1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
|
/*
# This file is part of the Astrometry.net suite.
# Licensed under a 3-clause BSD style license - see LICENSE
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdarg.h>
#include "os-features.h"
#include "ioutils.h"
#include "mathutil.h"
#include "matchobj.h"
#include "solver.h"
#include "verify.h"
#include "tic.h"
#include "solvedfile.h"
#include "fit-wcs.h"
#include "sip-utils.h"
#include "keywords.h"
#include "log.h"
#include "pquad.h"
#include "kdtree.h"
#include "quad-utils.h"
#include "errors.h"
#include "tweak2.h"
#if TESTING_TRYALLCODES
#define DEBUGSOLVER 1
#define TRY_ALL_CODES test_try_all_codes
void test_try_all_codes(pquad* pq,
int* fieldstars, int dimquad,
solver_t* solver, double tol2);
#else
#define TRY_ALL_CODES try_all_codes
#endif
#if TESTING_TRYPERMUTATIONS
#define DEBUGSOLVER 1
#define TEST_TRY_PERMUTATIONS test_try_permutations
void test_try_permutations(int* stars, double* code, int dimquad, solver_t* s);
#else
#define TEST_TRY_PERMUTATIONS(u,v,x,y) // no-op.
#endif
void solver_set_keep_logodds(solver_t* solver, double logodds) {
solver->logratio_tokeep = logodds;
}
int solver_set_parity(solver_t* solver, int parity) {
if (!((parity == PARITY_NORMAL) || (parity == PARITY_FLIP) || (parity == PARITY_BOTH))) {
ERROR("Invalid parity value: %i", parity);
return -1;
}
solver->parity = parity;
return 0;
}
anbool solver_did_solve(const solver_t* solver) {
return solver->best_match_solves;
}
void solver_get_quad_size_range_arcsec(const solver_t* solver, double* qmin, double* qmax) {
if (qmin) {
*qmin = solver->quadsize_min * solver_get_pixscale_low(solver);
}
if (qmax) {
double q = solver->quadsize_max;
if (q == 0)
q = solver->field_diag;
*qmax = q * solver_get_pixscale_high(solver);
}
}
double solver_get_field_jitter(const solver_t* solver) {
return solver->verify_pix;
}
void solver_get_field_center(const solver_t* solver, double* px, double* py) {
if (px)
*px = (solver->field_maxx + solver->field_minx)/2.0;
if (py)
*py = (solver->field_maxy + solver->field_miny)/2.0;
}
double solver_get_max_radius_arcsec(const solver_t* solver) {
return solver->funits_upper * solver->field_diag / 2.0;
}
MatchObj* solver_get_best_match(solver_t* solver) {
return &(solver->best_match);
}
const char* solver_get_best_match_index_name(const solver_t* solver) {
return solver->best_index->indexname;
}
double solver_get_pixscale_low(const solver_t* solver) {
return solver->funits_lower;
}
double solver_get_pixscale_high(const solver_t* solver) {
return solver->funits_upper;
}
void solver_set_quad_size_range(solver_t* solver, double qmin, double qmax) {
solver->quadsize_min = qmin;
solver->quadsize_max = qmax;
}
void solver_set_quad_size_fraction(solver_t* solver, double qmin, double qmax) {
solver_set_quad_size_range(solver, qmin * MIN(solver_field_width(solver), solver_field_height(solver)),
qmax * solver->field_diag);
}
void solver_tweak2(solver_t* sp, MatchObj* mo, int order, sip_t* verifysip) {
double* xy = NULL;
int Nxy;
double indexjitter;
// quad center
double qc[2];
// quad radius-squared
double Q2;
// initial WCS
sip_t startsip;
int* theta;
double* odds;
double* refradec;
int i;
double newodds;
int nm, nc, nd;
int besti;
int startorder;
indexjitter = mo->index_jitter; // ref cat positional error, in arcsec.
xy = starxy_to_xy_array(sp->fieldxy, NULL);
Nxy = starxy_n(sp->fieldxy);
qc[0] = (mo->quadpix[0] + mo->quadpix[2]) / 2.0;
qc[1] = (mo->quadpix[1] + mo->quadpix[3]) / 2.0;
Q2 = 0.25 * distsq(mo->quadpix, mo->quadpix + 2, 2);
if (Q2 == 0.0) {
// can happen if we're verifying an existing WCS
// note, this is radius-squared, so 1e6 is not crazy.
Q2 = 1e6;
// set qc to the image center here? or crpix?
logverb("solver_tweak2(): setting Q2=%g; qc=(%g,%g)\n", Q2, qc[0], qc[1]);
}
// mo->refradec may be NULL at this point, so get it from refxyz instead...
refradec = malloc(3 * mo->nindex * sizeof(double));
for (i=0; i<mo->nindex; i++)
xyzarr2radecdegarr(mo->refxyz + i*3, refradec + i*2);
// Verifying an existing WCS?
if (verifysip) {
memcpy(&startsip, verifysip, sizeof(sip_t));
startorder = MIN(verifysip->a_order, sp->tweak_aborder);
} else {
startorder = 1;
sip_wrap_tan(&(mo->wcstan), &startsip);
}
startsip.ap_order = startsip.bp_order = sp->tweak_abporder;
startsip.a_order = startsip.b_order = sp->tweak_aborder;
logverb("solver_tweak2: setting orders %i, %i\n", sp->tweak_aborder, sp->tweak_abporder);
// for TWEAK_DEBUG_PLOTs
theta = mo->theta;
besti = mo->nbest-1;//mo->nmatch + mo->nconflict + mo->ndistractor;
logverb("solver_tweak2: set_crpix %i, crpix (%.1f,%.1f)\n",
sp->set_crpix, sp->crpix[0], sp->crpix[1]);
mo->sip = tweak2(xy, Nxy,
sp->verify_pix, // pixel positional noise sigma
solver_field_width(sp),
solver_field_height(sp),
refradec, mo->nindex,
indexjitter, qc, Q2,
sp->distractor_ratio,
sp->logratio_bail_threshold,
order, sp->tweak_abporder,
&startsip, NULL, &theta, &odds,
sp->set_crpix ? sp->crpix : NULL,
&newodds, &besti, mo->testperm, startorder);
free(refradec);
// FIXME -- update refxy? Nobody uses it, right?
free(mo->refxy);
mo->refxy = NULL;
// FIXME -- and testperm?
free(mo->testperm);
mo->testperm = NULL;
if (mo->sip) {
// Yoink the TAN solution (?)
memcpy(&(mo->wcstan), &(mo->sip->wcstan), sizeof(tan_t));
// Plug in the new "theta" and "odds".
