * self.scale
#print dx
dx = self.rotation * dx
#print dx
dx = dx + self.outcenter
#print dx
return dx
def __str__(self):
s = ('<Transform: tin (%f,%f) scale (%f) rot (%f, %f; %f, %f) tout (%f, %f)>' %
(self.incenter[0], self.incenter[1], self.scale,
self.rotation[0,0], self.rotation[0,1], self.rotation[1,0], self.rotation[1,1],
self.outcenter[0], self.outcenter[1]))
return s
def procrustes(X, Y):
T = Transform()
sx = X.shape
if sx[0] != 2:
print('X must be 2xN')
sy = Y.shape
if sy[0] != 2:
print('Y must be 2xN')
N = sx[1]
mx = X.mean(axis=1).reshape(2,1)
my = Y.mean(axis=1).reshape(2,1)
#print 'mean(X) is\n', mx
#print 'mean(Y) is\n', my
T.incenter = mx
T.outcenter = my
#print 'X-mx is\n', X-mx
#print '(X-mx)^2 is\n', (X-mx)*(X-mx)
varx = sum(sum((X - mx)*(X - mx)), axis=1)
vary = sum(sum((Y - my)*(Y - my)), axis=1)
#print 'var(X) is', varx
#print 'var(Y) is', vary
T.scale = sqrt(vary / varx)
#print 'scale is', T.scale
C = zeros((2,2))
for i in [0,1]:
for j in [0,1]:
C[i,j] = sum((X[i,:] - mx[i]) * (Y[j,:] - my[j]))
#print 'cov is\n', C
U,S,V = svd(C)
U = matrix(U)
V = matrix(V)
#print 'U is\n', U
#print 'U\' is\n', U.transpose()
#print 'V is\n', V
R = V * U.transpose()
#print 'R is\n', R
T.rotation = R
return T
def test_procrustes_1():
# Create a Transform, apply it to some points, then run procrustes to see if we
# recover the Transform exactly.
t1 = Transform()
t1.scale = 3.0
A = 48.0 * pi/180.0
t1.rotation = matrix([[sin(A), cos(A)], [-cos(A), sin(A)]])
t1.incenter = array([42, 500]).reshape(2,1)
t1.outcenter = array([600, -12]).reshape(2,1)
N = 4
pts = zeros((2,N))
tpts = zeros((2,N))
for i in range(N):
pts[0,i] = t1.incenter[0] + ((i % 2) - 0.5) * 200
pts[1,i] = t1.incenter[1] + (((i/2) % 2) - 0.5) * 200
for i in range(N):
pt = pts[:,i].reshape(2,1)
tpts[:,i] = t1.apply(pt).reshape(1,2)
t2 = procrustes(pts, tpts)
print('pts:', pts)
print('tpts:', tpts)
print('t1 is', t1)
print('t2 is', t2)
def draw_sample(inoise=1, fnoise=0, iqnoise=-1,
dimquads=4, quadscale=100, imgsize=1000,
Rsteps=10, Asteps=36):
# Stars that compose the field quad.
fquad = zeros((2,dimquads))
fquad[0,0] = imgsize/2 - quadscale/2
fquad[1,0] = imgsize/2
fquad[0,1] = imgsize/2 + quadscale/2
fquad[1,1] = imgsize/2
for i in range(2, dimquads):
fquad[0,i] = imgsize/2 + randn(1) * quadscale
fquad[1,i] = imgsize/2 + randn(1) * quadscale
# Index quad is field quad plus jitter.
iquad = fquad + randn(*fquad.shape)
# Solve for transformation
T = procrustes(iquad, fquad)
# Put the index quad stars through the transformation
itrans = zeros(fquad.shape)
for i in range(dimquads):
fq = fquad[:,i].reshape(2,1)
itrans[:,i] = T.apply(fq).transpose()
# Field quad center...
qc = mean(fquad, axis=1)
# Sample stars on a R^2, theta grid.
#rads = sqrt((array(range(Rsteps))+1) / float(Rsteps)) * imgsize/2
N = Rsteps * Asteps
rads = sqrt((array(range(Rsteps))+0.5) / float(Rsteps)) * imgsize/2
thetas = array(range(Asteps)) / float(Asteps) * 2.0 * pi
fstars = zeros((2,N))
for r in range(Rsteps):
for a in range(Asteps):
fstars[0, r*Asteps + a] = sin(thetas[a]) * rads[r] + qc[0]
fstars[1, r*Asteps + a] = cos(thetas[a]) * rads[r] + qc[1]
# Put them through the transformation...
istars = zeros((2,N))
for i in range(N):
fs = fstars[:,i].reshape(2,1)
istars[:,i] = T.apply(fs).transpose()
R = sqrt((fstars[0,:] - qc[0])**2 + (fstars[1,:] - qc[1])**2)
E = sqrt(sum((fstars - istars)**2, axis=0))
# Fit to a linear model...
xfit = R**2
yfit = E**2
A = zeros((2,N))
A[0,:] = 1
A[1,:] = xfit.transpose()
(C,resids,rank,s) = lstsq(A.transpose(), yfit)
return (fquad, iquad, T, itrans, qc, fstars, istars,
R, E, C)
if __name__ == '__main__':
test_procrustes_1()
sys.exit(0)
#N = 1000
N = 100
C = zeros((2,N))
QD = zeros((N))
for i in range(N):
(fquad, iquad, T, itrans, qc, fstars, istars, R, E, c) = draw_sample()
C[:,i] = c
QD[i] = sqrt(sum((iquad - fquad)**2) / 4.0)
C0 = C[0,:]
C1 = C[1,:]
figure(1)
clf()
loglog(C0, C1, 'b.')
xlabel('E^2 vs R^2 - Fit coefficient 0')
ylabel('E^2 vs R^2 - Fit coefficient 1')
figure(2)
clf()
semilogy(QD, C1, 'b.')
xlabel('Field-to-Index Quad Mean Distance')
ylabel('E^2-vs-R^2 fit linear coefficient')
#semilogy(QD, C1, 'bo')
#xlabel('Quad Distance')
#ylabel('C1')
#figure(1)
#I=[0,2,1,3,0];
#plot(fquad[0,I], fquad[1,I], 'bo-', itrans[0,I], itrans[1,I], 'ro-')
#figure(2)
#plot(fstars[0,:], fstars[1,:], 'b.', istars[0,:], istars[1,:], 'r.')
#figure(1)
#I=[0,2,1,3,0];
#plot(fquad[0,I], fquad[1,I], 'bo-',
# itrans[0,I], itrans[1,I], 'ro-',
# fstars[0,:], fstars[1,:], 'b.',
# istars[0,:], istars[1,:], 'r.')
#figure(2)
#plot(R, E, 'r.')
#xlabel('R')
#ylabel('E')
#figure(3)
#plot(R**2, E**2, 'r.')
#xlabel('R^2')
#ylabel('E^2')
#print 'Fit coefficients are', C
#figure(2)
#xplot = array(range(101)) / 100.0 * max(xfit)
#plot(R**2, E**2, 'r.',
# xplot, C[0] + C[1]*xplot, 'b-')
#xlabel('R^2')
#ylabel('E^2')
#show()
|