free(mo->theta);
free(mo->matchodds);
mo->theta = theta;
mo->matchodds = odds;
mo->logodds = newodds;
verify_count_hits(theta, besti, &nm, &nc, &nd);
mo->nmatch = nm;
mo->nconflict = nc;
mo->ndistractor = nd;
matchobj_compute_derived(mo);
}
free(xy);
}
void solver_log_params(const solver_t* sp) {
int i;
logverb("Solver:\n");
logverb(" Arcsec per pix range: %g, %g\n", sp->funits_lower, sp->funits_upper);
logverb(" Image size: %g x %g\n", solver_field_width(sp), solver_field_height(sp));
logverb(" Quad size range: %g, %g\n", sp->quadsize_min, sp->quadsize_max);
logverb(" Objs: %i, %i\n", sp->startobj, sp->endobj);
logverb(" Parity: %i, %s\n", sp->parity, sp->parity == PARITY_NORMAL ? "normal" : (sp->parity == PARITY_FLIP ? "flip" : "both"));
if (sp->use_radec) {
double ra,dec,rad;
xyzarr2radecdeg(sp->centerxyz, &ra, &dec);
rad = distsq2deg(sp->r2);
logverb(" Use_radec? yes, (%g, %g), radius %g deg\n", ra, dec, rad);
} else {
logverb(" Use_radec? no\n");
}
logverb(" Pixel xscale: %g\n", sp->pixel_xscale);
logverb(" Verify_pix: %g\n", sp->verify_pix);
logverb(" Code tol: %g\n", sp->codetol);
logverb(" Dist from quad bonus: %s\n", sp->distance_from_quad_bonus ? "yes" : "no");
logverb(" Distractor ratio: %g\n", sp->distractor_ratio);
logverb(" Log tune-up threshold: %g\n", sp->logratio_totune);
logverb(" Log bail threshold: %g\n", sp->logratio_bail_threshold);
logverb(" Log stoplooking threshold: %g\n", sp->logratio_stoplooking);
logverb(" Maxquads %i\n", sp->maxquads);
logverb(" Maxmatches %i\n", sp->maxmatches);
logverb(" Set CRPIX? %s", sp->set_crpix ? "yes" : "no\n");
if (sp->set_crpix) {
if (sp->set_crpix_center)
logverb(", center\n");
else
logverb(", %g, %g\n", sp->crpix[0], sp->crpix[1]);
}
logverb(" Tweak? %s\n", sp->do_tweak ? "yes" : "no");
if (sp->do_tweak) {
logverb(" Forward order %i\n", sp->tweak_aborder);
logverb(" Reverse order %i\n", sp->tweak_abporder);
}
logverb(" Indexes: %zu\n", pl_size(sp->indexes));
for (i=0; i<pl_size(sp->indexes); i++) {
index_t* ind = pl_get(sp->indexes, i);
logverb(" %s\n", ind->indexname);
}
if (sp->fieldxy) {
logverb(" Field (processed): %i stars\n", starxy_n(sp->fieldxy));
for (i=0; i<starxy_n(sp->fieldxy); i++) {
debug(" xy (%.1f, %.1f), flux %.1f\n",
starxy_getx(sp->fieldxy, i), starxy_gety(sp->fieldxy, i),
sp->fieldxy->flux ? starxy_get_flux(sp->fieldxy, i) : 0.0);
}
}
if (sp->fieldxy_orig) {
logverb(" Field (orig): %i stars\n", starxy_n(sp->fieldxy_orig));
for (i=0; i<starxy_n(sp->fieldxy_orig); i++) {
debug(" xy (%.1f, %.1f), flux %.1f\n",
starxy_getx(sp->fieldxy_orig, i), starxy_gety(sp->fieldxy_orig, i),
sp->fieldxy_orig->flux ? starxy_get_flux(sp->fieldxy_orig, i) : 0.0);
}
}
}
void solver_print_to(const solver_t* sp, FILE* stream) {
//int oldlevel = log_get_level();
FILE* oldfid = log_get_fid();
//log_set_level(LOG_ALL);
log_to(stream);
solver_log_params(sp);
//log_set_level(oldlevel);
log_to(oldfid);
}
/*
static MatchObj* matchobj_copy_deep(const MatchObj* mo, MatchObj* dest) {
if (!dest)
dest = malloc(sizeof(MatchObj));
memcpy(dest, mo, sizeof(MatchObj));
// various modules add things to a mo...
onefield_matchobj_deep_copy(mo, dest);
verify_matchobj_deep_copy(mo, dest);
return dest;
}
static void matchobj_free_data(MatchObj* mo) {
verify_free_matchobj(mo);
onefield_free_matchobj(mo);
}
*/
static const int A = 0, B = 1, C = 2, D = 3;
// Number of stars in the "backbone" of the quad: stars A and B.
static const int NBACK = 2;
static void find_field_boundaries(solver_t* solver);
static inline double getx(const double* d, int ind) {
return d[ind*2];
}
static inline double gety(const double* d, int ind) {
return d[ind*2 + 1];
}
static inline void setx(double* d, int ind, double val) {
d[ind*2] = val;
}
static inline void sety(double* d, int ind, double val) {
d[ind*2 + 1] = val;
}
static void field_getxy(solver_t* sp, int index, double* x, double* y) {
*x = starxy_getx(sp->fieldxy, index);
*y = starxy_gety(sp->fieldxy, index);
}
static double field_getx(solver_t* sp, int index) {
return starxy_getx(sp->fieldxy, index);
}
static double field_gety(solver_t* sp, int index) {
return starxy_gety(sp->fieldxy, index);
}
static void update_timeused(solver_t* sp) {
double usertime, systime;
get_resource_stats(&usertime, &systime, NULL);
sp->timeused = (usertime + systime) - sp->starttime;
if (sp->timeused < 0.0)
sp->timeused = 0.0;
}
static void set_matchobj_template(solver_t* solver, MatchObj* mo) {
if (solver->mo_template)
memcpy(mo, solver->mo_template, sizeof(MatchObj));
else
memset(mo, 0, sizeof(MatchObj));
}
static void get_field_center(solver_t* s, double* cx, double* cy) {
*cx = 0.5 * (s->field_minx + s->field_maxx);
*cy = 0.5 * (s->field_miny + s->field_maxy);
}
static void get_field_ll_corner(solver_t* s, double* lx, double* ly) {
*lx = s->field_minx;
*ly = s->field_miny;
}
void solver_reset_counters(solver_t* s) {
s->quit_now = FALSE;
s->have_best_match = FALSE;
s->best_match_solves = FALSE;
s->numtries = 0;
s->nummatches = 0;
s->numscaleok = 0;
s->last_examined_object = 0;
s->num_cxdx_skipped = 0;
s->num_radec_skipped = 0;
s->num_abscale_skipped = 0;
s->num_verified = 0;
}
double solver_field_width(const solver_t* s) {
return s->field_maxx - s->field_minx;
}
double solver_field_height(const solver_t* s) {
return s->field_maxy - s->field_miny;
}
void solver_set_radec(solver_t* s, double ra, double dec, double radius_deg) {
s->use_radec = TRUE;
radecdeg2xyzarr(ra, dec, s->centerxyz);
s->r2 = deg2distsq(radius_deg);
}
void solver_clear_radec(solver_t* s) {
s->use_radec = FALSE;
}
static void set_center_and_radius(solver_t* solver, MatchObj* mo,
tan_t* tan, sip_t* sip) {
double cx, cy, lx, ly;
double xyz[3];
get_field_center(solver, &cx, &cy);
get_field_ll_corner(solver, &lx, &ly);
if (sip) {
sip_pixelxy2xyzarr(sip, cx, cy, mo->center);
sip_pixelxy2xyzarr(sip, lx, ly, xyz);
} else {
tan_pixelxy2xyzarr(tan, cx, cy, mo->center);
tan_pixelxy2xyzarr(tan, lx, ly, xyz);
}
mo->radius = sqrt(distsq(mo->center, xyz, 3));
mo->radius_deg = dist2deg(mo->radius);
}
static void set_index(solver_t* s, index_t* index) {
s->index = index;
s->rel_index_noise2 = square(index->index_jitter / index->index_scale_lower);
}
static void set_diag(solver_t* s) {
s->field_diag = hypot(solver_field_width(s), solver_field_height(s));
}
void solver_set_field(solver_t* s, starxy_t* field) {
solver_free_field(s);
s->fieldxy_orig = field;
// Preprocessing happens in "solver_preprocess_field()".
}
void solver_set_field_bounds(solver_t* s, double xlo, double xhi, double ylo, double yhi) {
s->field_minx = xlo;
s->field_maxx = xhi;
s->field_miny = ylo;
s->field_maxy = yhi;
set_diag(s);
}
void solver_cleanup_field(solver_t* solver) {
solver_reset_best_match(solver);
solver_free_field(solver);
solver->fieldxy = NULL;
solver_reset_counters(solver);
}
void solver_verify_sip_wcs(solver_t* solver, sip_t* sip) { //, MatchObj* pmo) {
int i, nindexes;
MatchObj mo;
MatchObj* pmo;
anbool olddqb;
pmo = &mo;
if (!solver->vf)
solver_preprocess_field(solver);
// fabricate a match and inject it into the solver.
set_matchobj_template(solver, pmo);
memcpy(&(mo.wcstan), &(sip->wcstan), sizeof(tan_t));
mo.wcs_valid = TRUE;
mo.scale = sip_pixel_scale(sip);
set_center_and_radius(solver, pmo, NULL, sip);
olddqb = solver->distance_from_quad_bonus;
solver->distance_from_quad_bonus = FALSE;
nindexes = pl_size(solver->indexes);
for (i=0; i<nindexes; i++) {
index_t* index = pl_get(solver->indexes, i);
set_index(solver, index);
solver_inject_match(solver, pmo, sip);
}
// revert
solver->distance_from_quad_bonus = olddqb;
}
void solver_add_index(solver_t* solver, index_t* index) {
pl_append(solver->indexes, index);
}
int solver_n_indices(const solver_t* solver) {
return pl_size(solver->indexes);
}
index_t* solver_get_index(const solver_t* solver, int i) {
return pl_get(solver->indexes, i);
}
void solver_reset_best_match(solver_t* sp) {
// we don't really care about very bad best matches...
sp->best_logodds = 0;
memset(&(sp->best_match), 0, sizeof(MatchObj));
sp->best_index = NULL;
sp->best_match_solves = FALSE;
sp->have_best_match = FALSE;
}
void solver_compute_quad_range(const solver_t* sp, const index_t* index,
double* minAB, double* maxAB) {
double scalefudge; // in pixels
// compute fudge factor for quad scale: what are the extreme
// ranges of quad scales that should be accepted, given the
// code tolerance?
// -what is the maximum number of pixels a C or D star can move
// to singlehandedly exceed the code tolerance?
// -largest quad
// -smallest arcsec-per-pixel scale
// -index_scale_upper * 1/sqrt(2) is the side length of
// the unit-square of code space, in arcseconds.
// -that times the code tolerance is how far a C/D star
// can move before exceeding the code tolerance, in arcsec.
// -that divided by the smallest arcsec-per-pixel scale
// gives the largest motion in pixels.
//logverb("Index scale %f, %f\n",
//index->index_scale_upper, index->index_scale_lower);
scalefudge = index->index_scale_upper * M_SQRT1_2 *
sp->codetol / sp->funits_upper;
if (sp->funits_upper != 0.0) {
*minAB = index->index_scale_lower / sp->funits_upper;
*minAB -= scalefudge;
}
if (sp->funits_lower != 0.0) {
*maxAB = index->index_scale_upper / sp->funits_lower;
*maxAB += scalefudge;
}
}
static void try_all_codes(const pquad* pq,
const int* fieldstars, int dimquad,
solver_t* solver, double tol2);
static void try_all_codes_2(const int* fieldstars, int dimquad,
const double* code, solver_t* solver,
anbool current_parity, double tol2);
static void try_permutations(const int* origstars, int dimquad,
const double* origcode,
solver_t* solver, anbool current_parity,
double tol2,
int* stars, double* code,
int slot, anbool* placed,
kdtree_qres_t** presult);
static void resolve_matches(kdtree_qres_t* krez, const double *field,
const int* fstars, int dimquads,
solver_t* solver, anbool current_parity);
static int solver_handle_hit(solver_t* sp, MatchObj* mo, sip_t* sip, anbool fake_match);
static void check_scale(pquad* pq, solver_t* s) {
double dx, dy;
dx = field_getx(s, pq->fieldB) - field_getx(s, pq->fieldA);
dy = field_gety(s, pq->fieldB) - field_gety(s, pq->fieldA);
pq->scale = dx*dx + dy*dy;
if ((pq->scale < s->minminAB2) ||
(pq->scale > s->maxmaxAB2)) {
pq->scale_ok = FALSE;
return;
}
pq->costheta = (dy + dx) / pq->scale;
pq->sintheta = (dy - dx) / pq->scale;
pq->rel_field_noise2 = (s->verify_pix * s->verify_pix) / pq->scale;
pq->scale_ok = TRUE;
}
static void check_inbox(pquad* pq, int start, solver_t* solver) {
int i;
double Ax, Ay;
field_getxy(solver, pq->fieldA, &Ax, &Ay);
// check which C, D points are inside the circle.
for (i = start; i < pq->ninbox; i++) {
double r;
double Cx, Cy, xxtmp;
double tol = solver->codetol;
if (!pq->inbox[i])
continue;
field_getxy(solver, i, &Cx, &Cy);
Cx -= Ax;
Cy -= Ay;
xxtmp = Cx;
Cx = Cx * pq->costheta + Cy * pq->sintheta;
Cy = -xxtmp * pq->sintheta + Cy * pq->costheta;
// make sure it's in the circle centered at (0.5, 0.5)
// with radius 1/sqrt(2) (plus codetol for fudge):
// (x-1/2)^2 + (y-1/2)^2 <= (r + codetol)^2
// x^2-x+1/4 + y^2-y+1/4 <= (1/sqrt(2) + codetol)^2
// x^2-x + y^2-y + 1/2 <= 1/2 + sqrt(2)*codetol + codetol^2
// x^2-x + y^2-y <= sqrt(2)*codetol + codetol^2
r = (Cx * Cx - Cx) + (Cy * Cy - Cy);
if (r > (tol * (M_SQRT2 + tol))) {
pq->inbox[i] = FALSE;
continue;
}
setx(pq->xy, i, Cx);
sety(pq->xy, i, Cy);
}
}
#if defined DEBUGSOLVER
static void print_inbox(pquad* pq) {
int i;
debug("[ ");
for (i = 0; i < pq->ninbox; i++) {
if (pq->inbox[i])
debug("%i ", i);
}
debug("] (n %i)\n", pq->ninbox);
}
#else
static void print_inbox(pquad* pq) {}
#endif
void solver_reset_field_size(solver_t* s) {
s->field_minx = s->field_maxx = s->field_miny = s->field_maxy = 0;
s->field_diag = 0.0;
}
static void find_field_boundaries(solver_t* solver) {
// If the bounds haven't been set, use the bounding box.
if ((solver->field_minx == solver->field_maxx) ||
(solver->field_miny == solver->field_maxy)) {
int i;
solver->field_minx = solver->field_miny = LARGE_VAL;
solver->field_maxx = solver->field_maxy = -LARGE_VAL;
for (i = 0; i < starxy_n(solver->fieldxy); i++) {
solver->field_minx = MIN(solver->field_minx, field_getx(solver, i));
solver->field_maxx = MAX(solver->field_maxx, field_getx(solver, i));
solver->field_miny = MIN(solver->field_miny, field_gety(solver, i));
solver->field_maxy = MAX(solver->field_maxy, field_gety(solver, i));
}
}
set_diag(solver);
}
void solver_preprocess_field(solver_t* solver) {
int i;
// Make a copy of the original x,y list.
solver->fieldxy = starxy_copy(solver->fieldxy_orig);
if ((solver->pixel_xscale > 0) && solver->predistort) {
logerr("Error, can't do both pixel_xscale and predistortion at the same time!");
}
if (solver->pixel_xscale > 0) {
logverb("Applying x-factor of %f to %i stars\n",
solver->pixel_xscale, starxy_n(solver->fieldxy_orig));
for (i=0; i<starxy_n(solver->fieldxy); i++)
solver->fieldxy->x[i] *= solver->pixel_xscale;
} else if (solver->predistort) {
logverb("Applying undistortion to %i stars\n", starxy_n(solver->fieldxy_orig));
// Apply the *un*distortion
for (i=0; i<starxy_n(solver->fieldxy); i++) {
double dx, dy;
sip_pixel_undistortion(solver->predistort,
solver->fieldxy->x[i], solver->fieldxy->y[i],
&dx, &dy);
solver->fieldxy->x[i] = dx;
solver->fieldxy->y[i] = dy;
}
}
find_field_boundaries(solver);
// precompute a kdtree over the field
solver->vf = verify_field_preprocess(solver->fieldxy);
solver->vf->do_uniformize = solver->verify_uniformize;
solver->vf->do_dedup = solver->verify_dedup;
if (solver->set_crpix && solver->set_crpix_center) {
solver->crpix[0] = wcs_pixel_center_for_size(solver_field_width(solver));
solver->crpix[1] = wcs_pixel_center_for_size(solver_field_height(solver));
logverb("Setting CRPIX to center (%.1f, %.1f) based on image size %i x %i\n",
solver->crpix[0], solver->crpix[1],
(int)solver_field_width(solver), (int)solver_field_height(solver));
}
}
void solver_free_field(solver_t* solver) {
if (solver->fieldxy)
starxy_free(solver->fieldxy);
solver->fieldxy = NULL;
if (solver->fieldxy_orig)
starxy_free(solver->fieldxy_orig);
solver->fieldxy_orig = NULL;
if (solver->vf)
verify_field_free(solver->vf);
solver->vf = NULL;
}
starxy_t* solver_get_field(solver_t* solver) {
return solver->fieldxy;
}
static double get_tolerance(solver_t* solver) {
return square(solver->codetol);
/*
double maxtol2 = square(solver->codetol);
double tol2;
tol2 = 49.0 * (solver->rel_field_noise2 + solver->rel_index_noise2);
//printf("code tolerance %g.\n", sqrt(tol2));
if (tol2 > maxtol2)
tol2 = maxtol2;
return tol2;
*/
}
/*
A somewhat tricky recursive function: stars A and B have already been
chosen, so the code coordinate system has been fixed, and we've
already determined which other stars will create valid codes (ie, are
in the "box"). Now we want to build features using all sets of valid
stars (without permutations).
pq - data associated with the AB pair.
field - the array of field star numbers
fieldoffset - offset into the field array where we should add the first star
n_to_add - number of stars to add
adding - the star we're currently adding; in [0, n_to_add).
fieldtop - the maximum field star number to build quads out of.
dimquad, solver, tol2 - passed to try_all_codes.
*/
static void add_stars(const pquad* pq, int* field, int fieldoffset,
int n_to_add, int adding, int fieldtop,
int dimquad,
solver_t* solver, double tol2) {
int bottom;
int* f = field + fieldoffset;
// When we're adding the first star, we start from index zero.
// When we're adding subsequent stars, we start from the previous value
// plus one, to avoid adding permutations.
bottom = (adding ? f[adding-1] + 1 : 0);
// It looks funny that we're using f[adding] as a loop variable, but
// it's required because try_all_codes needs to know which field stars
// were used to create the quad (which are stored in the "f" array)
for (f[adding]=bottom; f[adding]<fieldtop; f[adding]++) {
if (!pq->inbox[f[adding]])
continue;
if (unlikely(solver->quit_now))
return;
// If we've hit the end of the recursion (we're adding the last star),
// call try_all_codes to try the quad we've built.
if (adding == n_to_add-1) {
// (when not testing, TRY_ALL_CODES is just try_all_codes.)
TRY_ALL_CODES(pq, field, dimquad, solver, tol2);
} else {
// Else recurse.
add_stars(pq, field, fieldoffset, n_to_add, adding+1,
fieldtop, dimquad, solver, tol2);
}
}
}
// The real deal
void solver_run(solver_t* solver) {
int numxy, newpoint;
double usertime, systime;
// first timer callback is called after 1 second
time_t next_timer_callback_time = time(NULL) + 1;
pquad* pquads;
size_t i, num_indexes;
double tol2;
int field[DQMAX];
get_resource_stats(&usertime, &systime, NULL);
if (!solver->vf)
solver_preprocess_field(solver);
memset(field, 0, sizeof(field));
solver->starttime = usertime + systime;
numxy = starxy_n(solver->fieldxy);
if (solver->endobj && (numxy > solver->endobj))
numxy = solver->endobj;
if (solver->startobj >= numxy)
return;
if (numxy >= 1000) {
logverb("Limiting search to first 1000 objects\n");
numxy = 1000;
}
num_indexes = pl_size(solver->indexes);
{
double minAB2s[num_indexes];
double maxAB2s[num_indexes];
solver->minminAB2 = LARGE_VAL;
solver->maxmaxAB2 = -LARGE_VAL;
for (i = 0; i < num_indexes; i++) {
double minAB=0, maxAB=0;
index_t* index = pl_get(solver->indexes, i);
// The limits on the size of quads that we try to match, in pixels.
// Derived from index_scale_* and funits_*.
solver_compute_quad_range(solver, index, &minAB, &maxAB);
//logverb("Index \"%s\" quad range %f to %f\n", index->indexname,
//minAB, maxAB);
minAB2s[i] = square(minAB);
maxAB2s[i] = square(maxAB);
solver->minminAB2 = MIN(solver->minminAB2, minAB2s[i]);
solver->maxmaxAB2 = MAX(solver->maxmaxAB2, maxAB2s[i]);
if (index->cx_less_than_dx) {
solver->cxdx_margin = 1.5 * solver->codetol;
// FIXME die horribly if the indexes have differing cx_less_than_dx
}
}
solver->minminAB2 = MAX(solver->minminAB2, square(solver->quadsize_min));
if (solver->quadsize_max != 0.0)
solver->maxmaxAB2 = MIN(solver->maxmaxAB2, square(solver->quadsize_max));
logverb("Quad scale range: [%g, %g] pixels\n", sqrt(solver->minminAB2), sqrt(solver->maxmaxAB2));
// quick-n-dirty scale estimate using stars A,B.
solver->abscale_high = square(arcsec2rad(solver->funits_upper) * (1.0 + solver->codetol));
solver->abscale_low = square(arcsec2rad(solver->funits_lower) * (1.0 - solver->codetol));
/** Ugh, I want to avoid doing distsq2rad when checking scale,
but that means correcting for the difference between the
distance along the curve of the sphere vs the chord distance.
This affects the lower bound for the largest quads in a messy way...
This below isn't right.
solver->abscale_high = square(arcsec2rad(solver->funits_upper) * (1.0 + solver->codetol));
solver->abscale_low = arcsec2rad(solver->funits_lower) * (1.0 - solver->codetol) *
MIN(M_PI, arcsec2rad(field_diag * solver->funits_upper)) ...
*/
pquads = calloc((size_t)numxy * (size_t)numxy, sizeof(pquad));
/* We maintain an array of "potential quads" (pquad) structs, where
* each struct corresponds to one choice of stars A and B; the struct
* at index (B * numxy + A) holds information about quads that could be
* created using stars A,B.
*
* (We only use the above-diagonal elements of this 2D array because
* A<B.)
*
* For each AB pair, we cache the scale and the rotation parameters,
* and we keep an array "inbox" of length "numxy" of booleans, one for
* each star, which say whether that star is eligible to be star C or D
* of a quad with AB at the corners. (Obviously A and B aren't
* eligible).
*
* The "ninbox" parameter is somewhat misnamed - it says that "inbox"
* elements in the range [0, ninbox) have been initialized.
*/
/* (See explanatory paragraph below) If "solver->startobj" isn't zero,
* then we need to initialize the triangle of "pquads" up to
* A=startobj-2, B=startobj-1. */
if (solver->startobj) {
debug("startobj > 0; priming pquad arrays.\n");
for (field[B] = 0; field[B] < solver->startobj; field[B]++) {
for (field[A] = 0; field[A] < field[B]; field[A]++) {
pquad* pq = pquads + field[B] * numxy + field[A];
pq->fieldA = field[A];
pq->fieldB = field[B];
debug("trying A=%i, B=%i\n", field[A], field[B]);
check_scale(pq, solver);
if (!pq->scale_ok) {
debug(" bad scale for A=%i, B=%i\n", field[A], field[B]);
continue;
}
pq->xy = malloc(numxy * 2 * sizeof(double));
pq->inbox = malloc(numxy * sizeof(anbool));
memset(pq->inbox, TRUE, solver->startobj);
pq->ninbox = solver->startobj;
pq->inbox[field[A]] = FALSE;
pq->inbox[field[B]] = FALSE;
check_inbox(pq, 0, solver);
debug(" inbox(A=%i, B=%i): ", field[A], field[B]);
print_inbox(pq);
}
}
}
/* Each time through the "for" loop below, we consider a new star
* ("newpoint"). First, we try building all quads that have the new
* star on the diagonal (star B). Then, we try building all quads that
* have the star not on the diagonal (star D).
*
* For each AB pair, we have a "potential_quad" or "pquad" struct.
* This caches the computation we need to do: deciding whether the
* scale is acceptable, computing the transformation to code
* coordinates, and deciding which C,D stars are in the circle.
*/
for (newpoint = solver->startobj; newpoint < numxy; newpoint++) {
debug("Trying newpoint=%i (%.1f,%.1f)\n", newpoint,
field_getx(solver,newpoint), field_gety(solver,newpoint));
// Give our caller a chance to cancel us midway. The callback
// returns how long to wait before calling again.
if (solver->timer_callback) {
time_t delay;
time_t now = time(NULL);
if (now > next_timer_callback_time) {
update_timeused(solver);
delay = solver->timer_callback(solver->userdata);
if (delay == 0) // Canceled
break;
next_timer_callback_time = now + delay;
}
}
solver->last_examined_object = newpoint;
// quads with the new star on the diagonal:
field[B] = newpoint;
debug("Trying quads with B=%i\n", newpoint);
// first do an index-independent scale check...
for (field[A] = 0; field[A] < newpoint; field[A]++) {
// initialize the "pquad" struct for this AB combo.
pquad* pq = pquads + field[B] * numxy + field[A];
pq->fieldA = field[A];
pq->fieldB = field[B];
debug(" trying A=%i, B=%i\n", field[A], field[B]);
check_scale(pq, solver);
if (!pq->scale_ok) {
debug(" bad scale for A=%i, B=%i\n", field[A], field[B]);
continue;
}
// initialize the "inbox" array:
pq->inbox = malloc(numxy * sizeof(anbool));
pq->xy = malloc(numxy * 2 * sizeof(double));
// -try all stars up to "newpoint"...
assert(sizeof(anbool) == 1);
memset(pq->inbox, TRUE, newpoint + 1);
pq->ninbox = newpoint + 1;
// -except A and B.
pq->inbox[field[A]] = FALSE;
pq->inbox[field[B]] = FALSE;
check_inbox(pq, 0, solver);
debug(" inbox(A=%i, B=%i): ", field[A], field[B]);
print_inbox(pq);
}
// Now iterate through the different indices
for (i = 0; i < num_indexes; i++) {
index_t* index = pl_get(solver->indexes, i);
int dimquads;
set_index(solver, index);
dimquads = index_dimquads(index);
for (field[A] = 0; field[A] < newpoint; field[A]++) {
// initialize the "pquad" struct for this AB combo.
pquad* pq = pquads + field[B] * numxy + field[A];
if (!pq->scale_ok)
continue;
if ((pq->scale < minAB2s[i]) ||
(pq->scale > maxAB2s[i]))
continue;
// set code tolerance for this index and AB pair...
solver->rel_field_noise2 = pq->rel_field_noise2;
tol2 = get_tolerance(solver);
// Now look at all sets of (C, D, ...) stars (subject to field[C] < field[D] < ...)
// ("dimquads - 2" because we've set stars A and B at this point)
add_stars(pq, field, C, dimquads-2, 0, newpoint, dimquads, solver, tol2);
if (solver->quit_now)
goto quitnow;
}
}
if (solver->quit_now)
goto quitnow;
// Now try building quads with the new star not on the diagonal:
field[C] = newpoint;
// (in this loop field[C] > field[D])
debug("Trying quads with C=%i\n", newpoint);
for (field[A] = 0; field[A] < newpoint; field[A]++) {
for (field[B] = field[A] + 1; field[B] < newpoint; field[B]++) {
// grab the "pquad" for this AB combo
pquad* pq = pquads + field[B] * numxy + field[A];
if (!pq->scale_ok) {
debug(" bad scale for A=%i, B=%i\n", field[A], field[B]);
continue;
}
// test if this C is in the box:
pq->inbox[field[C]] = TRUE;
pq->ninbox = field[C] + 1;
check_inbox(pq, field[C], solver);
if (!pq->inbox[field[C]]) {
debug(" C is not in the box for A=%i, B=%i\n", field[A], field[B]);
continue;
}
debug(" C is in the box for A=%i, B=%i\n", field[A], field[B]);
debug(" box now:");
print_inbox(pq);
debug("\n");
solver->rel_field_noise2 = pq->rel_field_noise2;
for (i = 0; i < pl_size(solver->indexes); i++) {
int dimquads;
index_t* index = pl_get(solver->indexes, i);
if ((pq->scale < minAB2s[i]) ||
(pq->scale > maxAB2s[i]))
continue;
set_index(solver, index);
dimquads = index_dimquads(index);
tol2 = get_tolerance(solver);
if (dimquads > 3) {
// ("dimquads - 3" because we've set stars A, B, and C at this point)
add_stars(pq, field, D, dimquads-3, 0, newpoint, dimquads, solver, tol2);
} else {
TRY_ALL_CODES(pq, field, dimquads, solver, tol2);
}
if (solver->quit_now)
goto quitnow;
}
}
}
logverb("object %u of %u: %i quads tried, %i matched.\n",
newpoint + 1, numxy, solver->numtries, solver->nummatches);
if ((solver->maxquads && (solver->numtries >= solver->maxquads))
|| (solver->maxmatches && (solver->nummatches >= solver->maxmatches))
|| solver->quit_now)
break;
}
quitnow:
for (i = 0; i < (numxy*numxy); i++) {
pquad* pq = pquads + i;
free(pq->inbox);
free(pq->xy);
}
free(pquads);
}
}
/**
All the stars in this quad have been chosen. Figure out which
permutations of stars CDE are valid and search for matches.
*/
static void try_all_codes(const pquad* pq,
const int* fieldstars, int dimquad,
solver_t* solver, double tol2) {
int dimcode = (dimquad - 2) * 2;
double code[DCMAX];
double flipcode[DCMAX];
int i;
solver->numtries++;
debug(" trying quad [");
for (i=0; i<dimquad; i++) {
debug("%s%i", (i?" ":""), fieldstars[i]);
}
debug("]\n");
for (i=0; i<dimquad-NBACK; i++) {
code[2*i ] = getx(pq->xy, fieldstars[NBACK+i]);
code[2*i+1] = gety(pq->xy, fieldstars[NBACK+i]);
}
if (solver->parity == PARITY_NORMAL ||
solver->parity == PARITY_BOTH) {
debug(" trying normal parity: code=[");
for (i=0; i<dimcode; i++)
debug("%s%g", (i?", ":""), code[i]);
debug("].\n");
try_all_codes_2(fieldstars, dimquad, code, solver, FALSE, tol2);
}
if (solver->parity == PARITY_FLIP ||
solver->parity == PARITY_BOTH) {
quad_flip_parity(code, flipcode, dimcode);
debug(" trying reverse parity: code=[");
for (i=0; i<dimcode; i++)
debug("%s%g", (i?", ":""), flipcode[i]);
debug("].\n");
try_all_codes_2(fieldstars, dimquad, flipcode, solver, TRUE, tol2);
}
}
/**
This function tries the quad with the "backbone" stars A and B in
normal and flipped configurations.
*/
static void try_all_codes_2(const int* fieldstars, int dimquad,
const double* code, solver_t* solver,
anbool current_parity, double tol2) {
int i;
kdtree_qres_t* result = NULL;
int dimcode = (dimquad - 2) * 2;
int stars[DQMAX];
double flipcode[DCMAX];
// We actually only use elements up to dimquads-2.
anbool placed[DQMAX];
// Un-flipped:
stars[0] = fieldstars[0];
stars[1] = fieldstars[1];
for (i=0; i<DQMAX; i++)
placed[i] = FALSE;
try_permutations(fieldstars, dimquad, code, solver, current_parity,
tol2, stars, NULL, 0, placed, &result);
if (unlikely(solver->quit_now))
goto bailout;
// Flipped:
stars[0] = fieldstars[1];
stars[1] = fieldstars[0];
for (i=0; i<dimcode; i++)
flipcode[i] = 1.0 - code[i];
for (i=0; i<DQMAX; i++)
placed[i] = FALSE;
try_permutations(fieldstars, dimquad, flipcode, solver, current_parity,
tol2, stars, NULL, 0, placed, &result);
bailout:
kdtree_free_query(result);
}
/**
This functions tries different permutations of the non-backbone
stars C [, D [,E ] ]
*/
static void try_permutations(const int* origstars, int dimquad,
const double* origcode,
solver_t* solver, anbool current_parity,
double tol2,
int* stars, double* code,
int slot, anbool* placed,
kdtree_qres_t** presult) {
int i;
int options = KD_OPTIONS_SMALL_RADIUS | KD_OPTIONS_COMPUTE_DISTS |
KD_OPTIONS_NO_RESIZE_RESULTS | KD_OPTIONS_USE_SPLIT;
double mycode[DCMAX];
int Nstars = dimquad - NBACK;
int lastslot = dimquad - NBACK - 1;
/*
This is a recursive function that tries all combinations of the
"internal" stars (ie, not stars A,B that form the "backbone" of
the quad).
We fill the "stars" array with the star IDs (from "origstars") of
the stars that form the quad, while simultaneously filling the
"code" array with the corresponding code coordinates (from
"origcode").
For example, if "dimquad" is 5, and "origstars" contains
A,B,C,D,E, we want to call "resolve_matches" with the following
combinations in "stars":
AB CDE
AB CED
AB DCE
AB DEC
AB ECD
AB EDC
This call will try to put each star in "slot" in turn, then for
each one recurse to "slot" in the rest of the stars.
Note that we are filling stars[2], stars[3], etc; the first two
elements are already filled by stars A and B.
*/
if (code == NULL)
code = mycode;
// We try putting each star that hasn't already been placed in
// this "slot".
for (i=0; i<Nstars; i++) {
if (placed[i])
continue;
// Check cx <= dx, if we're a "dx".
if (slot > 0 && solver->index->cx_less_than_dx) {
if (code[2*(slot - 1) +0] > origcode[2*i +0] + solver->cxdx_margin) {
debug("cx <= dx check failed: %g > %g + %g\n",
code[2*(slot - 1) +0], origcode[2*i +0],
solver->cxdx_margin);
solver->num_cxdx_skipped++;
continue;
}
}
// Slot in this star...
stars[slot + NBACK] = origstars[i + NBACK];
code[2*slot +0] = origcode[2*i +0];
code[2*slot +1] = origcode[2*i +1];
// Check meanx <= 1/2.
if (solver->index->cx_less_than_dx &&
solver->index->meanx_less_than_half) {
// Check the "cx + dx <= 1" condition (for quads); in general,
// combined with the "cx <= dx" condition, this means that the
// mean(x) <= 1/2.
int j;
double meanx = 0;
for (j=0; j<=slot; j++)
meanx += code[2*j];
meanx /= (slot+1);
if (meanx > 0.5 + solver->cxdx_margin) {
debug("meanx <= 0.5 check failed: %g > 0.5 + %g\n",
meanx, solver->cxdx_margin);
solver->num_meanx_skipped++;
continue;
}
}
// If we have more slots to fill...
if (slot < lastslot) {
placed[i] = TRUE;
try_permutations(origstars, dimquad, origcode, solver,
current_parity, tol2, stars, code,
slot+1, placed, presult);
placed[i] = FALSE;
} else {
#if defined(TESTING_TRYPERMUTATIONS)
TEST_TRY_PERMUTATIONS(stars, code, dimquad, solver);
continue;
#endif
// Search with the code we've built.
*presult = kdtree_rangesearch_options_reuse
(solver->index->codekd->tree, *presult, code, tol2, options);
//debug(" trying ABCD = [%i %i %i %i]: %i results.\n",
//fstars[A], fstars[B], fstars[C], fstars[D], result->nres);
if ((*presult)->nres) {
double pixvals[DQMAX*2];
int j;
for (j=0; j<dimquad; j++) {
setx(pixvals, j, field_getx(solver, stars[j]));
sety(pixvals, j, field_gety(solver, stars[j]));
}
resolve_matches(*presult, pixvals, stars, dimquad, solver,
current_parity);
}
if (unlikely(solver->quit_now))
return;
}
}
}
static void resolve_matches(kdtree_qres_t* krez, const double *field_xy,
const int* fieldstars, int dimquads,
solver_t* solver, anbool current_parity) {
// "field_xy" contains the xy pixel coordinates of stars A,B,C,D forming the quad
// [x_A,y_A, x_B,y_B, x_C,y_C, ...]
int jj, thisquadno;
MatchObj mo;
unsigned int star[dimquads];
assert(krez);
for (jj = 0; jj < krez->nres; jj++) {
double starxyz[dimquads*3];
double scale;
double arcsecperpix;
tan_t wcs;
int i;
anbool outofbounds = FALSE;
double abscale;
solver->nummatches++;
thisquadno = krez->inds[jj];
quadfile_get_stars(solver->index->quads, thisquadno, star);
for (i=0; i<dimquads; i++) {
startree_get(solver->index->starkd, star[i], starxyz + 3*i);
if (solver->use_radec)
if (distsq(starxyz + 3*i, solver->centerxyz, 3) > solver->r2) {
outofbounds = TRUE;
break;
}
}
if (outofbounds) {
debug("Quad match is out of bounds.\n");
solver->num_radec_skipped++;
continue;
}
debug(" stars [");
for (i=0; i<dimquads; i++)
debug("%s%i", (i?" ":""), star[i]);
debug("]\n");
// Quick-n-dirty scale estimate based on two stars.
// in (rad per pix)**2
abscale = square(distsq2rad(distsq(starxyz, starxyz+3, 3))) /
distsq(field_xy, field_xy+2, 2);
if (abscale > solver->abscale_high ||
abscale < solver->abscale_low) {
solver->num_abscale_skipped++;
continue;
}
// compute TAN projection from the matching quad alone.
if (fit_tan_wcs(starxyz, field_xy, dimquads, &wcs, &scale)) {
// bad quad.
logverb("bad quad at %s:%i\n", __FILE__, __LINE__);
continue;
}
arcsecperpix = scale * 3600.0;
// FIXME - should there be scale fudge here?
if (arcsecperpix > solver->funits_upper ||
arcsecperpix < solver->funits_lower) {
debug(" bad scale (%g arcsec/pix, range %g %g)\n",
arcsecperpix, solver->funits_lower, solver->funits_upper);
continue;
}
solver->numscaleok++;
set_matchobj_template(solver, &mo);
memcpy(&(mo.wcstan), &wcs, sizeof(tan_t));
mo.wcs_valid = TRUE;
mo.code_err = krez->sdists[jj];
mo.scale = arcsecperpix;
mo.parity = current_parity;
mo.quads_tried = solver->numtries;
mo.quads_matched = solver->nummatches;
mo.quads_scaleok = solver->numscaleok;
mo.quad_npeers = krez->nres;
mo.timeused = solver->timeused;
mo.quadno = thisquadno;
mo.dimquads = dimquads;
for (i=0; i<dimquads; i++) {
mo.star[i] = star[i];
mo.field[i] = fieldstars[i];
mo.ids[i] = 0;
}
memcpy(mo.quadpix, field_xy, 2 * dimquads * sizeof(double));
memcpy(mo.quadxyz, starxyz, 3 * dimquads * sizeof(double));
set_center_and_radius(solver, &mo, &(mo.wcstan), NULL);
if (solver_handle_hit(solver, &mo, NULL, FALSE))
solver->quit_now = TRUE;
if (unlikely(solver->quit_now))
return;
}
}
void solver_inject_match(solver_t* solver, MatchObj* mo, sip_t* sip) {
solver_handle_hit(solver, mo, sip, TRUE);
}
static int solver_handle_hit(solver_t* sp, MatchObj* mo, sip_t* verifysip,
anbool fake_match) {
double match_distance_in_pixels2;
anbool solved;
double logaccept;
mo->indexid = sp->index->indexid;
mo->healpix = sp->index->healpix;
mo->hpnside = sp->index->hpnside;
mo->wcstan.imagew = sp->field_maxx;
mo->wcstan.imageh = sp->field_maxy;
mo->dimquads = quadfile_dimquads(sp->index->quads);
match_distance_in_pixels2 = square(sp->verify_pix) +
square(sp->index->index_jitter / mo->scale);
logaccept = MIN(sp->logratio_tokeep, sp->logratio_totune);
verify_hit(sp->index->starkd, sp->index->cutnside,
mo, verifysip, sp->vf, match_distance_in_pixels2,
sp->distractor_ratio, sp->field_maxx, sp->field_maxy,
sp->logratio_bail_threshold, logaccept,
sp->logratio_stoplooking,
sp->distance_from_quad_bonus, fake_match);
mo->nverified = sp->num_verified++;
if (mo->logodds >= sp->best_logodds) {
sp->best_logodds = mo->logodds;
logverb("Got a new best match: logodds %g.\n", mo->logodds);
}
if (mo->logodds >= sp->logratio_totune &&
mo->logodds < sp->logratio_tokeep) {
logverb("Trying to tune up this solution (logodds = %g; %g)...\n",
mo->logodds, exp(mo->logodds));
solver_tweak2(sp, mo, 1, NULL);
logverb("After tuning, logodds = %g (%g)\n",
mo->logodds, exp(mo->logodds));
// Since we tuned up this solution, we can't just accept the
// resulting log-odds at face value.
if (!fake_match) {
verify_hit(sp->index->starkd, sp->index->cutnside,
mo, mo->sip, sp->vf, match_distance_in_pixels2,
sp->distractor_ratio,
sp->field_maxx, sp->field_maxy,
sp->logratio_bail_threshold,
sp->logratio_tokeep,
sp->logratio_stoplooking,
sp->distance_from_quad_bonus,
fake_match);
logverb("Checking tuned result: logodds = %g (%g)\n",
mo->logodds, exp(mo->logodds));
}
}
if (mo->logodds < sp->logratio_toprint)
return FALSE;
// Also copy original field star coordinates
//mo.quadpix_orig
logverb("mo field stars:\n");
int i;
for (i=0; i<mo->dimquads; i++) {
logverb(" star %i; field_xy %.1f,%.1f, field_orig %.1f,%.1f\n",
mo->field[i], mo->quadpix[2*i+0], mo->quadpix[2*i+1],
starxy_getx(sp->fieldxy_orig, mo->field[i]),
starxy_gety(sp->fieldxy_orig, mo->field[i]));
mo->quadpix_orig[2*i+0] = starxy_getx(sp->fieldxy_orig, mo->field[i]);
mo->quadpix_orig[2*i+1] = starxy_gety(sp->fieldxy_orig, mo->field[i]);
}
update_timeused(sp);
mo->timeused = sp->timeused;
matchobj_print(mo, log_get_level());
if (mo->logodds < sp->logratio_tokeep)
return FALSE;
logverb("Pixel scale: %g arcsec/pix.\n", mo->scale);
logverb("Parity: %s.\n", (mo->parity ? "neg" : "pos"));
mo->index = sp->index;
mo->index_jitter = sp->index->index_jitter;
if (sp->predistort || (sp->pixel_xscale > 0)) {
int i;
double* matchxy;
double* matchxyz;
double* weights;
int N;
int Ngood;
double dx,dy;
// Apply the distortion.
if (sp->predistort)
logverb("Applying the distortion pattern and recomputing WCS...\n");
else
logverb("Applying pixel scaling and recomputing WCS...\n");
if (log_get_level() >= LOG_VERB) {
printf("Initial WCS:\n");
tan_print(&(mo->wcstan));
}
// this includes conflicts and distractors; we won't fill these arrays.
N = mo->nbest;
matchxy = malloc(N * 2 * sizeof(double));
matchxyz = malloc(N * 3 * sizeof(double));
weights = malloc(N * sizeof(double));
Ngood = 0;
for (i=0; i<N; i++) {
if (mo->theta[i] < 0)
continue;
// Plug in the original (distorted) coordinates
dx = starxy_get_x(sp->fieldxy_orig, i);
dy = starxy_get_y(sp->fieldxy_orig, i);
matchxy[2*Ngood + 0] = dx;
matchxy[2*Ngood + 1] = dy;
memcpy(matchxyz + 3*Ngood, mo->refxyz + 3*mo->theta[i],
3*sizeof(double));
weights[Ngood] = verify_logodds_to_weight(mo->matchodds[i]);
double xx,yy;
Unused anbool ok;
ok = tan_xyzarr2pixelxy(&mo->wcstan, matchxyz+3*Ngood, &xx, &yy);
assert(ok);
logverb("match: ref(%.1f, %.1f) -- undist(%.1f, %.1f) --> dist(%.1f, %.1f)\n",
xx, yy, starxy_get_x(sp->fieldxy, i), starxy_get_y(sp->fieldxy, i), dx, dy);
Ngood++;
}
if (sp->do_tweak) {
// Compute the SIP solution using the correspondences
// found during verify(), but with the original (distorted) positions.
sip_t* sip = sip_create();
memset(sip, 0, sizeof(sip_t));
memcpy(&(sip->wcstan), &(mo->wcstan), sizeof(tan_t));
sip->a_order = sip->b_order = sp->tweak_aborder;
sip->ap_order = sip->bp_order = sp->tweak_abporder;
sip->wcstan.imagew = solver_field_width(sp);
sip->wcstan.imageh = solver_field_height(sp);
if (sp->set_crpix) {
sip->wcstan.crpix[0] = sp->crpix[0];
sip->wcstan.crpix[1] = sp->crpix[1];
if (sp->predistort) {
// find matching crval...
sip_pixel_undistortion(sp->predistort,
sp->crpix[0], sp->crpix[1], &dx, &dy);
} else {
dx = sp->crpix[0] / sp->pixel_xscale;
dy = sp->crpix[1];
}
tan_pixelxy2radecarr(&mo->wcstan, dx, dy, sip->wcstan.crval);
} else {
// keep TAN WCS's crval but distort the crpix.
if (sp->predistort) {
sip_pixel_distortion(sp->predistort,
mo->wcstan.crpix[0], mo->wcstan.crpix[1],
sip->wcstan.crpix+0, sip->wcstan.crpix+1);
} else {
sip->wcstan.crpix[0] = mo->wcstan.crpix[0] / sp->pixel_xscale;
sip->wcstan.crpix[1] = mo->wcstan.crpix[1];
}
}
if (log_get_level() >= LOG_VERB) {
printf("Initial SIP on distorted positions:\n");
sip_print(sip);
}
int doshift = 1;
fit_sip_wcs(matchxyz, matchxy, weights, Ngood, &(sip->wcstan),
sp->tweak_aborder, sp->tweak_abporder, doshift,
sip);
if (log_get_level() >= LOG_VERB) {
printf("Final SIP on distorted positions:\n");
sip_print(sip);
}
for (i=0; i<Ngood; i++) {
double xx,yy;
Unused anbool ok;
ok = sip_xyzarr2pixelxy(sip, matchxyz+3*i, &xx, &yy);
assert(ok);
logverb("match: ref(%.1f, %.1f) -- dist(%.1f, %.1f)\n",
xx, yy, matchxy[2*i+0], matchxy[2*i+1]);
}
mo->sip = sip;
} else {
// Take the coordinates after applying the --predistort,
// fit a TAN to those, and include the --predistort in the output
// SIP WCS.
if (sp->predistort) {
Ngood = 0;
for (i=0; i<N; i++) {
if (mo->theta[i] < 0)
continue;
// Plug in the (undistorted) coordinates
dx = starxy_get_x(sp->fieldxy, i);
dy = starxy_get_y(sp->fieldxy, i);
matchxy[2*Ngood + 0] = dx;
matchxy[2*Ngood + 1] = dy;
}
}
// Compute new TAN WCS...?
fit_tan_wcs_weighted(matchxyz, matchxy, weights, Ngood,
&mo->wcstan, NULL);
if (sp->set_crpix) {
tan_t wcs2;
fit_tan_wcs_move_tangent_point(matchxyz, matchxy, Ngood,
sp->crpix, &mo->wcstan, &wcs2);
fit_tan_wcs_move_tangent_point(matchxyz, matchxy, Ngood,
sp->crpix, &wcs2, &mo->wcstan);
}
if (sp->predistort) {
// Copy the distortion
sip_t* sip = sip_create();
memcpy(sip, sp->predistort, sizeof(sip_t));
memcpy(&sip->wcstan, &mo->wcstan, sizeof(tan_t));
mo->sip = sip;
}
}
free(matchxy);
free(matchxyz);
free(weights);
} else if (sp->do_tweak) {
solver_tweak2(sp, mo, sp->tweak_aborder, verifysip);
} else if (!verifysip && sp->set_crpix) {
tan_t wcs2;
tan_t wcs3;
fit_tan_wcs_move_tangent_point(mo->quadxyz, mo->quadpix, mo->dimquads,
sp->crpix, &(mo->wcstan), &wcs2);
fit_tan_wcs_move_tangent_point(mo->quadxyz, mo->quadpix, mo->dimquads,
sp->crpix, &wcs2, &wcs3);
memcpy(&(mo->wcstan), &wcs3, sizeof(tan_t));
/*
Good test case:
http://antwrp.gsfc.nasa.gov/apod/image/0912/Geminid2007_pacholka850wp.jpg
solve-field --config backend.cfg Geminid2007_pacholka850wp.xy \
--scale-low 10 --scale-units degwidth -v --no-tweak --continue --new-fits none \
-o 4 --crpix-center --depth 40-45
printf("Original WCS:\n");
tan_print_to(&(mo->wcstan), stdout);
printf("\n");
printf("Moved WCS:\n");
tan_print_to(&wcs2, stdout);
printf("\n");
printf("Moved again WCS:\n");
tan_print_to(&wcs3, stdout);
printf("\n");
*/
}
// If the user didn't supply a callback, or if the callback
// returns TRUE, consider it solved.
solved = (!sp->record_match_callback ||
sp->record_match_callback(mo, sp->userdata));
// New best match?
if (!sp->have_best_match || (mo->logodds > sp->best_match.logodds)) {
if (sp->have_best_match)
verify_free_matchobj(&sp->best_match);
memcpy(&sp->best_match, mo, sizeof(MatchObj));
sp->have_best_match = TRUE;
sp->best_index = sp->index;
} else {
verify_free_matchobj(mo);
}
if (solved) {
sp->best_match_solves = TRUE;
return TRUE;
}
return FALSE;
}
solver_t* solver_new() {
solver_t* solver = calloc(1, sizeof(solver_t));
solver_set_default_values(solver);
return solver;
}
void solver_set_default_values(solver_t* solver) {
memset(solver, 0, sizeof(solver_t));
solver->indexes = pl_new(16);
solver->funits_upper = LARGE_VAL;
solver->logratio_bail_threshold = log(1e-100);
solver->logratio_stoplooking = LARGE_VAL;
solver->logratio_totune = LARGE_VAL;
solver->parity = DEFAULT_PARITY;
solver->codetol = DEFAULT_CODE_TOL;
solver->distractor_ratio = DEFAULT_DISTRACTOR_RATIO;
solver->verify_pix = DEFAULT_VERIFY_PIX;
solver->verify_uniformize = TRUE;
solver->verify_dedup = TRUE;
solver->distance_from_quad_bonus = TRUE;
solver->tweak_aborder = DEFAULT_TWEAK_ABORDER;
solver->tweak_abporder = DEFAULT_TWEAK_ABPORDER;
}
void solver_clear_indexes(solver_t* solver) {
pl_remove_all(solver->indexes);
solver->index = NULL;
}
void solver_cleanup(solver_t* solver) {
solver_free_field(solver);
pl_free(solver->indexes);
solver->indexes = NULL;
if (solver->have_best_match) {
verify_free_matchobj(&solver->best_match);
solver->have_best_match = FALSE;
}
if (solver->predistort)
sip_free(solver->predistort);
solver->predistort = NULL;
}
void solver_free(solver_t* solver) {
if (!solver) return;
solver_cleanup(solver);
free(solver);
}
|